1
|
Khorrami-Nejad M, Hashemian H, Majdi A, Jadidi K, Aghamolaei H, Hadi A. Application of Stem Cell-Derived Exosomes in Anterior Segment Eye Diseases: A Comprehensive Update Review. Ocul Surf 2025:S1542-0124(25)00020-5. [PMID: 39884389 DOI: 10.1016/j.jtos.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Mesenchymal stem cell (MSC) therapy has emerged as a promising approach for addressing various eye-related conditions. Yet, its clinical application faces challenges due to issues such as limited biocompatibility and difficulties in effectively delivering treatment to specific ocular tissues. Recent studies have shifted attention towards MSC-derived exosomes, which share similar regenerative, reparative, and immunomodulatory capabilities with their origin cells. This review delves into the latest research on the use of MSC-derived exosomes for treating anterior segment diseases of the eye. It explores the exosomes' composition, biological functions, and the methods used for their isolation, as well as their roles in disease progression, diagnosis, and therapy. The review critically assesses the therapeutic advantages and mechanisms of action of MSC-derived exosomes in treating conditions like dry eye disease, Sjogren's syndrome, keratoconus, corneal lesions, and corneal allograft rejection. Additionally, it discusses the obstacles and future prospects of employing MSC-derived exosomes as innovative therapies for anterior segment eye diseases. This comprehensive overview underscores the significant potential of MSC-derived exosomes in transforming the treatment paradigm for anterior segment eye disorders, while also highlighting the necessity for further research to enhance their clinical application.
Collapse
Affiliation(s)
- Masoud Khorrami-Nejad
- School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran; Optical Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq.
| | - Hesam Hashemian
- Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Majdi
- Optical Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| | - Khosrow Jadidi
- Vision Health Research Center, Bina Eye Hospital, Tehran, Iran
| | | | - Ali Hadi
- School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Lv X, Li H, Su S, Fan S. Advances in the ocular complications after hematopoietic stem cell transplantation. Ann Hematol 2024; 103:3867-3880. [PMID: 38403713 DOI: 10.1007/s00277-024-05678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
Hematopoietic stem cell transplantation (HSCT) has benefited an increasing number of patients with hematological disease in the clinic. It is a curative therapy for malignant and nonmalignant hematological diseases. With the advancement and further clinical application of HSCT in recent years, the life expectancy of patients has increased, but complications have become more common. The occurrence of ocular complications is receiving increasing attention because they can seriously affect the quality of life of patients. Ocular complications require increased attention from clinicians because of their negative impact on patients and increasing incidence. Most of recent reports on posttransplant ocular complications involve ocular manifestations of graft-versus-host disease (GVHD), and a few ocular complications that do not originate from GVHD have also been reported. This review summarizes the diagnosis, scoring criteria, pathophysiology, and clinical manifestations of and common therapies for ocular graft-versus-host disease(oGVHD) after HSCT, and includes a description of some rare cases and novel therapies.
Collapse
Affiliation(s)
- Xiaoli Lv
- Department of Hematology, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Huibo Li
- Department of Hematology, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Sheng Su
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.
| | - Shengjin Fan
- Department of Hematology, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.
- NHC Key Laboratory of Cell Transplantation, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
3
|
Narinx F, Sauvage A, Ceusters J, Grulke S, Serteyn D, Monclin S. Subconjunctival autologous muscle-derived mesenchymal stem cell therapy: A novel, minimally invasive approach for treating equine immune-mediated keratitis. Vet Ophthalmol 2024; 27:424-433. [PMID: 38071501 DOI: 10.1111/vop.13175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 11/21/2024]
Abstract
OBJECTIVE To establish the safety of subconjunctival injections of autologous muscle-derived mesenchymal stem cells (mdMSCs) in healthy horses and to evaluate their effect in four horses (six eyes) with severe chronic equine immune-mediated keratitis (IMMK) that was unresponsive to medical treatments. METHODS MdMSCs were cultured from minimally invasive muscle biopsies. In the safety group, four healthy horses received two subconjunctival injections of 2.5 and 5 million cells, respectively, at 1-month interval, to the same eye. Ocular side effects were monitored for 1 month following each injection. In the treatment group, six eyes received four to seven subconjunctival mdMSCs injections (2.5 or 5 million cells per injection) every 4 weeks, approximatively. Medical treatment was discontinued 1 week before and throughout the entire treatment period. A scoring system was used to assess the evolution of the ocular lesions. RESULTS In the safety group, all horses exhibited mild to moderate chemosis and conjunctival hyperemia at the injection site, lasting 24-48 h. In the treatment group, all eyes initially responded positively to therapy, with a reduction in lesion scores observed after the first injection. Four eyes achieved control of the lesions with repeated injections during the 9.2 months of follow-up. CONCLUSION The first subconjunctival injection of mdMSCs resulted in improvement of the ocular lesions. Repeated injections were found to be safe, minimally invasive and showed promise in managing refractory cases of equine IMMK. Further studies are warranted to demonstrate the long-term benefits of these injections and to optimize the therapeutic protocol.
