1
|
Noori L, Filip K, Nazmara Z, Mahakizadeh S, Hassanzadeh G, Caruso Bavisotto C, Bucchieri F, Marino Gammazza A, Cappello F, Wnuk M, Scalia F. Contribution of Extracellular Vesicles and Molecular Chaperones in Age-Related Neurodegenerative Disorders of the CNS. Int J Mol Sci 2023; 24:927. [PMID: 36674442 PMCID: PMC9861359 DOI: 10.3390/ijms24020927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Many neurodegenerative disorders are characterized by the abnormal aggregation of misfolded proteins that form amyloid deposits which possess prion-like behavior such as self-replication, intercellular transmission, and consequent induction of native forms of the same protein in surrounding cells. The distribution of the accumulated proteins and their correlated toxicity seem to be involved in the progression of nervous system degeneration. Molecular chaperones are known to maintain proteostasis, contribute to protein refolding to protect their function, and eliminate fatally misfolded proteins, prohibiting harmful effects. However, chaperone network efficiency declines during aging, prompting the onset and the development of neurological disorders. Extracellular vesicles (EVs) are tiny membranous structures produced by a wide range of cells under physiological and pathological conditions, suggesting their significant role in fundamental processes particularly in cellular communication. They modulate the behavior of nearby and distant cells through their biological cargo. In the pathological context, EVs transport disease-causing entities, including prions, α-syn, and tau, helping to spread damage to non-affected areas and accelerating the progression of neurodegeneration. However, EVs are considered effective for delivering therapeutic factors to the nervous system, since they are capable of crossing the blood-brain barrier (BBB) and are involved in the transportation of a variety of cellular entities. Here, we review the neurodegeneration process caused mainly by the inefficiency of chaperone systems as well as EV performance in neuropathies, their potential as diagnostic biomarkers and a promising EV-based therapeutic approach.
Collapse
Affiliation(s)
- Leila Noori
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Kamila Filip
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35959 Rzeszow, Poland
| | - Zohreh Nazmara
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Simin Mahakizadeh
- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj 3149779453, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Fabio Bucchieri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35959 Rzeszow, Poland
| | - Federica Scalia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| |
Collapse
|
2
|
Shang L, Aughey E, Kim H, Heden TD, Wang L, Najt CP, Esch N, Brunko S, Abrahante JE, Macchietto M, Mashek MT, Fairbanks T, Promislow DEL, Neufeld TP, Mashek DG. Systemic lipolysis promotes physiological fitness in Drosophila melanogaster. Aging (Albany NY) 2022; 14:6481-6506. [PMID: 36044277 PMCID: PMC9467406 DOI: 10.18632/aging.204251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
Since interventions such as caloric restriction or fasting robustly promote lipid catabolism and improve aging-related phenotypical markers, we investigated the direct effect of increased lipid catabolism via overexpression of bmm (brummer, FBgn0036449), the major triglyceride hydrolase in Drosophila, on lifespan and physiological fitness. Comprehensive characterization was carried out using RNA-seq, lipidomics and metabolomics analysis. Global overexpression of bmm strongly promoted numerous markers of physiological fitness, including increased female fecundity, fertility maintenance, preserved locomotion activity, increased mitochondrial biogenesis and oxidative metabolism. Increased bmm robustly upregulated the heat shock protein 70 (Hsp70) family of proteins, which equipped the flies with higher resistance to heat, cold, and ER stress via improved proteostasis. Despite improved physiological fitness, bmm overexpression did not extend lifespan. Taken together, these data show that bmm overexpression has broad beneficial effects on physiological fitness, but these effects did not impact lifespan.
Collapse
Affiliation(s)
- Linshan Shang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elizabeth Aughey
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Huiseon Kim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy D. Heden
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Charles P. Najt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nicholas Esch
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sophia Brunko
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Juan E. Abrahante
- University of Minnesota Informatics Institute, Minneapolis, MN 55455, USA
| | - Marissa Macchietto
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mara T. Mashek
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Todd Fairbanks
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel E. L. Promislow
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Department of Lab Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Thomas P. Neufeld
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Douglas G. Mashek
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Baarz BR, Rink L. Rebalancing the unbalanced aged immune system - A special focus on zinc. Ageing Res Rev 2022; 74:101541. [PMID: 34915196 DOI: 10.1016/j.arr.2021.101541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
Abstract
Nowadays, aging is understood as a dynamic and multifaceted dysregulation process that spares almost no human organ or cell. The immune system being among the most affected, it has been shown predominantly that its integrity determines the tightrope walk between the difference of escaping or suffering from age-related diseases. Next to drug-based anti-aging strategies, micronutrient intervention may represent an emerging but less radical way to slow immune aging. While a sufficient supply of a variety of micronutrients is undeniably important, adequate intake of the trace element zinc appears to tower over others in terms of reaching old age. Inconveniently, zinc deficiency prevalence among the elderly is high, which in turn contributes to increased susceptibility to infection, decreased anti-tumor immunity as well as attenuated response to vaccination. Driven by this research, this review aims to provide a comprehensive and up-to-date overview of the various rebalancing capabilities of zinc in the unbalanced immune system of the elderly. This includes an in-depth and cell type-centered discussion on the role of zinc in immunosenescence and inflammaging. We further address upcoming translational aspects e.g. how zinc deficiency promotes the flourishing of certain pathogenic taxa of the gut microbiome and how zinc supply counteracts such alterations in a manner that may contribute to longevity. In the light of the ongoing COVID-19 pandemic, we also briefly review current knowledge on the interdependency between age, zinc status, and respiratory infections. Based on two concrete examples and considering the latest findings in the field we conclude our remarks by outlining tremendous parallels between suboptimal zinc status and accelerated aging on the one hand and an optimized zinc status and successful aging on the other hand.
