1
|
Mackiewicz J, Tomczak J, Lisek M, Sakowicz A, Guo F, Boczek T. NFATc4 Knockout Promotes Neuroprotection and Retinal Ganglion Cell Regeneration After Optic Nerve Injury. Mol Neurobiol 2024; 61:9383-9401. [PMID: 38639863 PMCID: PMC11496353 DOI: 10.1007/s12035-024-04129-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
Retinal ganglion cells (RGCs), neurons transmitting visual information via the optic nerve, fail to regenerate their axons after injury. The progressive loss of RGC function underlies the pathophysiology of glaucoma and other optic neuropathies, often leading to irreversible blindness. Therefore, there is an urgent need to identify the regulators of RGC survival and the regenerative program. In this study, we investigated the role of the family of transcription factors known as nuclear factor of activated T cells (NFAT), which are expressed in the retina; however, their role in RGC survival after injury is unknown. Using the optic nerve crush (ONC) model, widely employed to study optic neuropathies and central nervous system axon injury, we found that NFATc4 is specifically but transiently up-regulated in response to mechanical injury. In the injured retina, NFATc4 immunolocalized primarily to the ganglionic cell layer. Utilizing NFATc4-/- and NFATc3-/- mice, we demonstrated that NFATc4, but not NFATc3, knockout increased RGC survival, improved retina function, and delayed axonal degeneration. Microarray screening data, along with decreased immunostaining of cleaved caspase-3, revealed that NFATc4 knockout was protective against ONC-induced degeneration by suppressing pro-apoptotic signaling. Finally, we used lentiviral-mediated NFATc4 delivery to the retina of NFATc4-/- mice and reversed the pro-survival effect of NFATc4 knockout, conclusively linking the enhanced survival of injured RGCs to NFATc4-dependent mechanisms. In summary, this study is the first to demonstrate that NFATc4 knockout may confer transient RGC neuroprotection and decelerate axonal degeneration after injury, providing a potent therapeutic strategy for optic neuropathies.
Collapse
Affiliation(s)
- Joanna Mackiewicz
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| | - Julia Tomczak
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| | - Malwina Lisek
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Lodz, Poland
| | - Feng Guo
- Department of Pharmaceutical Toxicology, China Medical University, Shenyang, China.
| | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
2
|
Yao Y, Bin X, Xu Y, Chen S, Chen S, Yuan XL, Cao Y, Ng TK. Cellular senescence mediates retinal ganglion cell survival regulation post-optic nerve crush injury. Cell Prolif 2024:e13719. [PMID: 39021340 DOI: 10.1111/cpr.13719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
Traumatic optic neuropathy refers to optic nerve (ON) injury by trauma, including explosion and traffic accident. Retinal ganglion cell (RGC) death is the critical pathological cause of irreversible visual impairment and blindness in ON injury. We previously investigated the patterns of 11 modes of cell death in mouse retina post-ON injury. Here we aimed to identify additional signalling pathways regulating RGC survival in rodents post-ON injury. RNA sequencing analysis identified the upregulation of inflammation and cellular senescence-related genes in retina post-ON injury, which were confirmed by immunoblotting and immunofluorescence analyses. Increased expression of senescence-associated β-galactosidase (SA-βgal) in RGCs and activation of microglia were also found. Transforming growth factor-β receptor type II inhibitor (LY2109761) treatment suppressed p15Ink4b and p21Cip1 protein and SA-βgal expression and promoted RGC survival post-ON injury with decreasing the expression of cell death markers in retina. Consistently, senolytics (dasatinib and quercetin) treatments can promote RGC survival and alleviate the reduction of ganglion cell complex thickness and pattern electroretinography activity post-ON injury with reducing SA-βgal, p15Ink4b, p21Cip1, microglial activation and cell death marker expression. In summary, this study revealed the activation of cellular senescence in rodent retina post-ON injury and contribute to RGC survival regulation. Targeting cellular senescence can promote RGC survival after ON injury, suggesting a potential treatment strategy for traumatic optic neuropathy.