Collapse
Affiliation(s)
- Florine Narinx
- Department of Clinical Sciences, Companion and Equine Animals, Ophthalmology, Veterinary Teaching Hospital of the University of Liège, University of Liège, Liège, Belgium
| | - Aurélie Sauvage
- Department of Clinical Sciences, Companion and Equine Animals, Ophthalmology, Veterinary Teaching Hospital of the University of Liège, University of Liège, Liège, Belgium
| | - Justine Ceusters
- Center for Oxygen Research and Development, Institute of Chemistry, University of Liège, Liège, Belgium
| | - Sigrid Grulke
- Department of Clinical Sciences, Equine Surgery, Veterinary Teaching Hospital of the University of Liège, University of Liège, Liège, Belgium
| | - Didier Serteyn
- Center for Oxygen Research and Development, Institute of Chemistry, University of Liège, Liège, Belgium
- Department of Clinical Sciences, Equine Surgery, Veterinary Teaching Hospital of the University of Liège, University of Liège, Liège, Belgium
| | - Sébastien Monclin
- Department of Clinical Sciences, Companion and Equine Animals, Ophthalmology, Veterinary Teaching Hospital of the University of Liège, University of Liège, Liège, Belgium
| |
Collapse
|
4
|
Yu F, Gong D, Yan D, Wang H, Witman N, Lu Y, Fu W, Fu Y. Enhanced adipose-derived stem cells with IGF-1-modified mRNA promote wound healing following corneal injury. Mol Ther 2023; 31:2454-2471. [PMID: 37165618 PMCID: PMC10422019 DOI: 10.1016/j.ymthe.2023.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
The cornea serves as an important barrier structure to the eyeball and is vulnerable to injuries, which may lead to scarring and blindness if not treated promptly. To explore an effective treatment that could achieve multi-dimensional repair of the injured cornea, the study herein innovatively combined modified mRNA (modRNA) technologies with adipose-derived mesenchymal stem cells (ADSCs) therapy, and applied IGF-1 modRNA (modIGF1)-engineered ADSCs (ADSCmodIGF1) to alkali-burned corneas in mice. The therapeutic results showed that ADSCmodIGF1 treatment could achieve the most extensive recovery of corneal morphology and function when compared not only with simple ADSCs but also IGF-1 protein eyedrops, which was reflected by the healing of corneal epithelium and limbus, the inhibition of corneal stromal fibrosis, angiogenesis and lymphangiogenesis, and also the repair of corneal nerves. In vitro experiments further proved that ADSCmodIGF1 could more significantly promote the activity of trigeminal ganglion cells and maintain the stemness of limbal stem cells than simple ADSCs, which were also essential for reconstructing corneal homeostasis. Through a combinatorial treatment regimen of cell-based therapy with mRNA technology, this study highlighted comprehensive repair in the damaged cornea and showed the outstanding application prospect in the treatment of corneal injury.
Collapse
Affiliation(s)
- Fei Yu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Danni Gong
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Dan Yan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Nevin Witman
- Department of Clinical Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Yang Lu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Yao Fu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| |
Collapse
|
5
|
Cen LP, Park KK, So KF. Optic nerve diseases and regeneration: How far are we from the promised land? Clin Exp Ophthalmol 2023; 51:627-641. [PMID: 37317890 PMCID: PMC10519420 DOI: 10.1111/ceo.14259] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/16/2023]
Abstract
The retinal ganglion cells (RGCs) are the sole output neurons that connect information from the retina to the brain. Optic neuropathies such as glaucoma, trauma, inflammation, ischemia and hereditary optic neuropathy can cause RGC loss and axon damage, and lead to partial or total loss of vision, which is an irreversible process in mammals. The accurate diagnoses of optic neuropathies are crucial for timely treatments to prevent irrevocable RGCs loss. After severe ON damage in optic neuropathies, promoting RGC axon regeneration is vital for restoring vision. Clearance of neuronal debris, decreased intrinsic growth capacity, and the presence of inhibitory factors have been shown to contribute to the failure of post-traumatic CNS regeneration. Here, we review the current understanding of manifestations and treatments of various common optic neuropathies. We also summarise the current known mechanisms of RGC survival and axon regeneration in mammals, including specific intrinsic signalling pathways, key transcription factors, reprogramming genes, inflammation-related regeneration factors, stem cell therapy, and combination therapies. Significant differences in RGC subtypes in survival and regenerative capacity after injury have also been found. Finally, we highlight the developmental states and non-mammalian species that are capable of regenerating RGC axons after injury, and cellular state reprogramming for neural repair.