Collapse
|
4
|
Peng-Winkler Y, Büttgenbach A, Rink L, Weßels I. Zinc supplementation prior to heat shock enhances HSP70 synthesis through HSF1 phosphorylation at serine 326 in human peripheral mononuclear cells. Food Funct 2022; 13:9143-9152. [DOI: 10.1039/d2fo01406h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zinc supplementation prior to heat shock increases HSP70 (Heat shock protein 70) expression, which has cytoprotective effects in tissue cells during inflammation. Effects of zinc deficiency in this regard are...
Collapse
|
5
|
Ruano D. Proteostasis Dysfunction in Aged Mammalian Cells. The Stressful Role of Inflammation. Front Mol Biosci 2021; 8:658742. [PMID: 34222330 PMCID: PMC8245766 DOI: 10.3389/fmolb.2021.658742] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Aging is a biological and multifactorial process characterized by a progressive and irreversible deterioration of the physiological functions leading to a progressive increase in morbidity. In the next decades, the world population is expected to reach ten billion, and globally, elderly people over 80 are projected to triple in 2050. Consequently, it is also expected an increase in the incidence of age-related pathologies such as cancer, diabetes, or neurodegenerative disorders. Disturbance of cellular protein homeostasis (proteostasis) is a hallmark of normal aging that increases cell vulnerability and might be involved in the etiology of several age-related diseases. This review will focus on the molecular alterations occurring during normal aging in the most relevant protein quality control systems such as molecular chaperones, the UPS, and the ALS. Also, alterations in their functional cooperation will be analyzed. Finally, the role of inflammation, as a synergistic negative factor of the protein quality control systems during normal aging, will also be addressed. A better comprehension of the age-dependent modifications affecting the cellular proteostasis, as well as the knowledge of the mechanisms underlying these alterations, might be very helpful to identify relevant risk factors that could be responsible for or contribute to cell deterioration, a fundamental question still pending in biomedicine.
Collapse
Affiliation(s)
- Diego Ruano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
6
|
Panossian AG, Efferth T, Shikov AN, Pozharitskaya ON, Kuchta K, Mukherjee PK, Banerjee S, Heinrich M, Wu W, Guo D, Wagner H. Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress- and aging-related diseases. Med Res Rev 2021; 41:630-703. [PMID: 33103257 PMCID: PMC7756641 DOI: 10.1002/med.21743] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/26/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022]
Abstract
Adaptogens comprise a category of herbal medicinal and nutritional products promoting adaptability, resilience, and survival of living organisms in stress. The aim of this review was to summarize the growing knowledge about common adaptogenic plants used in various traditional medical systems (TMS) and conventional medicine and to provide a modern rationale for their use in the treatment of stress-induced and aging-related disorders. Adaptogens have pharmacologically pleiotropic effects on the neuroendocrine-immune system, which explain their traditional use for the treatment of a wide range of conditions. They exhibit a biphasic dose-effect response: at low doses they function as mild stress-mimetics, which activate the adaptive stress-response signaling pathways to cope with severe stress. That is in line with their traditional use for preventing premature aging and to maintain good health and vitality. However, the potential of adaptogens remains poorly explored. Treatment of stress and aging-related diseases require novel approaches. Some combinations of adaptogenic plants provide unique effects due to their synergistic interactions in organisms not obtainable by any ingredient independently. Further progress in this field needs to focus on discovering new combinations of adaptogens based on traditional medical concepts. Robust and rigorous approaches including network pharmacology and systems pharmacology could help in analyzing potential synergistic effects and, more broadly, future uses of adaptogens. In conclusion, the evolution of the adaptogenic concept has led back to basics of TMS and a new level of understanding of holistic approach. It provides a rationale for their use in stress-induced and aging-related diseases.
Collapse
Affiliation(s)
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and BiochemistryJohannes Gutenberg UniversityMainzGermany
| | - Alexander N. Shikov
- Department of technology of dosage formsSaint‐Petersburg State Chemical‐Pharmaceutical UniversitySt. PetersburgRussia
| | - Olga N. Pozharitskaya
- Department of BiotechnologyMurmansk Marine Biological Institute of the Kola Science Center of the Russian Academy of Sciences (MMBI KSC RAS)MurmanskRussia
| | - Kenny Kuchta
- Department of Far Eastern Medicine, Clinic for Gastroenterology and Gastrointestinal OncologyUniversity Medical Center GöttingenGöttingenGermany
| | - Pulok K. Mukherjee
- Department of Pharmaceutical Technology, School of Natural Product StudiesJadavpur UniversityKolkataIndia
| | - Subhadip Banerjee
- Department of Pharmaceutical Technology, School of Natural Product StudiesJadavpur UniversityKolkataIndia
| | - Michael Heinrich
- Research Cluster Biodiversity and Medicines, UCL School of Pharmacy, Centre for Pharmacognosy and PhytotherapyUniversity of LondonLondonUK
| | - Wanying Wu
- Shanghai Research Center for TCM Modernization, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - De‐an Guo
- Shanghai Research Center for TCM Modernization, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Hildebert Wagner
- Department of Pharmacy, Center for Pharma ResearchLudwig‐Maximilians‐Universität MünchenMunichGermany
| |
Collapse
|
7
|
Nakajima T, Maruhashi T, Morimatsu T, Mukai Y. Cyclin-dependent kinase Pho85p and its cyclins are involved in replicative lifespan through multiple pathways in yeast. FEBS Lett 2019; 594:1166-1175. [PMID: 31797348 DOI: 10.1002/1873-3468.13707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/18/2019] [Accepted: 11/27/2019] [Indexed: 11/07/2022]
Abstract
Lifespan is determined by genetic factors and influenced by environmental factors. Here, we find that the phosphate signal transduction (PHO) pathway is involved in the determination of replicative lifespan in budding yeast. Extracellular phosphate does not affect the lifespan. However, deletion of PHO80 (cyclin) and PHO85 (cyclin-dependent kinase) genes, that is, negative regulators of the PHO pathway, shortens the lifespan, which is restored by further deletion of PHO4 (transcriptional activator). Four of the other nine Pho85p cyclin genes are also required to maintain normal lifespan. The short-lived mutants show a metabolic profile that is similar to strains with normal lifespan. Thus, Pho85p kinase genetically determines replicative lifespan in combination with relevant cyclins. Our findings uncover novel cellular signals in longevity regulation.
