1
|
Holtes LK, de Bruijn SE, Cremers FPM, Roosing S. Dual inheritance patterns: A spectrum of non-syndromic inherited retinal disease phenotypes with varying molecular mechanisms. Prog Retin Eye Res 2025; 104:101308. [PMID: 39486507 DOI: 10.1016/j.preteyeres.2024.101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Inherited retinal diseases (IRDs) encompass a variety of disease phenotypes and are known to display both clinical and genetic heterogeneity. A further complexity is that for several IRD-associated genes, pathogenic variants have been reported to cause either autosomal dominant (AD) or autosomal recessive (AR) diseases. The possibility of dual inheritance can create a challenge for variant interpretation as well as the genetic counselling of patients. This review aims to determine whether the molecular mechanisms behind the dual inheritance of each IRD-associated gene is well established, not yet properly understood, or if the association is questionable. Each gene is discussed individually in detail due to different protein structures and functions, but there are overlapping characteristics. For example, eight genes only have a limited number of reported pathogenic variants or a hotspot region implicated in the second inheritance pattern. Whereas CRX and RP1 display distinct spatial patterns for AR and AD pathogenic variants based on the variant type and/or location. The genes with a questionable dual inheritance, namely AIPL1, CRB1, and RCBTB1 highlight the importance of carefully considering allele frequency data. Finally, the crucial role relevant functional studies in animal and cell models play in validating a variant's biochemical or molecular effect is emphasised.
Collapse
Affiliation(s)
- Lara K Holtes
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Suzanne E de Bruijn
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
2
|
Trastulli G, Megalizzi D, Calvino G, Andreucci S, Zampatti S, Strafella C, Caltagirone C, Giardina E, Cascella R. RHO Variants and Autosomal Dominant Retinitis Pigmentosa: Insights from the Italian Genetic Landscape. Genes (Basel) 2024; 15:1158. [PMID: 39336749 PMCID: PMC11431160 DOI: 10.3390/genes15091158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Autosomal dominant retinitis pigmentosa (AD-RP) is caused by several genes, among which RHO is one of the most investigated. This article will be focused on RHO and its role in explaining AD-RP cases in the Italian population, taking advantage of the experience of the Genomic Medicine Laboratory UILDM at the Santa Lucia Foundation IRCCS. The retrospective evaluation of the distribution of RHO variants in the Italian patients with a clinical suspicion of RP pointed out eight variants. Of them, four variants (c.632A>T, c.1040C>T, c.1030C>T, c.383_392del) were pathogenic and made it possible to confirm the diagnosis of AD-RP in nine affected patients, highlighting a lower frequency (17%) of RHO variants compared to previous studies (30-40%). In addition, this study identified four variants classified as Variants of Uncertain Significance (VUS). In conclusion, the experience of the Genomic Medicine Laboratory provides an overview of the distribution of RHO variants in the Italian population, highlighting a slightly lower frequency of these variants in our cases series compared to previous reports. However, further studies on RHO variants are essential to characterize peculiar RP phenotypes and extend the spectrum of disease associated with this gene.