Collapse
Affiliation(s)
- Yao Yao
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
| | - Xin Bin
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
| | - Shaowan Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
| | - Si Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
| | - Xiang-Ling Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
| | - Yingjie Cao
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Lin Y, Ke S, Ye W, Xie B, Huang Z. Non-Apoptotic Programmed Cell Death as Targets for Diabetic Retinal Neurodegeneration. Pharmaceuticals (Basel) 2024; 17:837. [PMID: 39065688 PMCID: PMC11279440 DOI: 10.3390/ph17070837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic retinopathy (DR) remains the leading cause of blindness among the global working-age population. Emerging evidence underscores the significance of diabetic retinal neurodegeneration (DRN) as a pivotal biomarker in the progression of vasculopathy. Inflammation, oxidative stress, neural cell death, and the reduction in neurotrophic factors are the key determinants in the pathophysiology of DRN. Non-apoptotic programmed cell death (PCD) plays a crucial role in regulating stress response, inflammation, and disease management. Therapeutic modalities targeting PCD have shown promising potential for mitigating DRN. In this review, we highlight recent advances in identifying the role of various PCD types in DRN, with specific emphasis on necroptosis, pyroptosis, ferroptosis, parthanatos, and the more recently characterized PANoptosis. In addition, the therapeutic agents aimed at the regulation of PCD for addressing DRN are discussed.
Collapse
Affiliation(s)
- Yingjia Lin
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Shuping Ke
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Weiqing Ye
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Biyao Xie
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Zijing Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
| |
Collapse
|
4
|
Shi Y, Ye D, Cui K, Bai X, Fan M, Feng Y, Hu C, Xu Y, Huang J. Melatonin ameliorates retinal ganglion cell senescence and apoptosis in a SIRT1-dependent manner in an optic nerve injury model. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167053. [PMID: 38325588 DOI: 10.1016/j.bbadis.2024.167053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Melatonin is involved in exerting protective effects in aged-related and neurodegenerative diseases through a silent information regulator type 1 (SIRT1)-dependent pathway. However, little was known about the impact of melatonin on retinal ganglion cell (RGC) senescence and apoptosis following optic nerve crush (ONC). Thus, this study aimed to examine the effects of melatonin on RGC senescence and apoptosis after ONC and investigate the involvement of SIRT1 in this process. To study this, an ONC model was established. EX-527, an inhibitor of SIRT1, was injected intraperitoneally into mice. And melatonin was administrated abdominally into mice after ONC every day. Hematoxylin & eosin staining, retina flat-mounts and optical coherence tomography were used to evaluate the loss of retina cells/neurons. Pattern electroretinogram (p-ERG) was performed to evaluate the function of RGCs. Immunofluorescence and western blot were used to evaluate protein expression. SA-β-gal staining was employed to detect senescent cells. The results demonstrated that melatonin partially rescued the expression of SIRT1 in RGC 3 days after ONC. Additionally, melatonin administration partly rescued the decreased RGC number and ganglion cell complex thickness observed 14 days after ONC. Melatonin also suppressed ONC-induced senescence and apoptosis index. Furthermore, p-ERG showed that melatonin improved the amplitude of P50, N95 and N95/P50 following ONC. Importantly, the protective effects of melatonin were reversed when EX-527 was administered. In summary, this study revealed that melatonin attenuated RGC senescence and apoptosis through a SIRT1-dependent pathway after ONC. These findings provide valuable insights for the treatment of RGC senescence and apoptosis.