Collapse
Affiliation(s)
- Toshio Nakajima
- Department of Frontier Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| | - Tsubasa Maruhashi
- Department of Frontier Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| | - Takaaki Morimatsu
- Department of Frontier Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| | - Yukio Mukai
- Department of Frontier Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| |
Collapse
|
8
|
Alexander JE, Colyer A, Haydock RM, Hayek MG, Park J. Understanding How Dogs Age: Longitudinal Analysis of Markers of Inflammation, Immune Function, and Oxidative Stress. J Gerontol A Biol Sci Med Sci 2019; 73:720-728. [PMID: 29126143 DOI: 10.1093/gerona/glx182] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/18/2017] [Indexed: 12/16/2022] Open
Abstract
As in human populations, advances in nutrition and veterinary care have led to an increase in the lifespan of companion animals. Detrimental physiological changes occurring later in life must be understood before interventions can be made to slow or reduce them. One important aspect of human aging is upregulation of the inflammatory response and increase in oxidative damage resulting in pathologies linked to chronic inflammation. To determine whether similar processes occur in the aging dog, changes in markers of inflammation and oxidative stress were investigated in 80 Labrador retrievers from adulthood to the end of life. Serum levels of immunoglobulin M (p < .001) and 8-hydroxy-2-deoxyguanosine (p < .001) increased with age, whereas no effect of age was detected for immunoglobulin G or C-reactive protein unless the last year of life was included in the analysis (p = .002). Baseline levels of heat shock protein 70 decreased with age (p < .001) while those after exposure to heat stress were maintained (p = .018). However, when excluding final year of life data, a decline in the heat shock protein 70 response after heat stress was observed (p = .004). These findings indicate that aging dogs undergo changes similar to human inflammaging and offer the possibility of nutritional or pharmacological intervention to delay or reduce these effects.
Collapse
Affiliation(s)
- Janet E Alexander
- WALTHAM Centre for Pet Nutrition, Waltham-on-the-Wolds, Melton Mowbray, UK
| | - Alison Colyer
- WALTHAM Centre for Pet Nutrition, Waltham-on-the-Wolds, Melton Mowbray, UK
| | - Richard M Haydock
- WALTHAM Centre for Pet Nutrition, Waltham-on-the-Wolds, Melton Mowbray, UK
| | | | - JeanSoon Park
- Royal Canin Pet Health and Nutrition Centre, Lewisburg, Ohio
| |
Collapse
|
9
|
Panossian A, Seo EJ, Efferth T. Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:257-284. [PMID: 30466987 DOI: 10.1016/j.phymed.2018.09.204] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/29/2018] [Accepted: 09/17/2018] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Adaptogens are natural compounds or plant extracts that increase adaptability and survival of organisms under stress. Adaptogens stimulate cellular and organismal defense systems by activating intracellular and extracellular signaling pathways and expression of stress-activated proteins and neuropeptides. The effects adaptogens on mediators of adaptive stress response and longevity signaling pathways have been reported, but their stress-protective mechanisms are still not fully understood. AIM OF THE STUDY The aim of this study was to identify key molecular mechanisms of adaptogenic plants traditionally used to treat stress and aging-related disorders, i.e., Rhodiola rosea, Eleutherococcus senticosus, Withania somnifera, Rhaponticum carthamoides, and Bryonia alba. MATERIALS AND METHODS To investigate the underlying molecular mechanisms of adaptogens, we conducted RNA sequencing to profile gene expression alterations in T98G neuroglia cells upon treatment of adaptogens and analyzed the relevance of deregulated genes to adaptive stress-response signaling pathways using in silico pathway analysis software. RESULTS AND DISCUSSION At least 88 of the 3516 genes regulated by adaptogens were closely associated with adaptive stress response and adaptive stress-response signaling pathways (ASRSPs), including neuronal signaling related to corticotropin-releasing hormone, cAMP-mediated, protein kinase A, and CREB; pathways related to signaling involving CXCR4, melatonin, nitric oxide synthase, GP6, Gαs, MAPK, neuroinflammation, neuropathic pain, opioids, renin-angiotensin, AMPK, calcium, and synapses; and pathways associated with dendritic cell maturation and G-coupled protein receptor-mediated nutrient sensing in enteroendocrine cells. All samples tested showed significant effects on the expression of genes encoding neurohormones CRH, GNRH, UCN, G-protein-coupled and other transmembrane receptors TLR9, PRLR, CHRNE, GP1BA, PLXNA4, a ligand-dependent nuclear receptor RORA, transmembrane channels, transcription regulators FOS, FOXO6, SCX, STAT5A, ZFPM2, ZNF396, ZNF467, protein kinases MAPK10, MAPK13, MERTK, FLT1, PRKCH, ROS1, TTN), phosphatases PTPRD, PTPRR, peptidases, metabolic enzymes, a chaperone (HSPA6), and other proteins, all of which modulate numerous life processes, playing key roles in several canonical pathways involved in defense response and regulation of homeostasis in organisms. It is for the first time we report that the molecular mechanism of actions of melatonin and plant adaptogens are alike, all adaptogens tested activated the melatonin signaling pathway by acting through two G-protein-coupled membrane receptors MT1 and MT2 and upregulation of the ligand-specific nuclear receptor RORA, which plays a role in intellectual disability, neurological disorders, retinopathy, hypertension, dyslipidemia, and cancer, which are common in aging. Furthermore, melatonin activated adaptive signaling pathways and upregulated expression of UCN, GNRH1, TLR9, GP1BA, PLXNA4, CHRM4, GPR19, VIPR2, RORA, STAT5A, ZFPM2, ZNF396, FLT1, MAPK10, MERTK, PRKCH, and