1
|
Su L, Ni T, Fan R, Tan Z, Zhang X, Li X. An attention to the effect of intravitreal injection on the controls of oxygen-induced retinopathy mouse model. Exp Eye Res 2024; 248:110094. [PMID: 39277097 DOI: 10.1016/j.exer.2024.110094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Oxygen-induced retinopathy (OIR) mouse model is widely used to study retinal neovascular diseases. Although the OIR procedure has been well established in detail, few studies to date have examined the effect of intravitreal injection using different-sized syringe needles at different time intervals after mouse pups returned to room air on this model. Initially, the significant reduction of NV and VO areas in the vehicle-controls of OIR drew our attention. We found that intravitreal injection performed using a 33 g-needle at 2 h after the pups returned to room air resulted in minimal NV and VO areas, causing a failure of OIR model. The results of ERG and OCT testing showed that 34 g-needle was more suitable than a 33 g-needle for intravitreal injection in the OIR model. We then investigated the effect of time interval after pups returned to room air on the OIR model. The results indicated that 8-24 h was a more suitable time for performing intravitreal injection. In conclusion, appropriate control of the effects of intravitreal injection on OIR requires attention to gauge of needle used, and the time interval after return of pups to room air.
Collapse
Affiliation(s)
- Lin Su
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China
| | - Tianwen Ni
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China
| | - Ruiyan Fan
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China
| | - Zhiqing Tan
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China.
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China.
| |
Collapse
|
2
|
Naguib S, Backstrom JR, Artis E, Ghose P, Stahl A, Hardin R, Haider AA, Ang J, Calkins DJ, Rex TS. NRF2/ARE mediated antioxidant response to glaucoma: role of glia and retinal ganglion cells. Acta Neuropathol Commun 2023; 11:171. [PMID: 37875948 PMCID: PMC10594672 DOI: 10.1186/s40478-023-01663-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023] Open
Abstract
Glaucoma, the second leading cause of irreversible blindness worldwide, is associated with age and sensitivity to intraocular pressure (IOP). We have shown that elevated IOP causes an early increase in levels of reactive oxygen species (ROS) in the microbead occlusion mouse model. We also detected an endogenous antioxidant response mediated by Nuclear factor erythroid 2-Related Factor 2 (NRF2), a transcription factor that binds to the antioxidant response element (ARE) and increases transcription of antioxidant genes. Our previous studies show that inhibiting this pathway results in earlier and greater glaucoma pathology. In this study, we sought to determine if this endogenous antioxidant response is driven by the retinal ganglion cells (RGCs) or glial cells. We used Nrf2fl/fl mice and cell-type specific adeno-associated viruses (AAVs) expressing Cre to alter Nrf2 levels in either the RGCs or glial cells. Then, we quantified the endogenous antioxidant response, visual function and optic nerve histology after IOP elevation. We found that knock-down of Nrf2 in either cell type blunts the antioxidant response and results in earlier pathology and vision loss. Further, we show that delivery of Nrf2 to the RGCs is sufficient to provide neuroprotection. In summary, both the RGCs and glial cells contribute to the antioxidant response, but treatment of the RGCs alone with increased Nrf2 is sufficient to delay onset of vision loss and axon degeneration in this induced model of glaucoma.
Collapse
Affiliation(s)
- Sarah Naguib
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Jon R Backstrom
- Vanderbilt University Medical Center, Vanderbilt Eye Institute, Nashville, TN, USA
| | - Elisabeth Artis
- Vanderbilt University Medical Center, Vanderbilt Eye Institute, Nashville, TN, USA
| | - Purnima Ghose
- Vanderbilt University Medical Center, Vanderbilt Eye Institute, Nashville, TN, USA
| | - Amy Stahl
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Rachael Hardin
- Vanderbilt University Medical Center, Vanderbilt Eye Institute, Nashville, TN, USA
| | - Ameer A Haider
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - John Ang
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - David J Calkins
- Vanderbilt University Medical Center, Vanderbilt Eye Institute, Nashville, TN, USA
| | - Tonia S Rex
- Vanderbilt University Medical Center, Vanderbilt Eye Institute, Nashville, TN, USA.
