1
|
Tang X, Cui K, Wu P, Hu A, Fan M, Lu X, Yang F, Lin J, Yu S, Xu Y, Liang X. Acrizanib as a Novel Therapeutic Agent for Fundus Neovascularization via Inhibitory Phosphorylation of VEGFR2. Transl Vis Sci Technol 2024; 13:1. [PMID: 38165719 PMCID: PMC10768700 DOI: 10.1167/tvst.13.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/14/2023] [Indexed: 01/04/2024] Open
Abstract
Purpose The present study aimed to evaluate the effect of acrizanib, a small molecule inhibitor targeting vascular endothelial growth factor receptor 2 (VEGFR2), on physiological angiogenesis and pathological neovascularization in the eye and to explore the underlying molecular mechanisms. Methods We investigated the potential role of acrizanib in physiological angiogenesis using C57BL/6J newborn mice, and pathological angiogenesis using the mouse oxygen-induced retinopathy (OIR) and laser-induced choroidal neovascularization (CNV) models. Moreover, vascular endothelial growth factor (VEGF)-treated human umbilical vein endothelial cells (HUVECs) were used as an in vitro model for studying the molecular mechanism underlying acrizanib's antiangiogenic effects. Results The intravitreal injection of acrizanib did not show a considerable impact on physiological angiogenesis and retinal thickness, indicating a potentially favorable safety profile. In the mouse models of OIR and CNV, acrizanib showed promising results in reducing pathological neovascularization, inflammation, and vascular leakage, indicating its potential efficacy against pathological angiogenesis. Consistent with in vivo results, acrizanib blunted angiogenic events in VEGF-treated HUVECs such as proliferation, migration, and tube formation. Furthermore, acrizanib inhibited the multisite phosphorylation of VEGFR2 to varying degrees and the activation of its downstream signal pathways in VEGF-treated HUVECs. Conclusions This study suggested the potential efficacy and safety of acrizanib in suppressing fundus neovascularization. Acrizanib functioned through inhibiting multiple phosphorylation sites of VEGFR2 in endothelial cells to different degrees. Translational Relevance These results indicated that acrizanib might hold promise as a potential candidate for the treatment of ocular vascular diseases.
Collapse
Affiliation(s)
- Xiaoyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Peiqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Andina Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Matthew Fan
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Xi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Fengmei Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jicheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shanshan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
2
|
Muttuvelu DV, Cehofski LJ, Muhammad MGF, Chen X, Utheim TP, Khan AM, Abduljabar AB, Kristensen K, Rasmussen MLR, Vorum H, Heegaard S, Honoré B. Anterior blepharitis is associated with elevated plectin levels consistent with a pronounced intracellular response. Ocul Surf 2023; 29:444-455. [PMID: 37348651 DOI: 10.1016/j.jtos.2023.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
PURPOSE Anterior blepharitis is a frequent ocular condition which may result in severe ocular surface disease. In this study, advanced proteome analysis was performed to elucidate biological mechanisms underlying anterior blepharitis. METHODS All patients underwent full ophthalmological examination including Ocular Surface Disease Index score (OSDI). Measurement of non-invasive break-up time (NBUT), Oxford score, and meibography were performed. Tear film samples from treatment naïve patients with anterior blepharitis (n = 15) and age-matched controls (n = 11) were collected with Schirmer filtration paper. The samples were analyzed with label-free quantification nano liquid chromatography - tandem mass spectrometry (LFQ nLC-MS/MS). Significantly regulated proteins were identified with a permutation-based calculation with a false discovery rate at 0.05. RESULTS Among the 927 proteins detected, a total of 162 proteins were significantly changed. Regulated proteins were involved in cytoplasmic translation, positive regulation of B cell activation, complement activation and phagocytosis. High levels of plakin proteins, a group of proteins involved in cytoskeleton organization, were observed in anterior blepharitis, including plectin, desmoplakin, envoplakin, epiplakin, periplakin, and vimentin. The upregulation of plectin was confirmed with single reaction monitoring. Patients with anterior blepharitis had lower levels of immunoglobulin chains, VEGF coregulated chemokine 1 (CXCL17), and platelet-derived growth factor C. CONCLUSIONS Anterior blepharitis was associated with a high level of plectin indicating a pronounced intracellular response with cytoskeletal reorganization. Our data suggest a lack of immunoglobulin chains and CXCL17 in anterior blepharitis with potential alterations in the ocular surface immune response.