Collapse
Affiliation(s)
- Yuxun Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Dan Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Department of Ophthalmology, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou 510120, China
| | - Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xue Bai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Matthew Fan
- Yale College, Yale University, New Haven, CT 201942, United States
| | - Yanlin Feng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Chenyang Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| |
Collapse
|
5
|
Yang Q, Xu Y, Bin X, Chan KP, Chen S, Qian Z, Yao Y, Yuan XL, Qiu K, Huang Y, Ng TK. Combined treatment of human mesenchymal stem cells and green tea extract on retinal ganglion cell regeneration in rats after optic nerve injury. Exp Eye Res 2024; 239:109787. [PMID: 38211683 DOI: 10.1016/j.exer.2024.109787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
Retinal ganglion cell (RGC) death and axonal loss cause irreversible vision loss upon optic nerve (ON) injury. We have independently demonstrated that mesenchymal stem cells (MSCs) and green tea extract (GTE) promote RGC survival and axonal regeneration in rats with ON injury. Here we aimed to evaluate the combined treatment effect of human bone marrow-derived MSCs (hBM-MSCs) and GTE on RGC survival and axonal regeneration after ON injury. Combined treatment of hBM-MSCs and GTE promoted RGC survival and neurite outgrowth/axonal regeneration in ex vivo retinal explant culture and in rats after ON injury. GTE increased Stat3 activation in the retina after combined treatment, and enhanced brain-derived neurotrophic factor secretion from hBM-MSCs. Treatment of 10 μg/mL GTE would not induce hBM-MSC apoptosis, but inhibited their proliferation, migration, and adipogenic and osteogenic differentiation in vitro with reducing matrix metalloproteinase secretions. In summary, this study revealed that GTE can enhance RGC protective effect of hBM-MSCs, suggesting that stem cell priming could be a prospective strategy enhancing the properties of stem cells for ON injury treatment.
Collapse
Affiliation(s)
- Qichen Yang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China; Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Xin Bin
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Kwok Ping Chan
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shaowan Chen
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Zhen Qian
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yao Yao
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Xiang-Ling Yuan
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Kunliang Qiu
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yuqiang Huang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China; Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Liu Z, Xue J, Liu C, Tang J, Wu S, Lin J, Han J, Zhang Q, Wu C, Huang H, Zhao L, Zhuo Y, Li Y. Selective deletion of zinc transporter 3 in amacrine cells promotes retinal ganglion cell survival and optic nerve regeneration after injury. Neural Regen Res 2023; 18:2773-2780. [PMID: 37449644 DOI: 10.4103/1673-5374.373660] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Vision depends on accurate signal conduction from the retina to the brain through the optic nerve, an important part of the central nervous system that consists of bundles of axons originating from retinal ganglion cells. The mammalian optic nerve, an important part of the central nervous system, cannot regenerate once it is injured, leading to permanent vision loss. To date, there is no clinical treatment that can regenerate the optic nerve and restore vision. Our previous study found that the mobile zinc (Zn2+) level increased rapidly after optic nerve injury in the retina, specifically in the vesicles of the inner plexiform layer. Furthermore, chelating Zn2+ significantly promoted axonal regeneration with a long-term effect. In this study, we conditionally knocked out zinc transporter 3 (ZnT3) in amacrine cells or retinal ganglion cells to construct two transgenic mouse lines (VGATCreZnT3fl/fl and VGLUT2CreZnT3fl/fl, respectively). We obtained direct evidence that the rapidly increased mobile Zn2+ in response to injury was from amacrine cells. We also found that selective deletion of ZnT3 in amacrine cells promoted retinal ganglion cell survival and axonal regeneration after optic nerve crush injury, improved retinal ganglion cell function, and promoted vision recovery. Sequencing analysis of reginal ganglion cells revealed that inhibiting the release of presynaptic Zn2+ affected the transcription of key genes related to the survival of retinal ganglion cells in postsynaptic neurons, regulated the synaptic connection between amacrine cells and retinal ganglion cells, and affected the fate of retinal ganglion cells. These results suggest that amacrine cells release Zn2+ to trigger transcriptomic changes related to neuronal growth and survival in reginal ganglion cells, thereby influencing the synaptic plasticity of retinal networks. These results make the theory of zinc-dependent retinal ganglion cell death more accurate and complete and provide new insights into the complex interactions between retinal cell networks.
