1
|
Attallah A, Ardourel M, Gallazzini F, Lesne F, De Oliveira A, Togbé D, Briault S, Perche O. Lack of FMRP in the retina: Evidence of a retinal specific transcriptomic profile. Exp Eye Res 2024; 246:110015. [PMID: 39089568 DOI: 10.1016/j.exer.2024.110015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Fragile X Syndrome (FXS), the most common inherited form of human intellectual disability, is a monogenic neurodevelopmental disorder caused by a loss-of-function mutation of the FMR1 gene. FMR1 is encoding the Fragile X Messenger Ribonucleo Protein (FMRP) an RNA-binding protein that regulates the translation of synaptic proteins. The absence of FMRP expression has many important consequences on synaptic plasticity and function, leading to the FXS clinical phenotype. Over the last decade, a visual neurosensorial phenotype had been described in the FXS patients as well as in the murine model (Fmr1-/ymice), characterized by retinal deficits associated to retinal perception alterations. However, although the transcriptomic profile in the absence of FMRP has been studied in the cerebral part of the central nervous system (CNS), there are no actual data for the retina which is an extension of the CNS. Herein, we investigate the transcriptomic profile of mRNA from whole retinas of Fmr1-/ymice. Interestingly, we found a specific signature of Fmrp absence on retinal mRNA expression with few common genes compared to other brain studies. Gene Ontology on these retinal specific genes demonstrated an enrichment in retinal development genes as well as in synaptic genes. These alterations could be linked to the reported retinal phenotype of the FXS condition. In conclusion, we describe for the first time, retinal-specific transcriptomic changes in the absence of FMRP.
Collapse
Affiliation(s)
- Amir Attallah
- Orléans University, University Hospital Center of Orleans, LI(2)RSO, 14, Avenue de l'hôpital, 45100, Orléans, France; Orleans University, CNRS, laboratoire INEM, UMR7355, 3b Rue de la Férollerie, F-45071, Orléans, Cedex 2, France; ART ARNm US55, 14 Avenue de l'Hôpital, 45100, Orléans, France
| | - Maryvonne Ardourel
- Orléans University, University Hospital Center of Orleans, LI(2)RSO, 14, Avenue de l'hôpital, 45100, Orléans, France; ART ARNm US55, 14 Avenue de l'Hôpital, 45100, Orléans, France
| | - Felix Gallazzini
- University Hospital Center of Orleans, Genetic Department, 14 Avenue de l'Hôpital, 45100, Orléans, France
| | - Fabien Lesne
- University Hospital Center of Orléans CAR&IB, Pôle Biopatholgie, 14 Avenue de l'Hôpital, 45100, Orléans, France
| | - Anthony De Oliveira
- University Hospital Center of Orléans CAR&IB, Pôle Biopatholgie, 14 Avenue de l'Hôpital, 45100, Orléans, France
| | - Dieudonnée Togbé
- Orleans University, CNRS, laboratoire INEM, UMR7355, 3b Rue de la Férollerie, F-45071, Orléans, Cedex 2, France
| | - Sylvain Briault
- Orléans University, University Hospital Center of Orleans, LI(2)RSO, 14, Avenue de l'hôpital, 45100, Orléans, France; ART ARNm US55, 14 Avenue de l'Hôpital, 45100, Orléans, France; University Hospital Center of Orleans, Genetic Department, 14 Avenue de l'Hôpital, 45100, Orléans, France
| | - Olivier Perche
- Orléans University, University Hospital Center of Orleans, LI(2)RSO, 14, Avenue de l'hôpital, 45100, Orléans, France; ART ARNm US55, 14 Avenue de l'Hôpital, 45100, Orléans, France; University Hospital Center of Orleans, Genetic Department, 14 Avenue de l'Hôpital, 45100, Orléans, France.
| |
Collapse
|
2
|
Ardourel M, Ranchon-Cole I, Pâris A, Felgerolle C, Acar N, Lesne F, Briault S, Perche O. FMR protein: Evidence of an emerging role in retinal aging? Exp Eye Res 2022; 225:109282. [PMID: 36265576 DOI: 10.1016/j.exer.2022.109282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 12/29/2022]
Abstract
Aging is a multifactorial process that affects the entire organism by cumulative alterations. Visual function impairments that go along with aging are commonly observed, causing lower visual acuity, lower contrast sensitivity, and impaired dark adaptation. Electroretinogram analysis revealed that the amplitudes of rod- and cone-mediated responses are reduced in aged mice and humans. Reports suggested that age-related changes observed in both rod and cone photoreceptor functionality were linked to oxidative stress regulation or free radical production homeostasis. Interestingly, several recent reports linked the fragile X mental retardation protein (FMRP) cellular activity with oxidative stress regulation in several tissue including brain tissue where FMRP participates to the response to stress via protein translation in neurite or is involved in free radical production and abnormal glutathione homeostasis. Based on these recent literatures, we raised the question about the effect of FMRP absence in the aging retina of Fmr1-/y compared to their WT littermates. Indeed, up to now, only young or adult mice (<6 months) were investigated and have shown a specific retinal phenotype. Herein, we demonstrated that Fmr1-/y mice do not present the aging effect on retinal function observed in WT littermates since ERG a- and b-waves amplitudes as well as oscillatory potentials amplitudes were not collapsed with age (12/18 months old). Absence of FMRP and its consequences seem to protect the retina against aging effect, rising a pivotal role of FMRP in retinal aging process.
Collapse
Affiliation(s)
- M Ardourel
- UMR7355, CNRS, Orléans, France; Experimental and Molecular Immunology and Neurogenetics, University of Orléans, 3b rue de la Ferollerie, 45071, Orléans, Cedex 2, France
| | - I Ranchon-Cole
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, F-63000, Clermont-Ferrand, France
| | - A Pâris
- UMR7355, CNRS, Orléans, France; Experimental and Molecular Immunology and Neurogenetics, University of Orléans, 3b rue de la Ferollerie, 45071, Orléans, Cedex 2, France
| | - C Felgerolle
- UMR7355, CNRS, Orléans, France; Experimental and Molecular Immunology and Neurogenetics, University of Orléans, 3b rue de la Ferollerie, 45071, Orléans, Cedex 2, France
| | - N Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - F Lesne
- Genetic Department, Regional Hospital, 14 Avenue de l'hôpital, 45100, Orléans, France
| | - S Briault
- UMR7355, CNRS, Orléans, France; Experimental and Molecular Immunology and Neurogenetics, University of Orléans, 3b rue de la Ferollerie, 45071, Orléans, Cedex 2, France; Genetic Department, Regional Hospital, 14 Avenue de l'hôpital, 45100, Orléans, France
| | - O Perche
- UMR7355, CNRS, Orléans, France; Experimental and Molecular Immunology and Neurogenetics, University of Orléans, 3b rue de la Ferollerie, 45071, Orléans, Cedex 2, France; Genetic Department, Regional Hospital, 14 Avenue de l'hôpital, 45100, Orléans, France.
| |
Collapse
|