Collapse
Affiliation(s)
- Ling-Ping Cen
- Department of Neuro-Ophthalmology, Joint Shantou International Eye Centre of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Kevin K. Park
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Kowk-Fai So
- Guangzhou-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- Aier School of Ophthalmology, Changsha Aier Hospital of Ophthalmology, Changsha, China
| |
Collapse
|
6
|
Musa M, Zeppieri M, Enaholo ES, Salati C, Parodi PC. Adipose Stem Cells in Modern-Day Ophthalmology. Clin Pract 2023; 13:230-245. [PMID: 36826163 PMCID: PMC9955457 DOI: 10.3390/clinpract13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Stem cells (SCs) have evolved as an interesting and viable factor in ophthalmologic patient care in the past decades. SCs have been classified as either embryonic, mesenchymal, tissue-specific, or induced pluripotent cells. Multiple novel management techniques and clinical trials have been established to date. While available publications are predominantly animal-model-based, significant material is derived from human studies and case-selected scenarios. This possibility of explanting cells from viable tissue to regenerate/repair damaged tissue points to an exciting future of therapeutic options in all fields of medicine, and ophthalmology is surely not left out. Adipose tissue obtained from lipo-aspirates has been shown to produce mesenchymal SCs that are potentially useful in different body parts, including the oculo-visual system. An overview of the anatomy, physiology, and extraction process for adipose-tissue-derived stem cells (ADSC) is important for better understanding the potential therapeutic benefits. This review examines published data on ADSCs in immune-modulatory, therapeutic, and regenerative treatments. We also look at the future of ADSC applications for ophthalmic patient care. The adverse effects of this relatively novel therapy are also discussed.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
- Correspondence:
| | | | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Pier Camillo Parodi
- Department of Plastic Surgery, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
7
|
Mu J, Zhang Z, Zhou F, Zheng J, Bo P, You B. Experimental study on co-culture of DiI-labeled rat bone marrow mesenchymal stem cells and neonatal rat cardiomyocytes to induce differentiation into cardiomyocyte-like cells. Biomed Mater Eng 2022:BME221429. [DOI: 10.3233/bme-221429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND: Myocardial infarction is a serious clinical disease with high mortality and poor prognosis. Cardiomyocytes (CMs) have limited regeneration abilities after ischemic injury. Their growth and differentiation can be enhanced by contact co-culture with stem cells. OBJECTIVE: The aim was to study the contact co-culture of Dil-labeled bone marrow mesenchymal stem cells (BMSCs) and CMs for inducing differentiation of CMs from stem cells for treating myocardial infarction. METHODS: After contact co-culture, the differentiation of BMSCs into CMs was analyzed qualitatively by detecting myocardial markers (cardiac troponin T and α-smooth muscle actin) using immunofluorescence and quantitatively using flow cytometry. To examine the mechanism, possible gap junctions between BMSCs and CMs were analyzed by detecting gap junction protein connexin 43 (C×43) expression in BMSCs using immunofluorescence. The functionality of gap junctions was analyzed using dye transfer experiments. RESULTS: The results revealed that BMSCs in contact with CMs exhibited myocardial markers and a significant increase in differentiation rate (P < 0.05); they also proved the existence and function of gap junctions between BMSCs and CMs. CONCLUSIONS: It was shown that contact co-culture can induce Dil-labeled BMSCs to differentiate into CM-like cells and examined the principle of gap junction-mediated signaling pathways involved in inducing stem cells to differentiate into cardiomyocytes.