Collapse
Affiliation(s)
- Zhe Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China, Guangzhou
| | - Jingfei Xue
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China, Guangzhou
| | - Canying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China, Guangzhou
| | - Jiahui Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China, Guangzhou
| | - Siting Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China, Guangzhou
| | - Jicheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China, Guangzhou
| | - Jiaxu Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China, Guangzhou
| | - Qi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China, Guangzhou
| | - Caiqing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China, Guangzhou
| | - Haishun Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China, Guangzhou
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China, Guangzhou
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China, Guangzhou
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China, Guangzhou
| |
Collapse
|
7
|
Ling Q, Liang JJ, Chen S, Chen CB, Ng TK, Huang Y. Continuous non-adherent culture promotes transdifferentiation of human adipose-derived stem cells into retinal lineage. Open Life Sci 2023; 18:20220760. [PMID: 38027227 PMCID: PMC10668113 DOI: 10.1515/biol-2022-0760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Non-adherent culture is critical for the transdifferentiation of stem cells from mesoderm to neuroectoderm. Sphere culture has been reported to directly induce the adipose tissue cells to neural stem cells. Here we aimed to evaluate continuous non-adherent culture on the transdifferentiation potential of human adipose-derived stem cells (ASCs) into retinal lineage. Human ASCs were induced into retinal lineage by the treatment of noggin, dickkopf-related protein 1, and IGF-1 (NDI) under adherent and non-adherent culture. The NDI induction treatment with the adherent culture for 21 days promoted robust expression of retinal markers in the induced ASCs as compared to those without NDI induction on the adherent culture. With continuous non-adherent culture for 21 days, human ASCs could highly express retinal marker genes even without NDI induction treatment as compared to those on the adherent culture. The combination of continuous non-adherent culture with the NDI induction did not show a significant upregulation of the retinal marker expression as compared to either NDI induction with the adherent culture or continuous non-adherent culture without NDI induction treatment. In summary, both non-adherent culture and NDI induction medium could independently promote the transdifferentiation of human ASCs into retinal lineage. Yet, their combination did not produce an enhancement effect.
Collapse
Affiliation(s)
- Qiying Ling
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, North Dongxia Road, Shantou, Guangdong, China
| | - Jia-Jian Liang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, North Dongxia Road, Shantou, Guangdong, China
| | - Shaowan Chen
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, North Dongxia Road, Shantou, Guangdong, China
| | - Chong-Bo Chen
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, North Dongxia Road, Shantou, Guangdong, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, North Dongxia Road, Shantou, Guangdong, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuqiang Huang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, North Dongxia Road, Shantou, Guangdong, China
| |
Collapse
|
8
|
Ng TK, Chu KO, Wang CC, Pang CP. Green Tea Catechins as Therapeutic Antioxidants for Glaucoma Treatment. Antioxidants (Basel) 2023; 12:1320. [PMID: 37507860 PMCID: PMC10376590 DOI: 10.3390/antiox12071320] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 07/30/2023] Open
Abstract
Glaucoma is the leading cause of irreversible blindness and visual impairment, affecting more than 80 million individuals worldwide. Oxidative stress and inflammation-induced neurodegenerative insults to retinal ganglion cells are the main pathogenesis of glaucoma. Retinal ganglion cells, the retinal neurons transmitting the visual signals to the visual cortex in the brain, have very limited regeneration or recovery capacity after damages. Apart from intraocular pressure-lowering treatments, there is still no clinically effective treatment to rescue the degeneration of retinal ganglion cells in glaucoma. Dietary antioxidants are easily accessible and can be applied as supplements assisting in the clinical treatments. Catechins, a chemical family of flavonoids, are the phenolic compounds found in many plants, especially in green tea. The anti-oxidative and anti-inflammatory properties of green tea catechins in vitro and in vivo have been well proven. They could be a potential treatment ameliorating retinal ganglion cell degeneration in glaucoma. In this review, the chemistry, pharmacokinetics, and therapeutic properties of green tea catechins were summarized. Research updates on the biological effects of green tea catechins in cellular and animal experimental glaucoma models were reviewed. In addition, clinical potentials of green tea catechins for glaucoma treatment were also highlighted.