TTN, which were commonly regulated by all adaptogens tested. We conclude that melatonin is an adaptation hormone playing an important role in regulation of homeostasis. Adaptogens presumably worked as eustressors ("stress-vaccines") to activate the cellular adaptive system by inducing the expression of ASRSPs, which then reciprocally protected cells from damage caused by distress. Functional investigation by interactive pathways analysis demonstrated that adaptogens activated ASRSPs associated with stress-induced and aging-related disorders such as chronic inflammation, cardiovascular health, neurodegenerative cognitive impairment, metabolic disorders, and cancer. CONCLUSION This study has elucidated the genome-wide effects of several adaptogenic herbal extracts in brain cells culture. These data highlight the consistent activation of ASRSPs by adaptogens in T98G neuroglia cells. The extracts affected many genes playing key roles in modulation of adaptive homeostasis, indicating their ability to modify gene expression to prevent stress-induced and aging-related disorders. Overall, this study provides a comprehensive look at the molecular mechanisms by which adaptogens exerts stress-protective effects.
Collapse
Affiliation(s)
| | - Ean-Jeong Seo
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany.
| |
Collapse
|
10
|
Stroo E, Koopman M, Nollen EAA, Mata-Cabana A. Cellular Regulation of Amyloid Formation in Aging and Disease. Front Neurosci 2017; 11:64. [PMID: 28261044 PMCID: PMC5306383 DOI: 10.3389/fnins.2017.00064] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/30/2017] [Indexed: 12/24/2022] Open
Abstract
As the population is aging, the incidence of age-related neurodegenerative diseases, such as Alzheimer and Parkinson disease, is growing. The pathology of neurodegenerative diseases is characterized by the presence of protein aggregates of disease specific proteins in the brain of patients. Under certain conditions these disease proteins can undergo structural rearrangements resulting in misfolded proteins that can lead to the formation of aggregates with a fibrillar amyloid-like structure. Cells have different mechanisms to deal with this protein aggregation, where the molecular chaperone machinery constitutes the first line of defense against misfolded proteins. Proteins that cannot be refolded are subjected to degradation and compartmentalization processes. Amyloid formation has traditionally been described as responsible for the proteotoxicity associated with different neurodegenerative disorders. Several mechanisms have been suggested to explain such toxicity, including the sequestration of key proteins and the overload of the protein quality control system. Here, we review different aspects of the involvement of amyloid-forming proteins in disease, mechanisms of toxicity, structural features, and biological functions of amyloids, as well as the cellular mechanisms that modulate and regulate protein aggregation, including the presence of enhancers and suppressors of aggregation, and how aging impacts the functioning of these mechanisms, with special attention to the molecular chaperones.
Collapse
Affiliation(s)
- Esther Stroo
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Mandy Koopman
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Ellen A A Nollen
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Alejandro Mata-Cabana
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| |
Collapse
|
11
|
de Toda IM, Vida C, Ortega E, De La Fuente M. Hsp70 basal levels, a tissue marker of the rate of aging and longevity in mice. Exp Gerontol 2016; 84:21-28. [DOI: 10.1016/j.exger.2016.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 08/23/2016] [Accepted: 08/26/2016] [Indexed: 02/07/2023]
|
12
|
Reeg S, Jung T, Castro JP, Davies KJA, Henze A, Grune T. The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome. Free Radic Biol Med 2016; 99:153-166. [PMID: 27498116 PMCID: PMC5201141 DOI: 10.1016/j.freeradbiomed.2016.08.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/19/2016] [Accepted: 08/01/2016] [Indexed: 01/23/2023]
Abstract
One hallmark of aging is the accumulation of protein aggregates, promoted by the unfolding of oxidized proteins. Unraveling the mechanism by which oxidized proteins are degraded may provide a basis to delay the early onset of features, such as protein aggregate formation, that contribute to the aging phenotype. In order to prevent aggregation of oxidized proteins, cells recur to the 20S proteasome, an efficient turnover proteolysis complex. It has previously been shown that upon oxidative stress the 26S proteasome, another form, dissociates into the 20S form. A critical player implicated in its dissociation is the Heat Shock Protein 70 (Hsp70), which promotes an increase in free 20S proteasome and, therefore, an increased capability to degrade oxidized proteins. The aim of this study was to test whether or not Hsp70 is involved in cooperating with the 20S proteasome for a selective degradation of oxidatively damaged proteins. Our results demonstrate that Hsp70 expression is induced in HT22 cells as a result of mild oxidative stress conditions. Furthermore, Hsp70 prevents the accumulation of oxidized proteins and directly promotes their degradation by the 20S proteasome. In contrast the expression of the Heat shock cognate protein 70 (Hsc70) was not changed in recovery after oxidative stress and Hsc70 has no influence on the removal of oxidatively damaged proteins. We were able to demonstrate in HT22 cells, in brain homogenates from 129/SV mice and in vitro, that there is an increased interaction of Hsp70 with oxidized proteins, but also with the 20S proteasome, indicating a role of Hsp70 in mediating the interaction of oxidized proteins with the 20S proteasome. Thus, our data clearly implicate an involvement of Hsp70 oxidatively damaged protein degradation by the 20S proteasome.