Collapse
Affiliation(s)
| | | | | | | | - Ping Bo
- , , Capital Medical University, , , China
| | - Bin You
- , , Capital Medical University, , , China
| |
Collapse
|
8
|
Harrell CR, Djonov V, Volarevic V. Therapeutic Potential of Mesenchymal Stem Cells in the Treatment of Ocular Graft-Versus-Host Disease. Int J Mol Sci 2022; 23:13254. [PMID: 36362040 PMCID: PMC9656879 DOI: 10.3390/ijms232113254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 01/01/2024] Open
Abstract
Ocular GVHD (oGVHD), manifested by severe injury of corneal epithelial cells, meibomian and lacrimal glands' dysfunction, is a serious complication of systemic GVHD which develops as a consequence of donor T and natural killer cell-driven inflammation in the eyes of patients who received allogeneic hematopoietic stem cell transplantation. Mesenchymal stem cells (MSC) are, due to their enormous differentiation potential and immunosuppressive characteristics, considered as a potentially new remedy in ophthalmology. MSC differentiate in corneal epithelial cells, suppress eye inflammation, and restore meibomian and lacrimal glands' function in oGVHD patients. MSC-sourced exosomes (MSC-Exos) are extracellular vesicles that contain MSC-derived growth factors and immunoregulatory proteins. Due to the lipid membrane and nano-sized dimension, MSC-Exos easily by-pass all biological barriers in the eyes and deliver their cargo directly in injured corneal epithelial cells and eye-infiltrated leukocytes, modulating their viability and function. As cell-free agents, MSC-Exos address all safety issues related to the transplantation of their parental cells, including the risk of unwanted differentiation and aggravation of intraocular inflammation. In this review article, we summarized current knowledge about molecular mechanisms which are responsible for beneficial effects of MSC and MSC-Exos in the therapy of inflammatory eye diseases, emphasizing their therapeutic potential in the treatment of oGVHD.
Collapse
Affiliation(s)
- Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N, Palm Harbor, FL 34684, USA
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Vladislav Volarevic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| |
Collapse
|
9
|
Dias IE, Viegas CA, Requicha JF, Saavedra MJ, Azevedo JM, Carvalho PP, Dias IR. Mesenchymal Stem Cell Studies in the Goat Model for Biomedical Research-A Review of the Scientific Literature. BIOLOGY 2022; 11:1276. [PMID: 36138755 PMCID: PMC9495984 DOI: 10.3390/biology11091276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells, defined by their ability to self-renew, while maintaining the capacity to differentiate into different cellular lineages, presumably from their own germinal layer. MSCs therapy is based on its anti-inflammatory, immunomodulatory, and regenerative potential. Firstly, they can differentiate into the target cell type, allowing them to regenerate the damaged area. Secondly, they have a great immunomodulatory capacity through paracrine effects (by secreting several cytokines and growth factors to adjacent cells) and by cell-to-cell contact, leading to vascularization, cellular proliferation in wounded tissues, and reducing inflammation. Currently, MSCs are being widely investigated for numerous tissue engineering and regenerative medicine applications. Appropriate animal models are crucial for the development and evaluation of regenerative medicine-based treatments and eventual treatments for debilitating diseases with the hope of application in upcoming human clinical trials. Here, we summarize the latest research focused on studying the biological and therapeutic potential of MSCs in the goat model, namely in the fields of orthopedics, dermatology, ophthalmology, dentistry, pneumology, cardiology, and urology fields.
Collapse
Affiliation(s)
- Inês E. Dias
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
| | - Carlos A. Viegas
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- CECAV—Centre for Animal Sciences and Veterinary Studies, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
| | - João F. Requicha
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- CECAV—Centre for Animal Sciences and Veterinary Studies, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
| | - Maria J. Saavedra
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Jorge M. Azevedo
- CECAV—Centre for Animal Sciences and Veterinary Studies, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
- Department of Animal Science, ECAV, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Pedro P. Carvalho
- CIVG—Vasco da Gama Research Center, University School Vasco da Gama (EUVG), Av. José R. Sousa Fernandes, Campus Universitário, Lordemão, 3020-210 Coimbra, Portugal
- Vetherapy—Research and Development in Biotechnology, 3020-210 Coimbra, Portugal
| | - Isabel R. Dias
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- CECAV—Centre for Animal Sciences and Veterinary Studies, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
| |
Collapse
|
10
|
Arifka M, Wilar G, Elamin KM, Wathoni N. Polymeric Hydrogels as Mesenchymal Stem Cell Secretome Delivery System in Biomedical Applications. Polymers (Basel) 2022; 14:polym14061218. [PMID: 35335547 PMCID: PMC8955913 DOI: 10.3390/polym14061218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 01/27/2023] Open
Abstract
Secretomes of mesenchymal stem cells (MSCs) have been successfully studied in preclinical models for several biomedical applications, including tissue engineering, drug delivery, and cancer therapy. Hydrogels are known to imitate a three-dimensional extracellular matrix to offer a friendly environment for stem cells; therefore, hydrogels can be used as scaffolds for tissue construction, to control the distribution of bioactive compounds in tissues, and as a secretome-producing MSC culture media. The administration of a polymeric hydrogel-based MSC secretome has been shown to overcome the fast clearance of the target tissue. In vitro studies confirm the bioactivity of the secretome encapsulated in the gel, allowing for a controlled and sustained release process. The findings reveal that the feasibility of polymeric hydrogels as MSC -secretome delivery systems had a positive influence on the pace of tissue and organ regeneration, as well as an enhanced secretome production. In this review, we discuss the widely used polymeric hydrogels and their advantages as MSC secretome delivery systems in biomedical applications.
