1
|
Wang J, Xue Q, Tan X, Huang J, Zhu Y, Li W. Effects of light perception on visual function recovery in patients with traumatic optic neuropathy. Sci Rep 2024; 14:7514. [PMID: 38553505 PMCID: PMC10980797 DOI: 10.1038/s41598-024-54324-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 02/11/2024] [Indexed: 04/02/2024] Open
Abstract
This study aimed to assess the impact of light perception presence or absence on visual function recovery in patients with traumatic optic neuropathy (TON). A retrospective analysis was conducted on the clinical data of 206 TON patients. Based on the presence or absence of light perception after injury, patients were categorized into a light perception group and a non-light perception group. A comparison was made between the two groups regarding visual acuity recovery before and after treatment. The non-light perception group comprised 63 patients, with a treatment effectiveness rate of 39.68%. The light perception group consisted of 143 patients, with a treatment effectiveness rate of 74.83%. The difference between the two groups was statistically significant (χ2 = 23.464, P < 0.01). Subgroup analysis indicated that surgical treatment appeared to be more effective than steroid hormone therapy for patients with light perception. Conversely, for patients without light perception, there was no significant difference in the effectiveness of the two methods. The total effectiveness rate of the light perception group was significantly higher than that of the non-light perception group, suggesting that patients with light perception before treatment experience better outcomes compared to those without light perception. Treatment choices should be individualized to ensure optimal results.
Collapse
Affiliation(s)
- Jiancun Wang
- Department of Neurosurgery, Seventh People's Hospital Affiliated to Shanghai University of TCM, Shanghai, China
- Neurosurgery Department of the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiang Xue
- Department of Neurosurgery, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, China
| | - Xuewen Tan
- Department of Neurosurgery, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, China
| | - Jie Huang
- Department of Neurosurgery, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, China
| | - Yibai Zhu
- Department of Neurosurgery, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, China
| | - Wen Li
- Neurosurgery Department of the First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Chauhan MZ, Chacko JG, Ghaffarieh A, Moulin CM, Pelaez D, Uwaydat SH, Bhattacharya SK. Mitochondrial Triglyceride Dysregulation in Optic Nerves Following Indirect Traumatic Optic Neuropathy. Biomolecules 2022; 12:biom12121885. [PMID: 36551313 PMCID: PMC9775509 DOI: 10.3390/biom12121885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The purpose of this work is to identify mitochondrial optic nerve (ON) lipid alterations associated with sonication-induced traumatic optic neuropathy (TON). Briefly, a mouse model of indirect TON was generated using sound energy concentrated focally at the entrance of the optic canal using a laboratory sonifier (Branson Digital Sonifier 450, Danbury, CT, USA) with a microtip probe. We performed an analysis of a previously generated dataset from high-performance liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS). We analyzed lipids from isolated mitochondria from the ON at 1 day, 7 days, and 14 days post-sonication compared to non-sonicated controls. Lipid abundance alterations in post-sonicated ON mitochondria were evaluated with 1-way ANOVA (FDR-adjusted significant p-value < 0.01), debiased sparse partial correlation (DSPC) network modeling, and partial least squares-discriminant analysis (PLS-DA). We find temporal alterations in triglyceride metabolism are observed in ON mitochondria of mice following sonication-induced optic neuropathy with notable depletions of TG(18:1/18:2/18:2), TG(18:1/18:1/18:1), and TG(16:0/16:0/18:1). Depletion of mitochondrial triglycerides may mediate ON damage in indirect traumatic optic neuropathy through loss energy substrates for neuronal metabolism.
Collapse
Affiliation(s)
- Muhammad Z. Chauhan
- Department of Ophthalmology, Jones Eye Institute, University of Arkansas for Medical Sciences Little Rock, Little Rock, AR 72205, USA
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joseph G. Chacko
- Department of Ophthalmology, Jones Eye Institute, University of Arkansas for Medical Sciences Little Rock, Little Rock, AR 72205, USA
| | - Alireza Ghaffarieh
- Department of Ophthalmology, Jones Eye Institute, University of Arkansas for Medical Sciences Little Rock, Little Rock, AR 72205, USA
| | - Chloe M. Moulin
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel Pelaez
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sami H. Uwaydat
- Department of Ophthalmology, Jones Eye Institute, University of Arkansas for Medical Sciences Little Rock, Little Rock, AR 72205, USA
- Correspondence: (S.H.U.); (S.K.B.); Tel.: +305-482-4103 (S.K.B.)
| | - Sanjoy K. Bhattacharya
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Correspondence: (S.H.U.); (S.K.B.); Tel.: +305-482-4103 (S.K.B.)