Collapse
Affiliation(s)
- Sandra Reeg
- German Institute of Human Nutrition Potsdam Rehbruecke (DIfE), Department of Molecular Toxicology, 14588 Nuthetal, Germany
| | - Tobias Jung
- German Institute of Human Nutrition Potsdam Rehbruecke (DIfE), Department of Molecular Toxicology, 14588 Nuthetal, Germany; German Center for Diabetes Research (DZD), Germany
| | - José P Castro
- German Institute of Human Nutrition Potsdam Rehbruecke (DIfE), Department of Molecular Toxicology, 14588 Nuthetal, Germany; German Center for Diabetes Research (DZD), Germany
| | - Kelvin J A Davies
- University of Southern California, Leonard Davis School of Gerontology, and Division of Molecular & Computational Biology, Dornsife College of Letters, Arts, and Sciences, Los Angeles, CA 90089-0191, USA
| | - Andrea Henze
- University Potsdam, Institute of Nutritional Science, Department of Physiology and Pathophysiology, 14588 Nuthetal, Germany
| | - Tilman Grune
- German Institute of Human Nutrition Potsdam Rehbruecke (DIfE), Department of Molecular Toxicology, 14588 Nuthetal, Germany; German Center for Diabetes Research (DZD), Germany.
| |
Collapse
|
13
|
Martínez de Toda I, De la Fuente M. The role of Hsp70 in oxi-inflamm-aging and its use as a potential biomarker of lifespan. Biogerontology 2015; 16:709-21. [PMID: 26386684 DOI: 10.1007/s10522-015-9607-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/14/2015] [Indexed: 12/22/2022]
Abstract
The heat-shock protein 70 (HSPA1A or Hsp70) acts as a cellular defense mechanism its expression being induced under stressful conditions. Aging has been related to an impairment in this induction. However, an extended longevity has been associated with its increased expression. According to the oxidation-inflammation theory of aging, chronic oxidative stress and inflammatory stress situations (with higher levels of oxidant and inflammatory compounds and lower antioxidant and anti-inflammatory defenses) are the basis of the age-related alterations of body cells. Since oxidation and inflammation are interlinked processes, and Hsp70 has been shown to confer protection against the harmful effects of oxidative stress as well as modulating the inflammatory status, it could play a role as a regulator of the rate of aging. This role may be different in mitotic and post-mitotic tissues due to the differences in their age-related mechanisms of response, such as apoptosis. Mechanisms affected by Hsp70 that can interfere with the deleterious effects of excessive oxidative stress and chronic low-grade inflammation and that are closely related to the aging process have been detailed. In addition, the potential use of the basal levels (with their differences in post-mitotic and mitotic tissues), the inducible levels, as well as the extracellular levels of Hsp70 as possible biomarkers of the rate of aging and lifespan, have also been discussed.
Collapse
Affiliation(s)
- I Martínez de Toda
- Department of Animal Physiology II, Faculty of Biology, Complutense University, Institute of Investigation Hospital 12 Octubre, Madrid, Spain
| | - M De la Fuente
- Department of Animal Physiology II, Faculty of Biology, Complutense University, Institute of Investigation Hospital 12 Octubre, Madrid, Spain.
| |
Collapse
|
14
|
Hensen SMM, Heldens L, van Genesen ST, Pruijn GJM, Lubsen NH. A delayed antioxidant response in heat-stressed cells expressing a non-DNA binding HSF1 mutant. Cell Stress Chaperones 2013; 18:455-73. [PMID: 23321918 PMCID: PMC3682012 DOI: 10.1007/s12192-012-0400-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 12/30/2022] Open
Abstract
To assess the consequences of inactivation of heat shock factor 1 (HSF1) during aging, we analyzed the effect of HSF1 K80Q, a mutant unable to bind DNA, and of dnHSF1, a mutant lacking the activation domain, on the transcriptome of cells 6 and 24 h after heat shock. The primary response to heat shock (6 h recovery), of which 30 % was HSF1-dependent, had decayed 24 h after heat shock in control cells but was extended in HSF1 K80Q and dnHSF1 cells. Comparison with literature data showed that even the HSF1 dependent primary stress response is largely cell specific. HSF1 K80Q, but not HSF1 siRNA-treated, cells showed a delayed stress response: an increase in transcript levels of HSF1 target genes 24 h after heat stress. Knockdown of NRF2, but not of ATF4, c-Fos or FosB, inhibited this delayed stress response. EEF1D_L siRNA inhibited both the delayed and the extended primary stress responses, but had off target effects. In control cells an antioxidant response (ARE binding, HMOX1 mRNA levels) was detected 6 h after heat shock; in HSF1 K80Q cells this response was delayed to 24 h and the ARE complex had a different mobility. Inactivation of HSF1 thus affects the timing and nature of the antioxidant response and NRF2 can activate at least some HSF1 target genes in the absence of HSF1 activity.