Collapse
Affiliation(s)
- Mia Arifka
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
| | - Khaled M. Elamin
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
- Correspondence: ; Tel.: +62-22-842-888-888
| |
Collapse
|
11
|
Pereira AL, Bittencourt MKW, Barros MA, Malago R, Panattoni JFM, de Morais BP, Montiani-Ferreira F, Vasconcellos JPC. Subconjunctival use of allogeneic mesenchymal stem cells to treat chronic superficial keratitis in German shepherd dogs: Pilot study. Open Vet J 2022; 12:744-753. [PMID: 36589393 PMCID: PMC9789768 DOI: 10.5455/ovj.2022.v12.i5.20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/18/2022] [Indexed: 01/03/2023] Open
Abstract
Background Chronic superficial keratitis (CSK) is an ocular condition in dogs characterized by corneal opacification leading to visual function impairment. Control of this chronic condition requires the use of topical immunomodulators or corticosteroids daily. Regenerative medicine has shown promising results in several fields of medicine. Aim The aim of this study was to evaluate the clinical effect of allogeneic mesenchymal stem cells (MSCs) of adipose tissue applied via subconjunctival in dogs with CSK. Methods A series of cases of eight dogs diagnosed with CSK were divided into two groups, four dogs each; the conventional treatment group received prednisolone 1% as topical eye drops and the experimental group (EG) received allogeneic MSCs transplantation. The dogs had not previously been treated for CSK. Systemic and ophthalmologic examinations were performed to exclude other abnormalities. An administered amount of MSC (1 × 106 cells each time) was injected via subconjunctival in the peri-limbal region at 0 and 30 days. The animals were followed for 110 days for clinical evaluation, and, at the same time, the images of the corneal abnormalities were obtained and analyzed in the ImageJ software. The statistical analysis was performed in the GrandPrism 7.0 software. Results Initial and final images revealed that areas with neovascularization, inflammatory infiltrate, and opacity regressed in most eyes in both groups (7/8 eyes in each group) at the end of the 110 days, p = 0.0391 and p = 0.0078 respectively, but this response was minor in the EG comparing to conventional group (CG) (p = 0.026). No local or systemic side effects were observed. Conclusions Despite the small melioration, MSCs treatment suggests clinical improvement in patients with CSK after 110 days without any local or systemic side effects. However, the improvement achieved was significantly less than the observed within CG. Further studies still are needed to evaluate the use and benefits of stem cells as an adjunct treatment for CSK.
Collapse
Affiliation(s)
- Alexandre Luiz Pereira
- Department of Ophthalmology, Faculty of Medical Sciences, UNICAMP, Campinas, Brazil,Corresponding Author: Alexandre Luiz Pereira. Department of Ophthalmology, Faculty of Medical Sciences, UNICAMP, Campinas, Brazil.
| | | | | | - Rodolfo Malago
- Department of Ophthalmology, Faculty of Medical Sciences, UNICAMP, Campinas, Brazil
| | | | | | | | | |
Collapse
|
12
|
Preparation and In Vitro Characterization of Gelatin Methacrylate for Corneal Tissue Engineering. Tissue Eng Regen Med 2021; 19:59-72. [PMID: 34665455 DOI: 10.1007/s13770-021-00393-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Corneal disease is second only to cataract considered as the leading cause of blindness in the world, with high morbidity. Construction of corneal substitutes in vitro by tissue engineering technology to achieve corneal regeneration has become a research hotspot in recent years. We conducted in-depth research on the biocompatibility, physicochemical and mechanical properties of rat bone marrow mesenchymal stem cells (rBM-MSCs)-seeded gelatin methacrylate (GelMA) as a bioengineered cornea. METHODS Four kinds of GelMA with different concentrations (7, 10, 15 and 30%) were prepared, and their physic-chemical, optical properties, and biocompatibility with rBM-MSCs were characterized. MTT, live/dead staining, cell morphology, immunofluorescence staining and gene expression of keratocyte markers were performed. RESULTS 7%GelMA hydrogel had higher equilibrium water content and porosity, better optical properties and hydrophilicity. In addition, it is more beneficial to the growth and proliferation of rBM-MSCs. However, the 30%GelMA hydrogel had the best mechanical properties, and could be more conducive to promote the differentiation of rBM-MSCs into keratocyte-like cells. CONCLUSION As a natural biological scaffold, GelMA hydrogel has good biocompatibility. And it has the ability to promote the differentiation of rBM-MSCs into keratocyte-like cells, which laid a theoretical and experimental foundation for further tissue-engineered corneal stromal transplantation, and provided a new idea for the source of seeded cells in corneal tissue engineering.