| |
Collapse
|
3
|
王 鹏, 罗 生, 申 晨, 喻 哲, 聂 祖, 李 志, 文 婕, 李 萌, 曹 霞. [Protective effect of Epothilone D against traumatic optic nerve injury in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:575-583. [PMID: 35527494 PMCID: PMC9085595 DOI: 10.12122/j.issn.1673-4254.2022.04.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the therapeutic effect of Epothilone D on traumatic optic neuropathy (TON) in rats. METHODS Forty-two SD rats were randomized to receive intraperitoneal injection of 1.0 mg/kg Epothilone D or DMSO (control) every 3 days until day 28, and rat models of TON were established on the second day after the first administration. On days 3, 7, and 28, examination of flash visual evoked potentials (FVEP), immunofluorescence staining and Western blotting were performed to examine the visual pathway features, number of retinal ganglion cells (RGCs), GAP43 expression level in damaged axons, and changes of Tau and pTau-396/404 in the retina and optic nerve. RESULTS In Epothilone D treatment group, RGC loss rate was significantly decreased by 19.12% (P=0.032) on day 3 and by 22.67% (P=0.042) on day 28 as compared with the rats in the control group, but FVEP examination failed to show physiological improvement in the visual pathway on day 28 in terms of the relative latency of N2 wave (P=0.236) and relative amplitude attenuation of P2-N2 wave (P=0.441). The total Tau content in the retina of the treatment group was significantly increased compared with that in the control group on day 3 (P < 0.001), showing a consistent change with ptau-396/404 level. In the optic nerve axons, the total Tau level in the treatment group was significantly lower than that in the control group on day 7 (P=0.002), but the changes of the total Tau and pTau-396/404 level did not show an obvious correlation. Epothilone D induced persistent expression of GAP43 in the damaged axons, detectable even on day 28 of the experiment. CONCLUSION Epothilone D treatment can protect against TON in rats by promoting the survival of injured RGCs, enhancing Tau content in the surviving RGCs, reducing Tau accumulation in injured axons, and stimulating sustained regeneration of axons.
Collapse
Affiliation(s)
- 鹏飞 王
- />昆明医科大学第二附属医院,云南 昆明 650101Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 生平 罗
- />昆明医科大学第二附属医院,云南 昆明 650101Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 晨 申
- />昆明医科大学第二附属医院,云南 昆明 650101Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 哲昊 喻
- />昆明医科大学第二附属医院,云南 昆明 650101Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 祖庆 聂
- />昆明医科大学第二附属医院,云南 昆明 650101Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 志伟 李
- />昆明医科大学第二附属医院,云南 昆明 650101Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 婕 文
- />昆明医科大学第二附属医院,云南 昆明 650101Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 萌 李
- />昆明医科大学第二附属医院,云南 昆明 650101Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 霞 曹
- />昆明医科大学第二附属医院,云南 昆明 650101Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| |
Collapse
|
4
|
Traumatic optic neuropathy: a review of current studies. Neurosurg Rev 2022; 45:1895-1913. [PMID: 35034261 DOI: 10.1007/s10143-021-01717-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/26/2021] [Accepted: 12/09/2021] [Indexed: 10/24/2022]
Abstract
Traumatic optic neuropathy (TON) is a serious complication of craniofacial trauma that directly or indirectly damages the optic nerve and can cause severe vision loss. The incidence of TON has been gradually increasing in recent years. Research on the protection and regeneration of the optic nerve after the onset of TON is still at the level of laboratory studies and which is insufficient to support clinical treatment of TON. And, due to without clear guidelines, there is much ambiguity regarding its diagnosis and management. Clinical interventions for TON include observation only, treatment with corticosteroids alone, or optic canal (OC) decompression (with or without steroids). There is controversy in clinical practice concerning which treatment is the best. A review of available studies shows that the visual acuity of patients with TON can be significantly improved after OC decompression surgery (especially endoscopic transnasal/transseptal optic canal decompression (ETOCD)) with or without the use of corticosteroids. And new findings of laboratory studies such as mitochondrial therapy, lipid change studies, and other studies in favor of TON therapy have also been identified. In this review, we discuss the evolving perspective of surgical treatment and experimental study.
Collapse
|
5
|
Muench NA, Patel S, Maes ME, Donahue RJ, Ikeda A, Nickells RW. The Influence of Mitochondrial Dynamics and Function on Retinal Ganglion Cell Susceptibility in Optic Nerve Disease. Cells 2021; 10:cells10071593. [PMID: 34201955 PMCID: PMC8306483 DOI: 10.3390/cells10071593] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/30/2022] Open
Abstract
The important roles of mitochondrial function and dysfunction in the process of neurodegeneration are widely acknowledged. Retinal ganglion cells (RGCs) appear to be a highly vulnerable neuronal cell type in the central nervous system with respect to mitochondrial dysfunction but the actual reasons for this are still incompletely understood. These cells have a unique circumstance where unmyelinated axons must bend nearly 90° to exit the eye and then cross a translaminar pressure gradient before becoming myelinated in the optic nerve. This region, the optic nerve head, contains some of the highest density of mitochondria present in these cells. Glaucoma represents a perfect storm of events occurring at this location, with a combination of changes in the translaminar pressure gradient and reassignment of the metabolic support functions of supporting glia, which appears to apply increased metabolic stress to the RGC axons leading to a failure of axonal transport mechanisms. However, RGCs themselves are also extremely sensitive to genetic mutations, particularly in genes affecting mitochondrial dynamics and mitochondrial clearance. These mutations, which systemically affect the mitochondria in every cell, often lead to an optic neuropathy as the sole pathologic defect in affected patients. This review summarizes knowledge of mitochondrial structure and function, the known energy demands of neurons in general, and places these in the context of normal and pathological characteristics of mitochondria attributed to RGCs.
Collapse
Affiliation(s)
- Nicole A. Muench
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (N.A.M.); (S.P.); (R.J.D.)
| | - Sonia Patel
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (N.A.M.); (S.P.); (R.J.D.)
| | - Margaret E. Maes
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria;
| | - Ryan J. Donahue
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (N.A.M.); (S.P.); (R.J.D.)
- Boston Children’s Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA;
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Robert W. Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (N.A.M.); (S.P.); (R.J.D.)
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence:
| |
Collapse
|