Collapse
Affiliation(s)
- Sanne M. M. Hensen
- 271 Department of Biomolecular Chemistry, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Lonneke Heldens
- 271 Department of Biomolecular Chemistry, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Siebe T. van Genesen
- 271 Department of Biomolecular Chemistry, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Ger J. M. Pruijn
- 271 Department of Biomolecular Chemistry, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Nicolette H. Lubsen
- 271 Department of Biomolecular Chemistry, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
15
|
Cloutier P, Coulombe B. Regulation of molecular chaperones through post-translational modifications: decrypting the chaperone code. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:443-54. [PMID: 23459247 DOI: 10.1016/j.bbagrm.2013.02.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 12/30/2022]
Abstract
Molecular chaperones and their associated cofactors form a group of highly specialized proteins that orchestrate the folding and unfolding of other proteins and the assembly and disassembly of protein complexes. Chaperones are found in all cell types and organisms, and their activity must be tightly regulated to maintain normal cell function. Indeed, deregulation of protein folding and protein complex assembly is the cause of various human diseases. Here, we present the results of an extensive review of the literature revealing that the post-translational modification (PTM) of chaperones has been selected during evolution as an efficient mean to regulate the activity and specificity of these key proteins. Because the addition and reciprocal removal of chemical groups can be triggered very rapidly, this mechanism provides an efficient switch to precisely regulate the activity of chaperones on specific substrates. The large number of PTMs detected in chaperones suggests that a combinatory code is at play to regulate function, activity, localization, and substrate specificity for this group of biologically important proteins. This review surveys the core information currently available as a starting point toward the more ambitious endeavor of deciphering the "chaperone code".
Collapse
|
16
|
Engelfriet PM, Jansen EHJM, Picavet HSJ, Dollé MET. Biochemical markers of aging for longitudinal studies in humans. Epidemiol Rev 2013; 35:132-51. [PMID: 23382477 PMCID: PMC4707878 DOI: 10.1093/epirev/mxs011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2013] [Indexed: 12/21/2022] Open
Abstract
Much progress has been made in the past decades in unraveling the mechanisms that are responsible for aging. The discovery that particular gene mutations in experimental species such as yeast, flies, and nematodes are associated with longevity has led to many important insights into pathways that regulate aging processes. However, extrapolating laboratory findings in experimental species to knowledge that is valid for the complexity of human physiology remains a major challenge. Apart from the restricted experimental possibilities, studying aging in humans is further complicated by the development of various age-related diseases. The availability of a set of biomarkers that really reflect underlying aging processes would be of much value in disentangling age-associated pathology from specific aging mechanisms. In this review, we survey the literature to identify promising biochemical markers of aging, with a particular focus on using them in longitudinal studies of aging in humans that entail repeated measurements on easily obtainable material, such as blood samples. Our search strategy was a 2-pronged approach, one focused on general mechanisms of aging and one including studies on clinical biomarkers of age-related diseases.
Collapse
Affiliation(s)
- Peter M. Engelfriet
- Correspondence to Dr. Peter M. Engelfriet, National Institute for Public Health and the Environment (RIVM), Centre for Prevention and Health Services Research, P.O. Box 1, 3720 BA Bilthoven, The Netherlands (e-mail: )
| | | | | | | |
Collapse
|
17
|
Braga A, Gomes N, Belo I. Lipase Induction inYarrowia lipolyticafor Castor Oil Hydrolysis and Its Effect on γ-Decalactone Production. J AM OIL CHEM SOC 2011. [DOI: 10.1007/s11746-011-1987-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Adelaide Braga
- ; Institute for Biotechnology and Bioengineering (IBB), Centre of Biological Engineering; University of Minho Campus de Gualtar; Braga 4710-057 Portugal
| | - Nelma Gomes
- ; Institute for Biotechnology and Bioengineering (IBB), Centre of Biological Engineering; University of Minho Campus de Gualtar; Braga 4710-057 Portugal
| | - Isabel Belo
- ; Institute for Biotechnology and Bioengineering (IBB), Centre of Biological Engineering; University of Minho Campus de Gualtar; Braga 4710-057 Portugal
| |
Collapse
|
18
|
Gastroprotective and antidepressant effects of a new zinc(II)–curcumin complex in rodent models of gastric ulcer and depression induced by stresses. Pharmacol Biochem Behav 2011; 99:66-74. [DOI: 10.1016/j.pbb.2011.04.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/29/2011] [Accepted: 04/04/2011] [Indexed: 12/27/2022]
|
19
|
Koga H, Kaushik S, Cuervo AM. Protein homeostasis and aging: The importance of exquisite quality control. Ageing Res Rev 2011; 10:205-15. [PMID: 20152936 DOI: 10.1016/j.arr.2010.02.001] [Citation(s) in RCA: 310] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 01/25/2010] [Accepted: 02/01/2010] [Indexed: 01/12/2023]
Abstract
All cells count on precise mechanisms that regulate protein homeostasis to maintain a stable and functional proteome. A progressive deterioration in the ability of cells to preserve the stability of their proteome occurs with age and contributes to the functional loss characteristic of old organisms. Molecular chaperones and the proteolytic systems are responsible for this cellular quality control by assuring continuous renewal of intracellular proteins. When protein damage occurs, such as during cellular stress, the coordinated action of these cellular surveillance systems allows detection and repair of the damaged structures or, in many instances, leads to the complete elimination of the altered proteins from inside cells. Dysfunction of the quality control mechanisms and intracellular accumulation of abnormal proteins in the form of protein inclusions and aggregates occur in almost all tissues of an aged organism. Preservation or enhancement of the activity of these surveillance systems until late in life improves their resistance to stress and is sufficient to slow down aging. In this work, we review recent advances on our understanding of the contribution of chaperones and proteolytic systems to the maintenance of cellular homeostasis, the cellular response to stress and ultimately to longevity.