| |
Collapse
|
3
|
Wang Q, Lin X, Wang J. An optimized method for retrograde labelling and quantification of rabbit retinal ganglion cells. Exp Eye Res 2023; 229:109432. [PMID: 36822495 DOI: 10.1016/j.exer.2023.109432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/27/2022] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
Rabbits are a commonly used animal model in glaucoma research, but their application has been limited by the techniques used to assess optic nerve injury (ONI). Our study devised an optimized method for retrograde labelling and analysing rabbit retinal ganglion cells (RGCs). This method involved improvements over the conventional method regarding the stereotaxic device, the positioning of superior colliculi, the target of axonal tracer delivery, and the visualization and analysis of labelled RGCs. To evaluate its efficacy, eight New Zealand White rabbits were divided into naïve and ONI groups. Unilateral limbal buckling surgery was performed in each animal of the ONI group to induce chronic ocular hypertension (OHT). The animals of both groups were injected with indocyanine green (ICG) into the interstice between the superior colliculus and occipital lobe on each side of the brain, and their eyes were examined by confocal scanning laser ophthalmoscopy (CSLO) after 48 h. The acquired images were then analysed to quantify the number of ICG-labelled RGCs in these eyes and their loss induced by OHT. To verify the identity and changes of the labelled RGCs, the retinas of the rabbits were subjected to immunofluorescence analyses. In addition, three animals were subjected to a second ICG labelling after 12 months to determine the influence of this procedure on the long-term viability of the labelled RGCs. Our results showed that ICG-labelled RGCs were detected by CSLO throughout the retinas of all animals. These RGCs showed a distinctly higher density below the ONH and were defective in sectorial areas in OHT eyes. Their average number in the cell counting area was 3989.2 ± 414.2 and 4023.3 ± 603.4 in the right and left eyes, respectively, of the naïve animals and 2590.9 ± 1474.2 and 3966.7 ± 24.0 in the OHT and non-OHT eyes, respectively, of the ONI animals. Immunofluorescence analyses showed positive staining with Brn3a and RBPMS in the ICG-labelled RGCs and sectorial defects of the cells in the OHT eyes, similarly as observed by CSLO. The second ICG labelling after 12 months in three animals showed no appreciable changes in RGC density compared with the first one. In summary, the optimized method of rabbit RGC retrograde labelling is reliable and accurate in both naïve and ONI animals and offers an approach for longitudinal observation of RGCs in the same eyes, which suggests its potential as a powerful tool for glaucoma and optic nerve research.
Collapse
Affiliation(s)
- Qilin Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Xingyan Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Juanjuan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| |
Collapse
|
4
|
Naguib S, DeJulius CR, Backstrom JR, Haider AA, Ang JM, Boal AM, Calkins DJ, Duvall CL, Rex TS. Intraocular Sustained Release of EPO-R76E Mitigates Glaucoma Pathogenesis by Activating the NRF2/ARE Pathway. Antioxidants (Basel) 2023; 12:556. [PMID: 36978804 PMCID: PMC10045745 DOI: 10.3390/antiox12030556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Erythropoietin (EPO) is neuroprotective in multiple models of neurodegenerative diseases, including glaucoma. EPO-R76E retains the neuroprotective effects of EPO but diminishes the effects on hematocrit. Treatment with EPO-R76E in a glaucoma model increases expression of antioxidant proteins and is neuroprotective. A major pathway that controls the expression of antioxidant proteins is the NRF2/ARE pathway. This pathway is activated endogenously after elevation of intraocular pressure (IOP) and contributes to the slow onset of pathology in glaucoma. In this study, we explored if sustained release of EPO-R76E in the eye would activate the NRF2/ARE pathway and if this pathway was key to its neuroprotective activity. Treatment with PLGA.EPO-E76E prevented increases in retinal superoxide levels in vivo, and caused phosphorylation of NRF2 and upregulation of antioxidants. Further, EPO-R76E activates NRF2 via phosphorylation by the MAPK pathway rather than the PI3K/Akt pathway, used by the endogenous antioxidant response to elevated IOP.
