1
|
Zhu CS, Chen W, Qiang X, Lou L, Li J, Wang H. Elevated Circulating Procathepsin L as a Potential Biomarker of Inflamm-aging. Med Hypotheses 2024; 186:111322. [PMID: 38617026 PMCID: PMC11008674 DOI: 10.1016/j.mehy.2024.111322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Inflamm-aging is a condition of low-grade and chronic systemic inflammation characterized by a systemic increase in multiple inflammatory biomarkers such as tumor necrosis factor (TNF), interleukin 6 (IL-6), C-reactive protein (CRP), and CXCL9 (MIG) in experimental and clinical settings. However, despite the recent identification of extracellular procathepsin L (pCTS-L) as a novel mediator of inflammatory diseases such as sepsis, its possible role in inflamm-aging was previously not investigated. In the present study, we compared blood levels of pCTS-L and other 62 cytokines and chemokines between young and aged Balb/C mice by Western blotting and Cytokine Antibody Arrays. In light of the surprising finding of a marked increase in blood pCTS-L levels in aged mice, we propose that blood pCTS-L levels may serve as another biomarker of inflamm-aging. Given the capacity of pCTS-L in inducing various cytokines (e.g., TNF and IL-6), it will be important to test the hypothetic role of pCTS-L in inflamm-aging under experimental and clinical conditions.
Collapse
Affiliation(s)
- Cassie Shu Zhu
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, NY 11549, USA
| | - Weiqiang Chen
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, NY 11549, USA
| | - Xiaoling Qiang
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, NY 11549, USA
| | - Li Lou
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Jianhua Li
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Haichao Wang
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, NY 11549, USA
| |
Collapse
|
2
|
De Loor J, Gevaert K, Hoste E, Meyer E. How has urinary proteomics contributed to the discovery of early biomarkers of acute kidney injury? Expert Rev Proteomics 2014; 11:415-24. [PMID: 24961846 DOI: 10.1586/14789450.2014.932252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the past decade, analysis of the urinary proteome (urinary proteomics) has intensified in response to the need for novel biomarkers that support early diagnosis of kidney diseases. In particular, this also applies to acute kidney injury, which is a heterogeneous complex syndrome with a still-increasing incidence at the intensive care unit. Unfortunately, this major need remains largely unmet to date. The current report aims to explain why attempts to implement urinary proteomic-discovered acute kidney injury diagnostic candidates in the intensive care unit setting have not yet led to success. Subsequently, some key notes are provided that should enhance the chance of translating selected urinary proteomic candidates to valuable tools for the nephrologist and intensivist in the near future.
Collapse
Affiliation(s)
- Jorien De Loor
- Ghent University, Department of Pharmacology, Toxicology and Biochemistry, B-9820 Merelbeke, Belgium
| | | | | | | |
Collapse
|
3
|
Ramesh T, Kim SW, Hwang SY, Sohn SH, Yoo SK, Kim SK. Panax ginseng reduces oxidative stress and restores antioxidant capacity in aged rats. Nutr Res 2013; 32:718-26. [PMID: 23084645 DOI: 10.1016/j.nutres.2012.08.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/24/2012] [Accepted: 08/07/2012] [Indexed: 10/27/2022]
Abstract
Nutritional antioxidants interact with cells in an active mode, including retrieving and sparing one another, to diminish oxidative stress. However, the intracellular balance of prooxidants and antioxidants becomes unbalanced, favoring prooxidants during the aging process. One hypothesis is that an aging-associated increase in oxidative stress is the primary cause of aging. Hence, the research hypothesis for this study is that Korean red ginseng reduces oxidative stress in vivo. Therefore, we investigated the efficacy of Korean red ginseng water extract (GWE) in reducing aging-associated oxidative stress by measuring lipid peroxidation and antioxidant levels in older rats compared with young rats. We observed a significant increase in the markers for oxidative damage (eg, lipid peroxidation) and markers for vital organ damage (eg, aspartate aminotransferase, alanine aminotransferase, urea, and creatinine levels) in aged rats. The oxidative damage was accompanied by a significant decrease in enzymatic antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase, and nonenzymatic antioxidants such as reduced glutathione, vitamin E, and vitamin C. Aged rats fed a diet supplemented with Korean red ginseng water extract had significantly less oxidative damage, possibly by enhancing the enzymatic and nonenzymatic antioxidants status. Our data suggest that consumption of Korean red ginseng reduces lipid peroxidation and restores antioxidant capacity by suppressing oxidative stress in rats.