Collapse
Affiliation(s)
- Giulia Trastulli
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Domenica Megalizzi
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Giulia Calvino
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Sarah Andreucci
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Stefania Zampatti
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Raffaella Cascella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Catholic University Our Lady of Good Counsel, 1010 Tirana, Albania
| |
Collapse
|
3
|
Wang J, Wang Y, Jiang Y, Li S, Jia X, Xiao X, Sun W, Wang P, Zhang Q. Datasets-Based IMPDH1 Revisited: Heterozygous Missense Variants for Dominant Retinitis Pigmentosa While Truncation Variants Are Likely Non-Pathogenic. Curr Eye Res 2024; 49:853-861. [PMID: 38604988 DOI: 10.1080/02713683.2024.2336158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE Heterozygous variants of IMPDH1 are associated with autosomal dominant retinitis pigmentosa (adRP). The current study aims to investigate the characteristics of the adRP-associated variants. METHODS IMPDH1 variants from our exome sequencing dataset were retrieved and systemically evaluated through multiple online prediction tools, comparative genomics (in-house dataset, HGMD, and gnomAD), and phenotypic association. Potential pathogenic variants (PPVs) were further confirmed by Sanger sequencing and segregation analysis. RESULTS In total, seven heterozygous PPVs (six missenses and one inframe) were identified in 10 families with RP, in which six of the seven might be classified as pathogenic or likely pathogenic while one others as variants of uncertain significance. IMPDH1 variants contributed to 0.7% (10/1519) of RP families in our cohort, ranking the top four genes implicated in adRP. These adRP-associated variants were located in exons 8-10, a region within or downstream of the CBS domain. All these variants were predicted to be damaged by at least three of the six online prediction tools. Two truncation variants were considered non-pathogenic. Hitherto, 41 heterozygous variants of IMPDH1 were detected in 110 families in published literature, including 33 missenses, two inframes, and six truncations (including a synonymous variant affecting splicing). Of the 35 missense and inframe variants, most were clustered in exons 8-10 (77.1%, 27/35), including 18 (51.4%, 18/35) in exon 10 accounting for 70.9% (78/110) of the families. However, truncation variants were enriched in the general population with a pLI value of 0 (tolerated), and the reported variants in patients with RP did not cluster in specific region. CONCLUSIONS Our data together with comprehensive analysis of existing datasets suggest that causative variants of IMPDH1 are usually missense and mostly clustered in exons 8-10. Conversely, most missense variants outside this region and truncation variants should be interpreted with great care in clinical gene test.
Collapse
Affiliation(s)
- Junwen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Department of Ophthalmology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Yingwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
4
|
Chan J, Holdstock J, Shovelton J, Reid J, Speight G, Molha D, Pullabhatla V, Carpenter S, Uddin E, Washio T, Sato H, Izumi Y, Watanabe R, Niiro H, Fukushima Y, Ashida N, Hirose T, Maeda A. Clinical and analytical validation of an 82-gene comprehensive genome-profiling panel for identifying and interpreting variants responsible for inherited retinal dystrophies. PLoS One 2024; 19:e0305422. [PMID: 38870140 PMCID: PMC11175448 DOI: 10.1371/journal.pone.0305422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
Inherited retinal dystrophies comprise a clinically complex and heterogenous group of diseases characterized by visual impairment due to pathogenic variants of over 300 different genes. Accurately identifying the causative gene and associated variant is crucial for the definitive diagnosis and subsequent selection of precise treatments. Consequently, well-validated genetic tests are required in the clinical practice. Here, we report the analytical and clinical validation of a next-generation sequencing targeted gene panel, the PrismGuide IRD Panel System. This system enables comprehensive genome profiling of 82 genes related to inherited retinal dystrophies. The PrismGuide IRD Panel System demonstrated 100% (n = 43) concordance with Sanger sequencing in detecting single-nucleotide variants, small insertions, and small deletions in the target genes and also in assessing their zygosity. It also identified copy-number loss in four out of five cases. When assessing precision, we evaluated the reproducibility of variant detection with 2,160 variants in 144 replicates and found 100% agreement in terms of single-nucleotide variants (n = 1,584) and small insertions and deletions (n = 576). Furthermore, the PrismGuide IRD Panel System generated sufficient read depth for variant calls across the purine-rich and highly repetitive open-reading frame 15 region of RPGR and detected all five variants tested. These results show that the PrismGuide IRD Panel System can accurately and consistently detect single-nucleotide variants and small insertions and deletions. Thus, the PrismGuide IRD Panel System could serve as useful tool that is applicable in clinical practice for identifying the causative genes based on the detection and interpretation of variants in patients with inherited retinal dystrophies and can contribute to a precise molecular diagnosis and targeted treatments.