Collapse
Affiliation(s)
| | - Lasse Jørgensen Cehofski
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Xiangjun Chen
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | | | | | - Kasper Kristensen
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bent Honoré
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
3
|
Diabetic Retinopathy: Soluble and Imaging Ocular Biomarkers. J Clin Med 2023; 12:jcm12030912. [PMID: 36769560 PMCID: PMC9917666 DOI: 10.3390/jcm12030912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Diabetic retinopathy (DR), the most common microvascular complication of diabetes mellitus, represents the leading cause of acquired blindness in the working-age population. Due to the potential absence of symptoms in the early stages of the disease, the identification of clinical biomarkers can have a crucial role in the early diagnosis of DR as well as for the detection of prognostic factors. In particular, imaging techniques are fundamental tools for screening, diagnosis, classification, monitoring, treatment planning and prognostic assessment in DR. In this context, the identification of ocular and systemic biomarkers is crucial to facilitate the risk stratification of diabetic patients; moreover, reliable biomarkers could provide prognostic information on disease progression as well as assist in predicting a patient's response to therapy. In this context, this review aimed to provide an updated and comprehensive overview of the soluble and anatomical biomarkers associated with DR.
Collapse
|
4
|
Fortenbach CR, Skeie JM, Sevcik KM, Johnson AT, Oetting TA, Haugsdal JM, Sales CS, Nishimura DY, Taylor EB, Schmidt GA, Greiner MA. Metabolic and proteomic indications of diabetes progression in human aqueous humor. PLoS One 2023; 18:e0280491. [PMID: 36652491 PMCID: PMC9847982 DOI: 10.1371/journal.pone.0280491] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Diabetes mellitus is a multiorgan systemic disease impacting numerous ocular structures that results in significant ocular morbidity and often results in more frequent corneal and glaucoma surgeries for affected individuals. We hypothesize that the systemic metabolic and proteomic derangement observed in the progression of diabetes influences the composition of the aqueous humor (AH), which ultimately impacts the anterior segment health of the eye. To identify changes associated with diabetes progression, we mapped the metabolite profile and proteome of AH samples from patients with varying severities of type II diabetes (T2DM). Patients were classified as nondiabetic (ND or control), non-insulin-dependent diabetic without advanced features of disease (NAD-ni), insulin-dependent diabetic without advanced features (NAD-i), or diabetic with advanced features (AD). AH samples collected from the anterior chamber during elective ophthalmic surgery were evaluated for metabolite and protein expression changes associated with diabetic severity via gas chromatography/mass spectrometry and ultra-high performance liquid chromatography tandem mass spectrometry, respectively. Metabolic and proteomic pathway analyses were conducted utilizing MetaboAnalyst 4.0 and Ingenuity Pathway Analysis. A total of 14 control, 12 NAD-ni, 4 NAD-I, and 14 AD samples were included for analysis. Elevated levels of several branched amino acids (e.g., valine, leucine, isoleucine), and lipid metabolites (e.g., palmitate) were found only with increasing diabetic severity (i.e., the AD group). Similar proteomic trends were noted in amino acid and fatty acid metabolism and the unfolded protein/stress response. These results represent the first report of both metabolomic and proteomic evaluation of aqueous humor. Diabetes results in metabolic and proteomic perturbations detectable in the AH, and unique changes become manifest as T2DM severity worsens. Changes in AH composition may serve as an indicator of disease severity, risk assessment of anterior segment cells and structures, and potential future therapies.