Collapse
Affiliation(s)
- Thiyagarajan Ramesh
- Department of Life Science, College of Biomedical and Health Science, Institute of Biomedical and Health Science, Konkuk University, Chungju-si 380-701, Korea
| | | | | | | | | | | |
Collapse
|
4
|
|
5
|
Fofana B, Yao XH, Rampitsch C, Cloutier S, Wilkins JA, Nyomba BLG. Prenatal alcohol exposure alters phosphorylation and glycosylation of proteins in rat offspring liver. Proteomics 2009; 10:417-34. [DOI: 10.1002/pmic.200800969] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Frelon S, Guipaud O, Mounicou S, Lobinski R, Delissen O, Paquet F. In vivo screening of proteins likely to bind uranium in exposed rat kidney. RADIOCHIM ACTA 2009. [DOI: 10.1524/ract.2009.1619] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Uranium is a naturally abundant element which has been used in several industries. Internal exposure could occur via three main pathways that are ingestion, inhalation and wounds. It has been recently shown that chronic ingestion of uranium in drinking water induces an important uranium accumulation in kidney with a perturbation of iron metabolism in this organ.
Whereas uranium speciation is a key parameter to elucidate the chemical reactivity and the mobility of an element, it remains poorly documented in most of environmental and biological media. A few examples of uranium complexation with biomolecules have been published recently but most of them are in vitro studies whereas in vivo experiments remain poorly investigated.
In order to better understand possible competition of uranium towards metals involved in the metal-protein binding, i.e. iron, copper, calcium, a study on uranium speciation was investigated by doing an in vivo screening of target proteins likely to bind it in kidneys of exposed rats. Rats were chronically exposed via contaminated drinking water at 40 mg L-1 and killed 9 months after the beginning of exposure. Kidneys were dissected out and protein extract was prepared. Then, separation of renal proteins by isoelectric focusing gel electrophoresis (IEF) and two-dimensional gel electrophoresis (2-DE) followed by LA-ICPMS analysis were performed.
IEF-LA-ICP MS showed that uranium could specifically bind few proteins in kidney whereas 2-DE-LA-ICP MS could indicate that uranium is not covalently bound to proteins in this organ. The results suggested that even at moderate concentrations of exposure, uranium can be observed chelated with some renal proteins that is very encouraging to understand the entry, storage and elimination of this element in kidneys.
Collapse
|
7
|
Chakravarti B, Seshi B, Ratanaprayul W, Dalal N, Lin L, Raval A, Chakravarti DN. Proteome profiling of aging in mouse models: differential expression of proteins involved in metabolism, transport, and stress response in kidney. Proteomics 2009; 9:580-97. [PMID: 19184973 DOI: 10.1002/pmic.200700208] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aging is a time-dependent complex biological phenomenon observed in various organs and organelles of all living organisms. To understand the molecular mechanism of age-associated functional loss in aging kidneys, we have analyzed the expression of proteins in the kidneys of young (19-22 wk) and old (24 months) C57/BL6 male mice using 2-DE followed by LC-MS/MS. We found that expression levels of 49 proteins were upregulated (p < or = 0.05), while that of only ten proteins were downregulated (p < or = 0.05) due to aging. The proteins identified belong to three broad functional categories: (i) metabolism (e.g., aldehyde dehydrogenase family, ATP synthase beta-subunit, malate dehydrogenase, NADH dehydrogenase (ubiquinone), hydroxy acid oxidase 2), (ii) transport (e.g., transferrin), and (iii) chaperone/stress response (e.g., Ig-binding protein, low density lipoprotein receptor-related protein associated protein 1, selenium-binding proteins (SBPs)). Some proteins with unknown functions were also identified as being differentially expressed. ATP synthase beta subunit, transferrin, fumarate hydratase, SBPs, and albumin are present in multiple forms, possibly arising due to proteolysis or PTMs. The above functional categories suggest specific mechanisms and pathways for age-related kidney degeneration.