Collapse
Affiliation(s)
- Sarah Naguib
- Neuroscience Program, Vanderbilt University, Nashville, TN 37232, USA
| | - Carlisle R. DeJulius
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Jon R. Backstrom
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ameer A. Haider
- Neuroscience Program, Vanderbilt University, Nashville, TN 37232, USA
| | - John M. Ang
- Neuroscience Program, Vanderbilt University, Nashville, TN 37232, USA
| | - Andrew M. Boal
- Neuroscience Program, Vanderbilt University, Nashville, TN 37232, USA
| | - David J. Calkins
- Neuroscience Program, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Tonia S. Rex
- Neuroscience Program, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
5
|
Cong YY, Fan B, Zhang ZY, Li GY. Implantable sustained-release drug delivery systems: a revolution for ocular therapeutics. Int Ophthalmol 2023:10.1007/s10792-023-02637-x. [PMID: 36715956 DOI: 10.1007/s10792-023-02637-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023]
Abstract
PURPOSE Due to the inimitable anatomical structure of the eyeball and various physiological barriers, conventional ocular local administration is often complicated by apparent shortcomings, such as limited bioavailability and short drug retention. Thus, developing methods for sustainable, safe and efficient drug delivery to ocular target sites has long been an urgent need. This study briefly summarizes the barriers to ocular drug administration and various ocular drug delivery routes and highlights recent progress in ocular implantable sustained-release drug delivery systems (DDSs) to provide literature evidence for developing novel ocular implants for sustained drug delivery. METHODS We conducted a comprehensive search of studies on ocular implantable sustained-release DDSs in PubMed and Web of Science using the following keywords: ocular, implantable and drug delivery system. More than 400 papers were extracted. Publications focused on sustained and controlled drug release were primarily considered. Experimental articles involving DDSs that cannot be implanted into the eye through surgeries and cannot be inserted into ocular tissues in solid form were excluded. Approximately 143 publications were reviewed to summarize the most current information on the subject. RESULTS In recent years, numerous ocular sustained-release DDSs using lipids, nanoparticles and hydrogels as carriers have emerged. With unique properties and systematic design, ocular implantable sustained-release DDSs are able to continuously maintain drug release, effectively sustain the therapeutic concentration in target tissues, and substantially enhance the therapeutic efficacy. Nevertheless, few ocular implantable sustained-release DDSs have been available in clinical use. CONCLUSIONS Ocular implantable sustained-release DDSs have become a new focus in the field of ocular drug development through unique designs and improvements in the materials of drug carriers, administration methods and dosage forms. With more ocular implantable sustained-release DDSs being commercialized, ocular therapeutics may be revolutionized.
Collapse
Affiliation(s)
- Yun-Yi Cong
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Bin Fan
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Zi-Yuan Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Guang-Yu Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
6
|
Obert E, Grek C, Ghatnekar G, Rohrer B. Evaluation of a connexin-based peptide for the treatment of age-related macular degeneration. Heliyon 2022; 8:e11359. [PMID: 36387470 PMCID: PMC9660603 DOI: 10.1016/j.heliyon.2022.e11359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
A critical target in age-related macular degeneration (AMD) is the retinal pigment epithelium (RPE), which forms the outer blood-retina barrier (BRB). RPE-barrier dysfunction might result from the disruption of intercellular tight junctions (TJs). A Connexin43 (Cx43)-based peptide, aCT1, has been shown to prevent VEGF-induced loss of transepithelial resistance, choroidal neovascularization (CNV) and RPE-cell damage via the stabilization of TJs. Here, we probe the relative efficacies of aCT1 alone, anti-VEGF alone, and aCT1 with anti-VEGF in treating AMD pathologies. aCT1 monotherapy administered as topical eye drops with and without a VEGF blocking antibody administered systemically was tested in a mouse model of laser-induced CNV. The CNV mouse is the standard neovascular AMD model, reproducing hallmarks of its pathology. CNV lesion size and fluid accumulation were assessed using optical coherence tomography. During the angiogenesis phase of CNV lesion development, single applications of anti-VEGF or aCT1 reduced lesion and fluid dome size equally. The combinatorial aCT1/anti-VEGF strategy demonstrated lack of additive effects in this model. These data suggest that TJ stabilization by aCT1 is effective in ameliorating RPE dysfunction in a model of AMD-like angiogenesis, and that this strategy is as effective as the current clinical standard of care, anti-VEGF therapy. Critically, aCT1 holds potential as a new neovascular AMD treatment that can be administered using eye drops, which is preferable to the intravitreal injections required for standard anti-VEGF therapy.
Collapse
|
7
|
Traumatic optic neuropathy: a review of current studies. Neurosurg Rev 2022; 45:1895-1913. [PMID: 35034261 DOI: 10.1007/s10143-021-01717-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/26/2021] [Accepted: 12/09/2021] [Indexed: 10/24/2022]
Abstract
Traumatic optic neuropathy (TON) is a serious complication of craniofacial trauma that directly or indirectly damages the optic nerve and can cause severe vision loss. The incidence of TON has been gradually increasing in recent years. Research on the protection and regeneration of the optic nerve after the onset of TON is still at the level of laboratory studies and which is insufficient to support clinical treatment of TON. And, due to without clear guidelines, there is much ambiguity regarding its diagnosis and management. Clinical interventions for TON include observation only, treatment with corticosteroids alone, or optic canal (OC) decompression (with or without steroids). There is controversy in clinical practice concerning which treatment is the best. A review of available studies shows that the visual acuity of patients with TON can be significantly improved after OC decompression surgery (especially endoscopic transnasal/transseptal optic canal decompression (ETOCD)) with or without the use of corticosteroids. And new findings of laboratory studies such as mitochondrial therapy, lipid change studies, and other studies in favor of TON therapy have also been identified. In this review, we discuss the evolving perspective of surgical treatment and experimental study.