Collapse
Affiliation(s)
- Jacqueline Chan
- Oxford Gene Technology Operations Limited, Kidlington, Oxfordshire, United Kingdom
| | - Jolyon Holdstock
- Oxford Gene Technology Operations Limited, Kidlington, Oxfordshire, United Kingdom
| | - John Shovelton
- Oxford Gene Technology Operations Limited, Kidlington, Oxfordshire, United Kingdom
| | - James Reid
- Oxford Gene Technology Operations Limited, Kidlington, Oxfordshire, United Kingdom
| | - Graham Speight
- Oxford Gene Technology Operations Limited, Kidlington, Oxfordshire, United Kingdom
| | - Duarte Molha
- Oxford Gene Technology Operations Limited, Kidlington, Oxfordshire, United Kingdom
| | - Venu Pullabhatla
- Oxford Gene Technology Operations Limited, Kidlington, Oxfordshire, United Kingdom
| | - Stephanie Carpenter
- Oxford Gene Technology Operations Limited, Kidlington, Oxfordshire, United Kingdom
| | - Ezam Uddin
- Oxford Gene Technology Operations Limited, Kidlington, Oxfordshire, United Kingdom
| | - Takanori Washio
- Life Innovation Center, Riken Genesis Co. LTD, Kawasaki, Kanagawa, Japan
- Division of Clinical Cancer Genomics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Hiroko Sato
- Life Innovation Center, Riken Genesis Co. LTD, Kawasaki, Kanagawa, Japan
| | - Yuuki Izumi
- Technology Innovation, Sysmex Corporation, Kobe, Hyogo, Japan
| | - Reiko Watanabe
- Medical & Scientific Affairs, Sysmex Corporation, Kobe, Hyogo, Japan
| | - Hayato Niiro
- Medical & Scientific Affairs, Sysmex Corporation, Kobe, Hyogo, Japan
| | | | - Naoko Ashida
- Medical & Scientific Affairs, Sysmex Corporation, Kobe, Hyogo, Japan
| | - Takashi Hirose
- Medical & Scientific Affairs, Sysmex Corporation, Kobe, Hyogo, Japan
| | - Akiko Maeda
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo, Japan
| |
Collapse
|
5
|
Katayama S, Watanabe M, Kato Y, Nomura W, Yamamoto T. Engineering of Zinc Finger Nucleases Through Structural Modeling Improves Genome Editing Efficiency in Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310255. [PMID: 38600709 PMCID: PMC11187957 DOI: 10.1002/advs.202310255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/28/2024] [Indexed: 04/12/2024]
Abstract
Genome Editing is widely used in biomedical research and medicine. Zinc finger nucleases (ZFNs) are smaller in size than transcription activator-like effector (TALE) nucleases (TALENs) and CRISPR-Cas9. Therefore, ZFN-encoding DNAs can be easily packaged into a viral vector with limited cargo space, such as adeno-associated virus (AAV) vectors, for in vivo and clinical applications. ZFNs have great potential for translational research and clinical use. However, constructing functional ZFNs and improving their genome editing efficiency is extremely difficult. Here, the efficient construction of functional ZFNs and the improvement of their genome editing efficiency using AlphaFold, Coot, and Rosetta are described. Plasmids encoding ZFNs consisting of six fingers using publicly available zinc-finger resources are assembled. Two functional ZFNs from the ten ZFNs tested are successfully obtained. Furthermore, the engineering of ZFNs using AlphaFold, Coot, or Rosetta increases the efficiency of genome editing by 5%, demonstrating the effectiveness of engineering ZFNs based on structural modeling.
Collapse
Affiliation(s)
- Shota Katayama
- Genome Editing Innovation CenterHiroshima UniversityHigashi‐Hiroshima739‐0046Japan
| | - Masahiro Watanabe
- Research Institute for Sustainable ChemistryNational Institute of Advanced Industrial Science and Technology (AIST)Higashi‐Hiroshima739‐0046Japan
| | - Yoshio Kato
- Biomedical Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)Ibaraki305‐8566Japan
| | - Wataru Nomura
- Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshima734‐8553Japan
| | - Takashi Yamamoto
- Genome Editing Innovation CenterHiroshima UniversityHigashi‐Hiroshima739‐0046Japan
- Division of Integrated Sciences for LifeGraduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐Hiroshima739‐8526Japan
| |
Collapse
|
6
|
Zhuang J, Zhang R, Zhou B, Cao Z, Zhou J, Chen X, Zhang N, Zhu Y, Yang J. Mutation analysis of RHO in patients with non-syndromic retinitis pigmentosa. Ophthalmic Genet 2024; 45:147-152. [PMID: 38284172 DOI: 10.1080/13816810.2023.2294843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/09/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE To identify RHO mutations in patients with non-syndromic retinitis pigmentosa (NS-RP). METHODS A total of 143 probands (46 family history and 97 sporadic cases) with NS-RP were recruited from Southeast China. The coding exons and adjacent intronic regions of RHO were PCR-amplified and sequenced by Sanger sequencing. The candidate variant was evaluated by the guidelines of American College of Medical Genetics and further validated through co-segregation analysis within the family. RESULTS Five heterozygous mutations in RHO were detected in 5 out of 143 probands, where the frequency of RHO mutations in our cohort was approximately 3.5% (5/143) and 10.8% (5/46) for probands and families with NS-RP, respectively. Three known disease-causing mutations including c.C1030T (p.Q344X), c.C173G (p.T58R), and c.G266A (p.G89D) were identified in three unrelated families. The other two previously unreported mutations c.557C>A (p.S186X) and c.944delA (p.N315TfsX43) were confirmed in Family RP-087 and Family RP-139, respectively. These mutations co-segregated with available affected individuals in each family were not observed in the unaffected family members or in the 112 unrelated controls. CONCLUSIONS This report expands the mutational spectrum of RHO gene associated with NS-RP and demonstrates the frequency of RP RHO mutations in Southeast Chinese populations.