Collapse
Affiliation(s)
- Bulbul Chakravarti
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA 91711, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Amelina H, Cristobal S. Proteomic study on gender differences in aging kidney of mice. Proteome Sci 2009; 7:16. [PMID: 19358702 PMCID: PMC2673210 DOI: 10.1186/1477-5956-7-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 04/09/2009] [Indexed: 11/23/2022] Open
Abstract
Background This study aims to analyze sex differences in mice aging kidney. We applied a proteomic technique based on subfractionation, and liquid chromatography coupled with 2-DE. Samples from male and female CD1-Swiss outbred mice from 28 weeks, 52 weeks, and 76 weeks were analysed by 2-DE, and selected proteins were identified by matrix assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Results This proteomic analysis detected age-related changes in protein expression in 55 protein-spots, corresponding to 22 spots in males and 33 spots in females. We found a protein expression signature (PES) of aging composed by 8 spots, common for both genders. The identified proteins indicated increases in oxidative and proteolytic proteins and decreases in glycolytic proteins, and antioxidant enzymes. Conclusion Our results provide insights into the gender differences associated to the decline of kidney function in aging. Thus, we show that proteomics can provide valuable information on age-related changes in expression levels of proteins and related modifications. This pilot study is still far from providing candidates for aging-biomarkers. However, we suggest that the analysis of these proteins could suggest mechanisms of cellular aging in kidney, and improve the kidney selection for transplantation.
Collapse
Affiliation(s)
- Hanna Amelina
- Department of Biochemistry and Biophysics, Stockholm University, Sweden.
| | | |
Collapse
|
9
|
Mi J, Garcia-Arcos I, Alvarez R, Cristobal S. Age-related subproteomic analysis of mouse liver and kidney peroxisomes. Proteome Sci 2007; 5:19. [PMID: 18042274 PMCID: PMC2231346 DOI: 10.1186/1477-5956-5-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 11/27/2007] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Despite major recent advances in the understanding of peroxisomal functions and how peroxisomes arise, only scant information is available regarding this organelle in cellular aging. The aim of this study was to characterize the changes in the protein expression profile of aged versus young liver and kidney peroxisome-enriched fractions from mouse and to suggest possible mechanisms underlying peroxisomal aging. Peroxisome-enriched fractions from 10 weeks, 18 months and 24 months C57bl/6J mice were analyzed by quantitative proteomics. RESULTS Peroxisomal proteins were enriched by differential and density gradient centrifugation and proteins were separated by two-dimensional electrophoresis (2-DE), quantified and identified by mass spectrometry (MS). In total, sixty-five proteins were identified in both tissues. Among them, 14 proteins were differentially expressed in liver and 21 proteins in kidney. The eight proteins differentially expressed in both tissues were involved in beta-oxidation, alpha-oxidation, isoprenoid biosynthesis, amino acid metabolism, and stress response. Quantitative proteomics, clustering methods, and prediction of transcription factors, all indicated that there is a decline in protein expression at 18 months and a recovery at 24 months. CONCLUSION These results indicate that some peroxisomal proteins show a tissue-specific functional response to aging. This response is probably dependent on their differential regeneration capacity. The differentially expressed proteins could lead several cellular effects: such as alteration of fatty acid metabolism that could alert membrane protein functions, increase of the oxidative stress and contribute to decline in bile salt synthesis. The ability to detect age-related variations in the peroxisomal proteome can help in the search for reliable and valid aging biomarkers.
Collapse
Affiliation(s)
- Jia Mi
- Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Itsaso Garcia-Arcos
- Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Ruben Alvarez
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Susana Cristobal
- Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
10
|
Yokozawa T, Kim HY, Kim HJ, Okubo T, Chu DC, Juneja LR. Amla (Emblica officinalisGaertn.) prevents dyslipidaemia and oxidative stress in the ageing process. Br J Nutr 2007; 97:1187-95. [PMID: 17506915 DOI: 10.1017/s0007114507691971] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amla (Emblica officinalisGaertn.) is widely used in Indian medicine for the treatment of various diseases. We have investigated the effects of amla on the lipid metabolism and protein expression involved in oxidative stress during the ageing process. SunAmla or ethyl acetate extract of amla, a polyphenol-rich fraction, was administered at a dose of 40 or 10 mg/kg body weight per d for 100 d to young rats aged 2 months and aged rats aged 10 months. The lipid levels, such as cholesterol and TAG, in serum and liver were markedly elevated in aged control rats, while they were significantly decreased by the administration of amla. The PPARα is known to regulate the transcription of genes involved in lipid and cholesterol metabolism. The PPARα protein level in liver was reduced in aged control rats. However, the oral administration of amla significantly increased the hepatic PPARα protein level. In addition, oral administration of amla significantly inhibited the serum and hepatic mitochondrial thiobarbituric acid-reactive substance levels in aged rats. Moreover, the elevated expression level of bax was significantly decreased after the oral administration of amla, while the level of bcl-2 led to a significant increase. Furthermore, the expressions of hepatic NF-κB, inducible NO synthase (iNOS), and cyclo-oxygenase-2 (COX-2) protein levels were also increased with ageing. However, amla extract reduced the iNOS and COX-2 expression levels by inhibiting NF-κB activation in aged rats. These results indicate that amla may prevent age-related hyperlipidaemia through attenuating oxidative stress in the ageing process.