Collapse
|
13
|
Mohana Devi S, Abishek Kumar B, Mahalaxmi I, Balachandar V. Leber's hereditary optic neuropathy: Current approaches and future perspectives on Mesenchymal stem cell-mediated rescue. Mitochondrion 2021; 60:201-218. [PMID: 34454075 DOI: 10.1016/j.mito.2021.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/03/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Leber's Hereditary Optic Neuropathy (LHON) is an inherited optic nerve disorder. It is a mitochondrially inherited disease due to point mutation in the MT-ND1, MT-ND4, and MT-ND6 genes of mitochondrial DNA (mtDNA) coding for complex I subunit proteins. These mutations affect the assembly of the mitochondrial complex I and hence the electron transport chain leading to mitochondrial dysfunction and oxidative damage. Optic nerve cells like retinal ganglion cells (RGCs) are more sensitive to mitochondrial loss and oxidative damage which results in the progressive degeneration of RGCs at the axonal region of the optic nerve leading to bilateral vision loss. Currently, gene therapy using Adeno-associated viral vector (AAV) is widely studied for the therapeutics application in LHON. Our review highlights the application of cell-based therapy for LHON. Mesenchymal stem cells (MSCs) are known to rescue cells from the pre-apoptotic stage by transferring healthy mitochondria through tunneling nanotubes (TNT) for cellular oxidative function. Empowering the transfer of healthy mitochondria using MSCs may replace the mitochondria with pathogenic mutation and possibly benefit the cells from progressive damage. This review discusses the ongoing research in LHON and mitochondrial transfer mechanisms to explore its scope in inherited optic neuropathy.
Collapse
Affiliation(s)
- Subramaniam Mohana Devi
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, India.
| | - B Abishek Kumar
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Iyer Mahalaxmi
- Livestock Farming and Bioresource Technology, Tamil Nadu, India
| | - Vellingiri Balachandar
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| |
Collapse
|
14
|
Becker SM, Tumminia SJ, Chiang MF. The NEI Audacious Goals Initiative: Advancing the Frontier of Regenerative Medicine. Transl Vis Sci Technol 2021; 10:2. [PMID: 34383880 PMCID: PMC8362633 DOI: 10.1167/tvst.10.10.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Eight years since the launch of the National Eye Institute Audacious Goals Initiative for Regenerative Medicine, real progress has been made in the effort to restore vision by replacing retinal neurons. Although challenges remain, the infrastructure, tools, and preclinical models to support clinical studies in humans are being prepared. Building on the pioneering trials that are replacing the retinal pigment epithelium, it is expected that by the end of this decade first-in-human trials for the replacement of retinal neurons will be initiated.
Collapse
Affiliation(s)
- Steven M. Becker
- Office of Regenerative Medicine, National Eye Institute, Bethesda, Maryland, USA
| | - Santa J. Tumminia
- Office of the Director, National Eye Institute, Bethesda, Maryland, USA
| | - Michael F. Chiang
- Office of the Director, National Eye Institute, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Wang R, Xu B. TGF-β1-modified MSC-derived exosomal miR-135b attenuates cartilage injury via promoting M2 synovial macrophage polarization by targeting MAPK6. Cell Tissue Res 2021; 384:113-127. [PMID: 33404840 DOI: 10.1007/s00441-020-03319-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) is the most common joint disease with an unsatisfactory therapy outcome and characterized by the degradation of articular cartilage and synovial inflammation. Here, we isolated bone marrow mesenchymal stem cells (BMSCs) from rat's bone marrow and BMSC-derived exosome (BMSCs-Exo) from BMSCs successfully. MiR-135b was proved to be highly expressed in TGF-β1-stimulated BMSC-derived exosomes (BMSCs-ExoTGF-β1). Then, our results demonstrated that BMSCs-ExoTGF-β1 reduced OA-induced upregulation of pro-inflammatory factors in rat's serum and damage in cartilage tissues, which was then reversed by miR-135b decreasing. Subsequently, we found that the OA-resulted M1 polarization of synovial macrophages (SMs) was repressed by BMSCs-ExoTGF-β1, this effect of BMSCs-ExoTGF-β1 was limited by miR-135b decreasing. We also proved that M2 polarization of SMs can be induced by miR-135b mimics. Furthermore, we found that the promotory effect of miR-135b and BMSCs-ExoTGF-β1 on M2 SMs polarization was reversed by increasing of MAPK6. Overall, our data showed that BMSCs-ExoTGF-β1 attenuated cartilage damage in OA rats through carrying highly expressed miR-135b. Mechanistically, miR-135b promoted M2 polarization of SMs through targeting MAPK6, thus improving cartilage damage. Our study provided a novel regulatory mechanism of BMSCs-Exo in OA development and revealed a new potential treatment target of OA.