Collapse
Affiliation(s)
- Jianfu Zhuang
- Ophthalmology, Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Rongcai Zhang
- Fujian Baimeng Biotechnology Research Center, Fujian BioMed Technology Co. LTD, Fuzhou, Fujian, China
| | - Biting Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Zongfu Cao
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Jie Zhou
- Department of Bioengineering and Biopharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaole Chen
- Department of Bioengineering and Biopharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Nanwen Zhang
- Department of Bioengineering and Biopharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Yihua Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Juhua Yang
- Department of Bioengineering and Biopharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
7
|
Mutation-independent gene knock-in therapy targeting 5'UTR for autosomal dominant retinitis pigmentosa. Signal Transduct Target Ther 2023; 8:100. [PMID: 36882423 PMCID: PMC9992370 DOI: 10.1038/s41392-022-01308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/18/2022] [Accepted: 12/20/2022] [Indexed: 03/09/2023] Open
|
8
|
Wang J, Xiao X, Li S, Jiang H, Sun W, Wang P, Zhang Q. Landscape of pathogenic variants in six pre-mRNA processing factor genes for retinitis pigmentosa based on large in-house data sets and database comparisons. Acta Ophthalmol 2022; 100:e1412-e1425. [PMID: 35138024 DOI: 10.1111/aos.15104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/31/2021] [Accepted: 01/20/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE Variants in six genes encoding pre-mRNA processing factors (PRPFs) are a common cause of autosomal dominant retinitis pigmentosa (ADRP). This study aims to determine the characteristics of potential pathogenic variants (PPVs) in the six genes. METHODS Variants in six PRPF genes were identified from in-house exome sequencing data. PPVs were identified based on comparative bioinformatics analysis, clinical phenotypes and the ACMG/AMP guidelines. The features of PPVs were revealed by comparative analysis of in-house data set, gnomAD and previously published literature. RESULTS Totally, 36 heterozygous PPVs, including 19 novels, were detected from 45 families, which contributed to 4.4% (45/1019) of RP cases. These PPVs were distributed in PRPF31 (17/45, 37.8%), SNRNP200 (12/45, 26.7%), PRPF8 (10/45, 22.2%) and PRPF3 (6/45, 13.3%) but not in PRPF6 or PRPF4. Different types of PPVs were predominant in different PRPF genes, such as loss-of-function variants in PRPF31 and missense variants in the five remaining genes. The clustering of PPVs in specific regions was observed in SNRNP200, PRPF8 and PRPF3. The pathogenicity for certain classes of variants in these genes, such as loss-of-function variants in PRPF6 and missense variants in PRPF31 and PRPF4, requires careful consideration and further validation. The predominant fundus changes were early macular involvement, widespread RPE atrophy and pigmentation in the mid- and far-peripheral retina. CONCLUSION Systemic comparative analysis may shed light on the characterization of PPVs in these genes. Our findings provide a brief landscape of PPVs in PRPF genes and the associated phenotypes and emphasize the careful classification of pathogenicity for certain types of variants that warrant further characterization.