Collapse
Affiliation(s)
- Takako Yokozawa
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | | | |
Collapse
|
11
|
Veglia F, Cighetti G, De Franceschi M, Zingaro L, Boccotti L, Tremoli E, Cavalca V. Age- and gender-related oxidative status determined in healthy subjects by means of OXY-SCORE, a potential new comprehensive index. Biomarkers 2007; 11:562-73. [PMID: 17056475 DOI: 10.1080/13547500600898623] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Oxidative stress has been related to various diseases, gender and ageing, and has been measured by various markers. The authors developed a procedure to compute a global oxidative stress index (OXY-SCORE), reflecting both oxidative and antioxidant markers in healthy subjects. Its performance was tested in relation to age and gender and in coronary artery disease (CAD) patients. Eighty-two healthy subjects and 20 CAD patients were enrolled. Plasma free and total malondialdehyde (F- and T-MDA), glutathione disulphide/reduced form ratio (GSSG/GSH) and urine isoprostanes (iPF2alpha-III) levels were combined as oxidative damage markers (damage score). GSH, alpha- and gamma-tocopherol (TH) levels, and individual antioxidant capacity were combined as antioxidant defence indexes (protection score). The OXY-SCORE was computed by subtracting the protection score from the damage score. Among single parameters, T-MDA and iPF2alpha-III significantly correlated with age; only GSH and both tocopherols correlated with male gender in healthy subjects. The OXY-SCORE was positively associated with age (p=0.004) and male gender (p=0.03). As expected, the OXY-SCORE was higher in CAD with a very significant p-value (<0.0001), after adjusting for age, gender and smoking. Combining different markers can potentially provide a powerful index in the evaluation of oxidative stress related to age, gender and CAD status.
Collapse
Affiliation(s)
- F Veglia
- Centro Cardiologico Monzino I.R.C.C.S., Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Proteomic technologies are used with increasing frequency in the renal community. In this review, we highlight the use in renal research of a number of available techniques including two-dimensional gel electrophoresis, liquid chromatography/mass spectrometry, surface-enhanced laser desorption/ionization, capillary electrophoresis/mass spectrometry, and antibody and tissue arrays. These techniques have been used to identify proteins or changes in proteins specific to regions of the kidney or associated with renal diseases or toxicity. They have also been used to examine protein expression changes and posttranslational modifications of proteins during signaling. A number of studies have used proteomic methodologies to look for diagnostic biomarkers in body fluids. The rapid rate of development of the technologies along with the combination of classic physiological and biochemical techniques with proteomics will enable new discoveries.
Collapse
Affiliation(s)
- Michael G Janech
- Medical University of South Carolina, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29425-2220, USA
| | | | | |
Collapse
|
13
|
Debata PR, Panda H, Supakar PC. Altered expression of trefoil factor 3 and cathepsin L gene in rat kidney during aging. Biogerontology 2006; 8:25-30. [PMID: 16865413 DOI: 10.1007/s10522-006-9032-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 06/16/2006] [Indexed: 11/30/2022]
Abstract
Alterations in a wide array of physiological functions are normal consequences of aging. It is likely that, decline in cellular and physiological functions that occur during aging are the net result of age related differential gene expression and their consequent down stream effects. In this report we demonstrate that in aged kidney there is a decrease in the expression of trefoil factor 3 gene and an age-related increase in the expression of cathepsin L gene as revealed by differential display PCR (DD-PCR) and northern blot analysis. Trefoil factor 3 is mainly expressed in the alimentary canal and protects it from the degradative effect of HCl by stimulating the goblet cells to synthesize mucin. Though the exact role of trefoil factor 3 in kidney is not known, we speculate that it has a protective role in kidney. Cathepsin L is a cysteine protease which degrades connective tissue proteins like collagen, elastin and fibronectin. Increase in the expression of cathepsin L in aged kidney leading to considerable loss of organ function in old age. Down regulation of trefoil factor 3 and up regulation of cathepsin L may contribute to lack of protection and increased age related tissue damage to kidney in aging.