Collapse
Affiliation(s)
- Rui Wang
- Department of Sports Trauma & Arthroscopy, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, 230022, People's Republic of China
| | - Bin Xu
- Department of Sports Trauma & Arthroscopy, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, 230022, People's Republic of China.
| |
Collapse
|
16
|
Ganiev I, Alexandrova N, Aimaletdinov A, Rutland C, Malanyeva A, Rizvanov A, Zakirova E. The treatment of articular cartilage injuries with mesenchymal stem cells in different animal species. Open Vet J 2021; 11:128-134. [PMID: 33898294 PMCID: PMC8057211 DOI: 10.4314/ovj.v11i1.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/21/2021] [Indexed: 01/09/2023] Open
Abstract
One of the major problems observed in veterinary practice is articular cartilage injuries in animals. In terms of agriculture, it leads to their culling from the herd, even if they are highly productive animals. With companion animals, owners usually have to decide between euthanasia or long-term sometimes lifelong treatment of the injury by a veterinarian. The use of mesenchymal stem cells (MSCs) for the treatment of cartilage injury in veterinary medicine is based on the good results observed in preclinical studies, where large animals have been used as experimental models to study the regenerative activity of MSCs. According to the literature, MSCs in veterinary medicine have been used to treat cartilage injury of dogs and horses, whereas sheep and goats are generally models for reproducing the disease in preclinical experimental studies.
Collapse
Affiliation(s)
- Ilnur Ganiev
- Institute of Fundamental Medicine and Biology of Kazan (Volga region) Federal University, Kazan, Russia
| | - Natalia Alexandrova
- Institute of Fundamental Medicine and Biology of Kazan (Volga region) Federal University, Kazan, Russia
| | - Alexander Aimaletdinov
- Institute of Fundamental Medicine and Biology of Kazan (Volga region) Federal University, Kazan, Russia
| | - Catrin Rutland
- School of Veterinary Medicine and Science, College Road, Sutton Bonington, University of Nottingham, Nottingham, UK
| | - Albina Malanyeva
- Institute of Fundamental Medicine and Biology of Kazan (Volga region) Federal University, Kazan, Russia
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology of Kazan (Volga region) Federal University, Kazan, Russia
| | - Elena Zakirova
- Institute of Fundamental Medicine and Biology of Kazan (Volga region) Federal University, Kazan, Russia
| |
Collapse
|
17
|
Zakirova EY, Aimaletdinov AM, Malanyeva AG, Rutland CS, Rizvanov AA. Extracellular Vesicles: New Perspectives of Regenerative and Reproductive Veterinary Medicine. Front Vet Sci 2020; 7:594044. [PMID: 33330719 PMCID: PMC7717976 DOI: 10.3389/fvets.2020.594044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles are released by all cell types including stem cells. Stem cell-released extracellular vesicles have therapeutic effects similar to those of their parent cells and have regenerative effects in tissues. They also have an immunomodulating effect when down-regulating some proinflammatory factors, without exerting effects on cell proliferation, modulating angiogenesis or altering cellular functions in recipient cells. Modern veterinary research explores vesicles and creates or advances methods of using them in regenerative and reproductive medicine, applications of these technologies are under development.