Collapse
|
8
|
Thomas CN, Bernardo-Colón A, Courtie E, Essex G, Rex TS, Blanch RJ, Ahmed Z. Effects of intravitreal injection of siRNA against caspase-2 on retinal and optic nerve degeneration in air blast induced ocular trauma. Sci Rep 2021; 11:16839. [PMID: 34413361 PMCID: PMC8377143 DOI: 10.1038/s41598-021-96107-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/05/2021] [Indexed: 11/11/2022] Open
Abstract
Ocular repeated air blast injuries occur from low overpressure blast wave exposure, which are often repeated and in quick succession. We have shown that caspase-2 caused the death of retinal ganglion cells (RGC) after blunt ocular trauma. Here, we investigated if caspase-2 also mediates RGC apoptosis in a mouse model of air blast induced indirect traumatic optic neuropathy (b-ITON). C57BL/6 mice were exposed to repeated blasts of overpressure air (3 × 2 × 15 psi) and intravitreal injections of siRNA against caspase-2 (siCASP2) or against a control enhanced green fluorescent protein (siEGFP) at either 5 h after the first 2 × 15 psi ("post-blast") or 48 h before the first blast exposure ("pre-blast") and repeated every 7 days. RGC counts were unaffected by the b-ITON or intravitreal injections, despite increased degenerating ON axons, even in siCASP2 "post-blast" injection groups. Degenerating ON axons remained at sham levels after b-ITON and intravitreal siCASP2 "pre-blast" injections, but with less degenerating axons in siCASP2 compared to siEGFP-treated eyes. Intravitreal injections "post-blast" caused greater vitreous inflammation, potentiated by siCASP2, with less in "pre-blast" injected eyes, which was abrogated by siCASP2. We conclude that intravitreal injection timing after ocular trauma induced variable retinal and ON pathology, undermining our candidate neuroprotective therapy, siCASP2.
Collapse
Affiliation(s)
- Chloe N Thomas
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | - Ella Courtie
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Ophthalmology Department, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Gareth Essex
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Tonia S Rex
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Richard J Blanch
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
- Ophthalmology Department, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK.
- Centre for Trauma Sciences Research, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
- Centre for Trauma Sciences Research, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
9
|
Naguib S, Backstrom JR, Gil M, Calkins DJ, Rex TS. Retinal oxidative stress activates the NRF2/ARE pathway: An early endogenous protective response to ocular hypertension. Redox Biol 2021; 42:101883. [PMID: 33579667 PMCID: PMC8113046 DOI: 10.1016/j.redox.2021.101883] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 01/27/2023] Open
Abstract
Oxidative stress contributes to degeneration of retinal ganglion cells and their axons in glaucoma, a leading cause of irreversible blindness worldwide, through sensitivity to intraocular pressure (IOP). Here, we investigated early elevations in reactive oxygen species (ROS) and a role for the NRF2-KEAP1-ARE endogenous antioxidant response pathway using microbead occlusion to elevate IOP in mice. ROS levels peaked in the retina at 1- and 2-wks following IOP elevation and remained elevated out to 5-wks. Phosphorylation of NRF2 and antioxidant gene transcription and protein levels increased concomitantly at 2-wks after IOP elevation, along with phosphorylation of PI3K and AKT. Inhibiting PI3K or AKT signaling prevented NRF2 phosphorylation and reduced transcription of antioxidant-regulated genes. Ocular hypertensive mice lacking Nrf2 had elevated ROS and a diminished increase in antioxidant gene expression. They also exhibited earlier axon degeneration and loss of visual function. In conclusion, the NRF2-KEAP1-ARE pathway is endogenously activated early in ocular hypertension due to phosphorylation of NRF2 by the PI3K/AKT pathway and serves to slow the onset of axon degeneration and vision loss in glaucoma. These data suggest that exogenous activation of this pathway might further slow glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Sarah Naguib
- Department of Ophthalmology & Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Jon R Backstrom
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Melanie Gil
- Department of Ophthalmology & Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - David J Calkins
- Department of Ophthalmology & Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Tonia S Rex
- Department of Ophthalmology & Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|