Collapse
Affiliation(s)
- Hiroshi Koga
- Department of Developmental and Molecular Biology, Marion Bessin Liver Research Center, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
20
|
Sahin N, Tuzcu M, Ozercan I, Sahin K, Prasad AS, Kucuk O. Zinc picolinate in the prevention of leiomyoma in Japanese quail. J Med Food 2010; 12:1368-74. [PMID: 20041795 DOI: 10.1089/jmf.2008.0287] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Epidemiologic studies suggest that zinc deficiency may be associated with increased risk of cancer. We investigated the effects of zinc picolinate supplementation on the development of leiomyomas, malondialdehyde (MDA), 8-isoprostane, 4-hydroxyalkenal (HAE), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels, and heat shock protein 70 (Hsp70) expression in Japanese quails. One hundred fifty quails (6 months old) were assigned to three treatment groups consisting of 50 birds in each group. Birds were fed either a basal diet or the basal diet supplemented with 30 mg or 60 mg of zinc/kg of diet. The animals were sacrificed after 350 days, and the tumors were identified. Zinc picolinate supplementation did not affect the number of leiomyomas compared to control birds (P > .05). However, the tumors in zinc-fed birds were smaller than those found in control birds (P = .01) Serum MDA, 8-isoprostane, and HAE levels were lower in the treatment groups than in the control group: MDA, 1.95 versus 0.93 micromol/L; 8-isoprostane, 108 versus 85 pg/mL; HAE, 1.55 versus 0.96 micromol/L (P = .01 for all three parameters). The concentrations of serum 8-OHdG, which is a marker of oxidative damage, in the groups were 28.5, 23.6, and 20.1 ng/mL, respectively (P = .01). Hsp70 expression was significantly decreased in zinc-treated birds (P < .01). The results indicate that dietary zinc picolinate supplementation reduces the growth of spontaneously occurring leiomyomas of the oviduct in the Japanese quail. Clinical trials should be conducted to investigate the efficacy of zinc supplementation in the prevention and treatment of uterine leiomyoma in humans.
Collapse
Affiliation(s)
- Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig, Turkey
| | | | | | | | | | | |
Collapse
|
21
|
Lindner AB, Demarez A. Protein aggregation as a paradigm of aging. Biochim Biophys Acta Gen Subj 2009; 1790:980-96. [PMID: 19527771 DOI: 10.1016/j.bbagen.2009.06.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 06/08/2009] [Accepted: 06/09/2009] [Indexed: 12/23/2022]
Abstract
The process of physiological decline leading to death of the individual is driven by the deteriorating capacity to withstand extrinsic and intrinsic hazards, resulting in damage accumulation with age. The dynamic changes with time of the network governing the outcome of misfolded proteins, exemplifying as intrinsic hazards, is considered here as a paradigm of aging. The main features of the network, namely, the non-linear increase of damage and the presence of amplifying feedback loops within the system are presented through a survey of the different components of the network and related cellular processes in aging and disease.
Collapse
Affiliation(s)
- Ariel B Lindner
- INSERM U571, Paris Descartes University, Paris, F-75015, France.
| | | |
Collapse
|
22
|
Strub GM, Depcrynski A, Elmore LW, Holt SE. Recovery from stress is a function of age and telomere length. Cell Stress Chaperones 2008; 13:475-82. [PMID: 18491040 PMCID: PMC2673929 DOI: 10.1007/s12192-008-0047-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 04/07/2008] [Accepted: 04/14/2008] [Indexed: 10/22/2022] Open
Abstract
Cells are constantly exposed to a wide variety of stimuli and must be able to mount appropriate physiological responses in order to maintain proper form and function. Cells from every organism have evolved highly conserved mechanisms to cope with environmental changes, including the widely studied heat shock response (HSR), which is induced by a variety of cellular stresses such as heavy metal ion exposure. It has long been known that as organisms and individual cells age, their ability to appropriately cope with environmental stress is attenuated. Here, we examine the ability of two heavy metal ions (ZnCl(2), SnCl(2)) to induce the HSR in human fibroblasts by assessing the expression of heat shock proteins (Hsp90, Hsp70, and p23) and the ability of the cells to recover over time. We demonstrate that the induction and recovery of chaperone levels is attenuated with age and that cells immortalized with the human telomerase reverse transcriptase component of the telomerase enzyme do not attenuate their HSR as their replicative age increases. Our data suggest that the recovery of normal human cells from an HSR is related in part to age and the cell's overall telomere length.