Collapse
Affiliation(s)
- Junwen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hongmei Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Wang Y, Jiang Y, Li X, Xiao X, Li S, Sun W, Wang P, Zhang Q. Genetic and clinical features of BEST1-associated retinopathy based on 59 Chinese families and database comparisons. Exp Eye Res 2022; 223:109217. [PMID: 35973442 DOI: 10.1016/j.exer.2022.109217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 11/04/2022]
Abstract
Variants in BEST1 are one of the most common cause of retinopathy mainly involving the retinal pigment epithelium with both dominant and recessive traits. This study aimed to describe the characteristics of potential pathogenic variants (PPVs) in BEST1 and their associated clinical features. Variants in BEST1 were collected from our in-house exome sequencing data and systematically evaluated by in silico prediction tools as well as genotype-phenotype analysis. The pathogenicity features of the BEST1 variants were further assessed through database comparison among the in-house data, Genome Aggregation Database from the general population, and all previously published literature. The clinical information of the in-house patients was summarized. The PPVs in BEST1 were identified in 66 patients from 59 families, including 32 families with Best vitelliform macular dystrophy (BVMD) and 27 families with autosomal recessive bestrophinopathy (ARB). These PPVs included 31 missense variants, seven truncation variants, one in-frame deletion, and a known 3-untranslated region variant. All the truncations detected in our study were exclusively involved in ARB but not BVMD. Among the 31 missense variants, 18 missenses associated with BVMD in the dominant trait were clustered in four hotspot regions with statistically significant differences from the recessive missenses. Except for distinct macular changes, there were no statistically significant differences among the other associated clinical features between BVMD and ARB, including peripheral retinopathy, high hyperopia, and angle-closure glaucoma. In conclusion, BEST1-associated dominant retinopathy was preferentially caused by missense variants located in important functional regions. Truncations were most likely benign in heterozygous status. Future studies are expected to elucidate the mystery of the same missense variants contributing to both BVMD and ARB.
Collapse
Affiliation(s)
- Yingwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xueqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
10
|
Kaukonen M, McClements ME, MacLaren RE. CRISPR DNA Base Editing Strategies for Treating Retinitis Pigmentosa Caused by Mutations in Rhodopsin. Genes (Basel) 2022; 13:1327. [PMID: 35893064 PMCID: PMC9330713 DOI: 10.3390/genes13081327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 01/25/2023] Open
Abstract
Retinitis pigmentosa (RP) is the most common group of inherited retinal degenerations and pathogenic variants in the Rhodopsin (RHO) gene are major cause for autosomal dominant RP (adRP). Despite extensive attempts to treat RHO-associated adRP, standardized curative treatment is still lacking. Recently developed base editors offer an exciting opportunity to correct pathogenic single nucleotide variants and are currently able to correct all transition variants and some transversion variants. In this study, we analyzed previously reported pathogenic RHO variants (n = 247) for suitable PAM sites for currently available base editors utilizing the Streptococcus pyogenes Cas9 (SpCas9), Staphylococcus aureus Cas9 (SaCas9) or the KKH variant of SaCas9 (KKH-SaCas9) to assess DNA base editing as a treatment option for RHO-associated adRP. As a result, 55% of all the analyzed variants could, in theory, be corrected with base editors, however, PAM sites were available for only 32% of them and unwanted bystander edits were predicted for the majority of the designed guide RNAs. As a conclusion, base editing offers exciting possibilities to treat RHO-associated adRP in the future, but further research is needed to develop base editing constructs that will provide available PAM sites for more variants and that will not introduce potentially harmful bystander edits.
Collapse
Affiliation(s)
- Maria Kaukonen
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK; (M.K.); (M.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Michelle E. McClements
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK; (M.K.); (M.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK; (M.K.); (M.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
11
|
Bhardwaj A, Yadav A, Yadav M, Tanwar M. Genetic dissection of non-syndromic retinitis pigmentosa. Indian J Ophthalmol 2022; 70:2355-2385. [PMID: 35791117 PMCID: PMC9426071 DOI: 10.4103/ijo.ijo_46_22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Retinitis pigmentosa (RP) belongs to a group of pigmentary retinopathies. It is the most common form of inherited retinal dystrophy, characterized by progressive degradation of photoreceptors that leads to nyctalopia, and ultimately, complete vision loss. RP is distinguished by the continuous retinal degeneration that progresses from the mid-periphery to the central and peripheral retina. RP was first described and named by Franciscus Cornelius Donders in the year 1857. It is one of the leading causes of bilateral blindness in adults, with an incidence of 1 in 3000 people worldwide. In this review, we are going to focus on the genetic heterogeneity of this disease, which is provided by various inheritance patterns, numerosity of variations and inter-/intra-familial variations based upon penetrance and expressivity. Although over 90 genes have been identified in RP patients, the genetic cause of approximately 50% of RP cases remains unknown. Heterogeneity of RP makes it an extremely complicated ocular impairment. It is so complicated that it is known as “fever of unknown origin”. For prognosis and proper management of the disease, it is necessary to understand its genetic heterogeneity so that each phenotype related to the various genetic variations could be treated.