Collapse
Affiliation(s)
- Christopher R. Fortenbach
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States of America
| | - Jessica M. Skeie
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States of America
- Iowa Lions Eye Bank, Coralville, IA, United States of America
| | - Kristina M. Sevcik
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - A. Tim Johnson
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States of America
| | - Thomas A. Oetting
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States of America
| | - Jaclyn M. Haugsdal
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States of America
| | - Christopher S. Sales
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States of America
- Iowa Lions Eye Bank, Coralville, IA, United States of America
| | - Darryl Y. Nishimura
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States of America
- Iowa Lions Eye Bank, Coralville, IA, United States of America
| | - Eric B. Taylor
- Department of Biochemistry, Fraternal Order of the Eagles Diabetes Research Center, Abboud Cardiovascular Research Center, Holden Comprehensive Cancer Center, and Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | | | - Mark A. Greiner
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States of America
- Iowa Lions Eye Bank, Coralville, IA, United States of America
- * E-mail:
| |
Collapse
|
5
|
Su Q, Dong J, Zhang D, Yang L, Roy R. Protective Effects of the Bilobalide on Retinal Oxidative Stress and Inflammation in Streptozotocin-Induced Diabetic Rats. Appl Biochem Biotechnol 2022; 194:6407-6422. [PMID: 35932369 DOI: 10.1007/s12010-022-04012-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 12/01/2022]
Abstract
Diabetic retinopathy (DR) is a diabetes mellitus (DM) complication that causes visual acuity impairment and loss of sight in the working population, mainly in developed countries. According to the WHO, DR accounts for 5% of the world's 37 million blind people. The prevalence of diabetic retinopathy was highest in Africa, followed by North America and the Caribbean and South and Central America. Hyperglycemia can generate excessive ROS that activates multiple pathways, which can damage the cells. Oxidative stress and inflammatory process are intricate in the DR pathological mechanism. Bilobalide is the main bioactive compound isolated from the Ginkgo biloba, a plant utilized in folklore medicine. Bilobalide, a sesquiterpene trilactone, exhibits excellent antioxidant activity. But the molecular mechanisms associated with such effects, especially the antioxidant-related mechanism, have not been documented. Hence, this investigation explored whether bilobalide may attenuate DR in streptozotocin (STZ)-prompted diabetic rats. The effects of bilobalide on parameters of antioxidant content, oxidative stress, and inflammatory factors in the retinal tissues were evaluated by ELISA, RT-PCR, and immunohistochemistry methods. Bilobalide improved caloric management by reducing food consumption and increasing body weight. Furthermore, the administration of bilobalide decreases the blood glucose level and glycosylated (HbA1c) hemoglobin. The anti-retinopathy activity of bilobalide was established by the increase in the total retina thickness (TRT), inner nuclear layer (INL), and outer nuclear layer (ONL) in diabetic rats. Additionally, the serum level of MDA was decreased. In contrast, the antioxidant enzyme (SOD and CAT) levels were increased with TAC plus lower Keap1 and higher Nrf2 expression in the retina when associated with the DM rats. Moreover, bilobalide increased the nuclear factor erythroid 2-related factor 2 (Nrf2) and Heme oxygenase-1 (HO-1) expression level and inflammatory mediators (NF-κβ p65, TNF-α, IL-1β, and VEGF), thus inhibiting oxidative stress. Bilobalide can be effective against DR, and the possible mechanism may be relatively elucidated by decreasing oxidative stress and anti-inflammatory activities. But the further investigation should be directed to expose the precise mechanism.
Collapse
Affiliation(s)
- Qiang Su
- Department of Ophthalmology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Jing Dong
- Department of Ophthalmology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Donglei Zhang
- Department of Ophthalmology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Lu Yang
- Department of Retinology, Shanxi Eye Hospital, Taiyuan, 030001, China
| | - Rupak Roy
- SHRM Biotechnologies Pvt. Ltd. Kolkata, Kolkata, West Bengal, India
| |
Collapse
|