Collapse
|
14
|
Stehle JR, Weeks ME, Lin K, Willingham MC, Hicks AM, Timms JF, Cui Z. Mass spectrometry identification of circulating alpha-1-B glycoprotein, increased in aged female C57BL/6 mice. Biochim Biophys Acta Gen Subj 2006; 1770:79-86. [PMID: 16945486 DOI: 10.1016/j.bbagen.2006.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 06/12/2006] [Accepted: 06/13/2006] [Indexed: 11/27/2022]
Abstract
In this study, we surveyed the profiles of mouse circulating proteins by 2-dimensional SDS-PAGE in different strains, sexes and ages. Among visible protein spots on 2-D gels with silver-staining, we identified a unique set of 7 seemingly-related proteins whose levels were consistently elevated in older C57BL/6 female mice. This set of 7 proteins was absent in C57BL/6 males or in BALB/c mice of either sex of any age. When C57BL/6 female mice were crossed with BALB/c males, the age-related increase of these proteins became sporadic and not linear in the F1 offspring. All 7 spots of this protein group were picked and subjected to identification by mass spectrometric analysis after tryptic digestion. The results showed that all 7 spots were different isoforms of alpha(1)B-glycoprotein with different degrees of post-translational modifications, such as phosphorylation. These results suggest that alpha(1)B-glycoprotein changes in mice in a sex and age dependent manner.
Collapse
Affiliation(s)
- John R Stehle
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Whether or not oxidative stress is the cause of the aging process, as proposed by the oxidative stress theory of aging remains unknown; but accumulated evidence overwhelmingly identifies increased oxidative stress with age as a source of damage to cellular structure and function. From an evolutionary perspective, the utilization of oxygen as a life supporting means makes oxidative stress an inescapable part of an organism's biological system. The inseparability of oxidative stress from the biological system can be viewed as an adaptive response that all aerobic organisms undergo to ward-off the potentially harmful effects of oxygen and its derivatives, including free radicals. The organism's adaptive mechanisms include an intricate network of defenses that regulate and guard against any over-acting oxidative reactions to ensure its survival. This review discusses and illustrates several adaptive responses at various levels (from gene regulation to physical exercise) that organisms use as part of their survival strategy.
Collapse
Affiliation(s)
- Byung Pal Yu
- Department of Physiology, University of Texas Health Science Center at San Antonio, 78229, USA.
| | | |
Collapse
|
16
|
Kim CH, Zou Y, Kim DH, Kim ND, Yu BP, Chung HY. Proteomic Analysis of Nitrated and 4-Hydroxy-2-Nonenal-Modified Serum Proteins During Aging. J Gerontol A Biol Sci Med Sci 2006; 61:332-8. [PMID: 16611698 DOI: 10.1093/gerona/61.4.332] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using proteomic techniques, we investigated peroxynitrite (ONOO-) and 4-hydroxy-2-nonenal (HNE) modified serum proteins from young and old Fischer 344 rats. Two-dimensional gel electrophoresis/western blot analysis of nitrotyrosine and HNE-histidine revealed that serum proteins were differentially modified by ONOO- and HNE. Among them, 16 of the modified proteins, identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), are involved in blood coagulation, lipid transport, blood pressure regulation, and protease inhibition. Furthermore, nitration and HNE adduction were found to increase with age, lending support to the oxidative stress hypothesis of aging. Our data showed that proteomic techniques can be valuable tools in the study of protein profiling modifications during aging.
Collapse
Affiliation(s)
- Chul Hong Kim
- Research Institute of Genetic Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735, Korea
| | | | | | | | | | | |
Collapse
|