Collapse
Affiliation(s)
- Aarti Bhardwaj
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Anshu Yadav
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Manoj Yadav
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Mukesh Tanwar
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| |
Collapse
|
12
|
Schneider N, Sundaresan Y, Gopalakrishnan P, Beryozkin A, Hanany M, Levanon EY, Banin E, Ben-Aroya S, Sharon D. Inherited retinal diseases: Linking genes, disease-causing variants, and relevant therapeutic modalities. Prog Retin Eye Res 2021; 89:101029. [PMID: 34839010 DOI: 10.1016/j.preteyeres.2021.101029] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Inherited retinal diseases (IRDs) are a clinically complex and heterogenous group of visual impairment phenotypes caused by pathogenic variants in at least 277 nuclear and mitochondrial genes, affecting different retinal regions, and depleting the vision of affected individuals. Genes that cause IRDs when mutated are unique by possessing differing genotype-phenotype correlations, varying inheritance patterns, hypomorphic alleles, and modifier genes thus complicating genetic interpretation. Next-generation sequencing has greatly advanced the identification of novel IRD-related genes and pathogenic variants in the last decade. For this review, we performed an in-depth literature search which allowed for compilation of the Global Retinal Inherited Disease (GRID) dataset containing 4,798 discrete variants and 17,299 alleles published in 31 papers, showing a wide range of frequencies and complexities among the 194 genes reported in GRID, with 65% of pathogenic variants being unique to a single individual. A better understanding of IRD-related gene distribution, gene complexity, and variant types allow for improved genetic testing and therapies. Current genetic therapeutic methods are also quite diverse and rely on variant identification, and range from whole gene replacement to single nucleotide editing at the DNA or RNA levels. IRDs and their suitable therapies thus require a range of effective disease modelling in human cells, granting insight into disease mechanisms and testing of possible treatments. This review summarizes genetic and therapeutic modalities of IRDs, provides new analyses of IRD-related genes (GRID and complexity scores), and provides information to match genetic-based therapies such as gene-specific and variant-specific therapies to the appropriate individuals.
Collapse
Affiliation(s)
- Nina Schneider
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Yogapriya Sundaresan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Prakadeeswari Gopalakrishnan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Mor Hanany
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Shay Ben-Aroya
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel.
| |
Collapse
|
13
|
Liu W, Guo R, Hao H, Ji J. Identification of a novel RHO heterozygous nonsense mutation in a Chinese family with autosomal dominant retinitis pigmentosa. BMC Ophthalmol 2021; 21:360. [PMID: 34635090 PMCID: PMC8504003 DOI: 10.1186/s12886-021-02125-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To explore the molecular genetic cause of a four-generation autosomal dominant retinitis pigmentosa family in China. METHODS Targeted region sequencing was performed to detect the potential mutation, and Sanger sequencing was used to validate the mutation. Multiple sequence alignment from different species was performed by CLUSTALW. The structures of wild-type and the mutant RHO were modeled by Swiss-Model Server and shown using a PyMOL Molecular Graphic system. RESULTS A novel heterozygous nonsense mutation (c.1015 A > T, p.Lys339Ter, p.K339X) within RHO, which cosegregated with retinitis pigmentosa phenotype was detected in this family. Bioinformatics analysis showed the mutation was located in a highly conserved region, and the mutation was predicted to be pathogenic. CONCLUSIONS We identified a novel heterozygous nonsense mutation of RHO gene in a Chinese family with retinitis pigmentosa by target region sequencing and our bioinformatics analysis indicated that the mutation is pathogenic. Our results can broaden the spectrum of RHO gene mutation and enrich the phenotype-genotype correlation of retinitis pigmentosa.