Collapse
Affiliation(s)
- Elena Yu Zakirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | | | - Albina G Malanyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Catrin S Rutland
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
18
|
Photoreceptor protection by mesenchymal stem cell transplantation identifies exosomal MiR-21 as a therapeutic for retinal degeneration. Cell Death Differ 2020; 28:1041-1061. [PMID: 33082517 PMCID: PMC7937676 DOI: 10.1038/s41418-020-00636-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Photoreceptor apoptosis is recognized as one key pathogenesis of retinal degeneration, the counteraction of which represents a promising approach to safeguard visual function. Recently, mesenchymal stem cell transplantation (MSCT) has demonstrated immense potential to treat ocular disorders, in which extracellular vesicles (EVs), particularly exosomes, have emerged as effective ophthalmological therapeutics. However, whether and how MSCT protects photoreceptors against apoptotic injuries remains largely unknown. Here, we discovered that intravitreal MSCT counteracted photoreceptor apoptosis and alleviated retinal morphological and functional degeneration in a mouse model of photoreceptor loss induced by N-methyl-N-nitrosourea (MNU). Interestingly, effects of MSCT were inhibited after blockade of exosomal generation by GW4869 preconditioning. Furthermore, MSC-derived exosomal transplantation (EXOT) effectively suppressed MNU-provoked photoreceptor injury. Notably, therapeutic efficacy of MSCT and EXOT on MNU-induced retinal degeneration was long-lasting as photoreceptor preservance and retinal maintenance were detected even after 1–2 months post to injection for only once. More importantly, using a natural occurring retinal degeneration model caused by a nonsense mutation of Phosphodiesterase 6b gene (Pde6bmut), we confirmed that MSCT and EXOT prevented photoreceptor loss and protected long-term retinal function. In deciphering therapeutic mechanisms regarding potential exosome-mediated communications, we identified that miR-21 critically maintained photoreceptor viability against MNU injury by targeting programmed cell death 4 (Pdcd4) and was transferred from MSC-derived exosomes in vivo for functional regulation. Moreover, miR-21 deficiency aggravated MNU-driven retinal injury and was restrained by EXOT. Further experiments revealed that miR-21 mediated therapeutic effects of EXOT on MNU-induced photoreceptor apoptosis and retinal dysfunction. These findings uncovered the efficacy and mechanism of MSCT-based photoreceptor protection, indicating exosomal miR-21 as a therapeutic for retinal degeneration.
Collapse
|
19
|
Alvarez-Rivera F, Rey-Rico A, Venkatesan JK, Diaz-Gomez L, Cucchiarini M, Concheiro A, Alvarez-Lorenzo C. Controlled Release of rAAV Vectors from APMA-Functionalized Contact Lenses for Corneal Gene Therapy. Pharmaceutics 2020; 12:pharmaceutics12040335. [PMID: 32283694 PMCID: PMC7238179 DOI: 10.3390/pharmaceutics12040335] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
As an alternative to eye drops and ocular injections for gene therapy, the aim of this work was to design for the first time hydrogel contact lenses that can act as platforms for the controlled delivery of viral vectors (recombinant adeno-associated virus, rAAV) to the eye in an effective way with improved patient compliance. Hydrogels of hydroxyethyl methacrylate (HEMA) with aminopropyl methacrylamide (APMA) (H1: 40, and H2: 80 mM) or without (Hc: 0 mM) were synthesized, sterilized by steam heat (121 °C, 20 min), and then tested for gene therapy using rAAV vectors to deliver the genes to the cornea. The hydrogels showed adequate light transparency, oxygen permeability, and swelling for use as contact lenses. Loading of viral vectors (rAAV-lacZ, rAAV-RFP, or rAAV-hIGF-I) was carried out at 4 °C to maintain viral vector titer. Release in culture medium was monitored by fluorescence with Cy3-rAAV-lacZ and AAV Titration ELISA. Transduction efficacy was tested through reporter genes lacZ and RFP in human bone marrow derived mesenchymal stem cells (hMSCs). lacZ was detected with X-Gal staining and quantified with Beta-Glo®, and RFP was monitored by fluorescence. The ability of rAAV-hIGF-I-loaded hydrogels to trigger cell proliferation in hMSCs was evaluated by immunohistochemistry. Finally, the ability of rAAV-lacZ-loaded hydrogels to transduce bovine cornea was confirmed through detection with X-Gal staining of β-galactosidase expressed within the tissue.
Collapse
Affiliation(s)
- Fernando Alvarez-Rivera
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma, Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (F.A.-R.); (L.D.-G.); (A.C.)
| | - Ana Rey-Rico
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain;
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg, Germany; (J.K.V.); (M.C.)
| | - Luis Diaz-Gomez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma, Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (F.A.-R.); (L.D.-G.); (A.C.)
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg, Germany; (J.K.V.); (M.C.)
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma, Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (F.A.-R.); (L.D.-G.); (A.C.)
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma, Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (F.A.-R.); (L.D.-G.); (A.C.)
- Correspondence: ; Tel.: +34-881815239
| |
Collapse
|