Collapse
Affiliation(s)
- Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Kai On Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong
| | - Chi Pui Pang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
9
|
Yuan XL, Chen SL, Xu Y, Yao Y, Liang JJ, Zhuang X, Hald ES, Ng TK. Green tea extract enhances retinal ganglion cell survival and axonal regeneration in rats with optic nerve injury. J Nutr Biochem 2023; 117:109333. [PMID: 36965783 DOI: 10.1016/j.jnutbio.2023.109333] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/11/2023] [Accepted: 03/18/2023] [Indexed: 03/27/2023]
Abstract
Current clinical treatments have not yet effectively cured progressive retinal ganglion cell (RGC) death and axonal degeneration after optic nerve (ON) injury. We previously demonstrated green tea extract (GTE) can reduce RGC death in rats after ischemic injury. Here, we aim to determine the prophylactic and therapeutic effects and mechanisms of GTE on RGC survival and axonal regeneration in rats with ON injury. GTE (275 or 550 mg/kg) was administered intragastrically for 7 d before or 14 d post-ON crush surgery in adult Fischer 344 rats. Rats with pre- or post-operative treatment of 275 mg/kg GTE showed significantly higher numbers of RGCs and regenerated axons post-ON injury with improved pupillary light reflex as compared to saline-treated rats. Akt and Erk p42/44 activation was higher in the retina of rats given 275 mg/kg GTE pre-surgery, whereas Stat3 activation was higher in those with 275 mg/kg GTE post-operation. Less activated microglia were observed in rats with pre-treatment of 275 or 550 mg/kg GTE. RNA sequencing analysis identified the downregulation of inflammation, apoptosis, and microglia activation genes in the retina of rats with pre- or post-treatment with 275 mg/kg GTE as compared to the saline-treated rats. In summary, this study revealed the prophylactic and therapeutic treatment effects of GTE on RGC survival and axonal regeneration in rats with ON injury, indicating a potential alternative treatment for traumatic optic neuropathy.
Collapse
Affiliation(s)
- Xiang-Ling Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China; Shantou University Medical College, Shantou, Guangdong, China
| | - Shao-Lang Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yao Yao
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China; Shantou University Medical College, Shantou, Guangdong, China
| | - Jia-Jian Liang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Xi Zhuang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Eric S Hald
- Department of Biomedical Engineering, Shantou University, Shantou, Guangdong, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China; Shantou University Medical College, Shantou, Guangdong, China; Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
10
|
Tan S, Yao Y, Yang Q, Yuan XL, Cen LP, Ng TK. Diversified Treatment Options of Adult Stem Cells for Optic Neuropathies. Cell Transplant 2022; 31. [PMID: 36165292 PMCID: PMC9523835 DOI: 10.1177/09636897221123512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/28/2022] [Accepted: 08/16/2022] [Indexed: 02/05/2023] Open
Abstract
Optic neuropathies refer to a group of ocular disorders with abnormalities or dysfunction of the optic nerve, sharing a common pathophysiology of retinal ganglion cell (RGC) death and axonal loss. RGCs, as the retinal neurons in the central nervous system, show limited capacity in regeneration or recovery upon diseases or after injuries. Critically, there is still no effective clinical treatment to cure most types of optic neuropathies. Recently, stem cell therapy was proposed as a potential treatment strategy for optic neuropathies. Adult stem cells, including mesenchymal stem cells and hematopoietic stem cells, have been applied in clinical trials based on their neuroprotective properties. In this article, the applications of adult stem cells on different types of optic neuropathies and the related mechanisms will be reviewed. Research updates on the strategies to enhance the neuroprotective effects of human adult stem cells will be summarized. This review article aims to enlighten the research scientists on the diversified functions of adult stem cells and consideration of adult stem cells as a potential treatment for optic neuropathies in future clinical practices.
Collapse
Affiliation(s)
- Shaoying Tan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yao Yao
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Qichen Yang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong
| | - Xiang-Ling Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Ling-Ping Cen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
- Shantou University Medical College, Shantou, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|