Collapse
Affiliation(s)
- Wei Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| | - Ruru Guo
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Huijie Hao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Jian Ji
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| |
Collapse
|
14
|
Massengill MT, Lewin AS. Gene Therapy for Rhodopsin-associated Autosomal Dominant Retinitis Pigmentosa. Int Ophthalmol Clin 2021; 61:79-96. [PMID: 34584046 PMCID: PMC8478325 DOI: 10.1097/iio.0000000000000383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Pathogenic variants and associated phenotypic spectrum of TSPAN12 based on data from a large cohort. Graefes Arch Clin Exp Ophthalmol 2021; 259:2929-2939. [PMID: 33907885 DOI: 10.1007/s00417-021-05196-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/01/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE The pathogenic variants in TSPAN12 could lead to familial exudative vitreoretinopathy (FEVR), which has high clinical variability. This study aims to assess the pathogenicity of TSPAN12 variants and their phenotypic spectrum based on exome sequencing from 7092 probands with different eye conditions. METHODS The variants in TSPAN12 were selected from exome sequencing data of samples from 7092 probands with different forms of eye conditions. Potentially pathogenic variants were evaluated through the annotation of types, locations, population frequencies, and in silico predictions of variants from in-house data, gnomAD, and published literature. The clinical features of patients with potentially pathogenic variants in TSPAN12 were assessed. RESULTS A total of 45 variants in TSPAN12 with coding effects were detected based on the exome data from 7092 probands, among which 31 were classified as pathogenic variants including 15 novels. The 31 variants were identified in 34 probands with various initial diagnoses, including FEVR in 21 probands and diseases other than FEVR in the remaining 13 probands. Biallelic pathogenic variants were identified in one proband with initial diagnosis of high myopia. CONCLUSION Truncating variants and the missense variants that are predicted as deleterious are likely pathogenic variants of TSPAN12. Approximately 61.8% of patients with pathogenic variants in this gene had an initial diagnosis of FEVR, and the remaining 38.2% of patients had various initial diagnoses. These findings expand the understanding about variant evaluation of TSPAN12 and phenotypic spectrum of TSPAN12-associated FEVR.
Collapse
|
16
|
Wang J, Xiao X, Li S, Wang P, Sun W, Zhang Q. Dominant RP in the Middle While Recessive in Both the N- and C-Terminals Due to RP1 Truncations: Confirmation, Refinement, and Questions. Front Cell Dev Biol 2021; 9:634478. [PMID: 33681214 PMCID: PMC7935555 DOI: 10.3389/fcell.2021.634478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
RP1 truncation variants, including frameshift, nonsense, and splicing, are a common cause of retinitis pigmentosa (RP). RP1 is a unique gene where truncations cause either autosomal dominant RP (adRP) or autosomal recessive RP (arRP) depending on the location of the variants. This study aims to clarify the boundaries between adRP and arRP caused by RP1 truncation variants based on a systemic analysis of 165 RP1 variants from our in-house exome-sequencing data of 7,092 individuals as well as a thorough review of 185 RP1 variants from published literature. In our cohort, potential pathogenic variants were detected in 16 families, including 11 new and five previously described families. Of the 16, seven families with adRP had heterozygous truncations in the middle portion, while nine families with either arRP (eight) or macular degeneration had biallelic variants in the N- and C-terminals, involving 10 known and seven novel variants. In the literature, 147 truncations in RP1 were reported to be responsible for either arRP (85) or adRP (58) or both (four). An overall evaluation of RP1 causative variants suggested three separate regions, i.e., the N-terminal from c.1 (p.1) to c.1837 (p.613), the middle portion from c.1981 (p.661) to c.2749 (p.917), and the C-terminal from c.2816 (p.939) to c.6471 (p.2157), where truncations in the middle portion were associated with adRP, while those in the N- and C-terminals were responsible for arRP. Heterozygous truncations alone in the N- and C- terminals were unlikely pathogenic. However, conflict reports with reverse situation were present for 13 variants, suggesting a complicated pathogenicity awaiting to be further elucidated. In addition, pathogenicity for homozygous truncations around c.5797 and thereafter might also need to be further clarified, so as for missense variants and for truncations located in the two gaps. Our data not only confirmed and refined the boundaries between dominant and recessive RP1 truncations but also revealed unsolved questions valuable for further investigation. These findings remind us that great care is needed in interpreting the results of RP1 variants in clinical gene testing as well as similar features may also be present in some other genes.
Collapse
Affiliation(s)
- Junwen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|