Collapse
Affiliation(s)
- Graham M. Strub
- Department of Biochemistry, Medical College of Virginia Campus at Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298-0662 USA
| | - Amy Depcrynski
- Department of Human and Molecular Genetics, Medical College of Virginia Campus at Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298-0662 USA
| | - Lynne W. Elmore
- Department of Pathology, Medical College of Virginia Campus at Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298-0662 USA
- Massey Cancer Center, Medical College of Virginia Campus at Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298–0662 USA
| | - Shawn E. Holt
- Department of Human and Molecular Genetics, Medical College of Virginia Campus at Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298-0662 USA
- Department of Pathology, Medical College of Virginia Campus at Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298-0662 USA
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus at Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298–0662 USA
- Massey Cancer Center, Medical College of Virginia Campus at Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298–0662 USA
| |
Collapse
|
23
|
Giacconi R, Caruso C, Malavolta M, Lio D, Balistreri CR, Scola L, Candore G, Muti E, Mocchegiani E. Pro-inflammatory genetic background and zinc status in old atherosclerotic subjects. Ageing Res Rev 2008; 7:306-18. [PMID: 18611449 DOI: 10.1016/j.arr.2008.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Revised: 05/23/2008] [Accepted: 06/10/2008] [Indexed: 11/30/2022]
Abstract
Inflammation and genetics are prominent mechanisms in the pathogenesis of atherosclerosis (AT) and its complications. In this review we discuss the possible impact on AT development of several genetic determinants involved in inflammation, oxidative stress and cytoprotection (IL-6, TNF-alpha, IL-10, CD14, TLR4, MT, HSP70). Genetic polymorphisms of these genes may affect a differential inflammatory response predisposing to AT. However, allelic polymorphisms of genes which increase the risk of AT frequently occur in the general population but, only adequate gene-environment-polymorphism interactions promote the onset of the disease. Zinc deficiency has been suggested as an environmental risk factor for AT. With advancing age, the incidence of zinc deficiency increases for several reasons. Among them, dietary intake, malabsorption and genetic background of inflammatory markers may be involved. A crucial contribution may also be played by increased oxidative stress which may lead to the appearance of dysfunctional proteins, including metallothioneins (MT) that are in turn involved in zinc homeostasis. The detection of candidate genes related to inflammation and promoting AT and their reciprocal influence/interaction with zinc status might allow earlier appropriate dietary interventions in genetically susceptible subjects.
Collapse
Affiliation(s)
- Robertina Giacconi
- Immunolgy Center, Laboratory of Nutrigenomic and Immunosenenscence, Research Department, INRCA, Via Birarelli 8, 60121 Ancona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mocchegiani E, Malavolta M. Zinc-gene interaction related to inflammatory/immune response in ageing. GENES & NUTRITION 2008; 3:61-75. [PMID: 18850188 PMCID: PMC2467449 DOI: 10.1007/s12263-008-0085-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The pivotal role played by zinc-gene interaction in affecting some relevant cytokines (IL-6 and TNF-alpha) and heat shock proteins (HSP70-2) in ageing, successful ageing (nonagenarians) and the most common age-related diseases, such as atherosclerosis and infections, is now recognized. The polymorphisms of genes codifying proteins related to the inflammation are predictive on one hand in longevity, on the other hand they are associated with atherosclerosis or severe infections. Since the health life-span has a strong genetic component, which in turn also affected by nutritional factors like zinc, the association of these polymorphisms with innate immune response, zinc ion bioavailability and Metallothioneins (MT) homeostasis is an useful tool to unravel the role played by zinc-gene interactions in longevity, especially due to the inability of MT in zinc release in ageing and chronic inflammation. In ageing, this last fact leads to depressed innate immune response for host defence. In contrast, in very old age the inflammation is lower with subsequent more zinc ion bioavailability, less MT gene expression and satisfactory innate immunity. Therefore, the zinc-gene (IL-6, TNF-alpha, Hsp70-2) interactions, via MT homeostasis, are crucial to achieve successful ageing.
Collapse
Affiliation(s)
- Eugenio Mocchegiani
- Immunology Center (Laboratory of Nutrigenomic and Immunosenescence), Research Department, INRCA, Via Birarelli 8, 60121, Ancona, Italy,
| | | |
Collapse
|
25
|
Putics Á, Vödrös D, Malavolta M, Mocchegiani E, Csermely P, Sőti C. Zinc supplementation boosts the stress response in the elderly: Hsp70 status is linked to zinc availability in peripheral lymphocytes. Exp Gerontol 2008; 43:452-61. [DOI: 10.1016/j.exger.2008.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 12/07/2007] [Accepted: 01/08/2008] [Indexed: 12/23/2022]
|
26
|
Passtoors WM, Beekman M, Gunn D, Boer JM, Heijmans BT, Westendorp RGJ, Zwaan BJ, Slagboom PE. Genomic studies in ageing research: the need to integrate genetic and gene expression approaches. J Intern Med 2008; 263:153-66. [PMID: 18226093 DOI: 10.1111/j.1365-2796.2007.01904.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Genome-wide and hypothesis-based approaches to the study of ageing and longevity have been dominated by genetic investigations. To identify essential mechanisms of a complex trait such as ageing in higher species, a holistic understanding of interacting pathways is required. More information on such interactions is expected to be obtained from global gene expression analysis if combined with genetic studies. Genetic sequence variation often provides a functional gene marker for the trait, whereas a gene expression profile may provide a quantitative biomarker representing complex cellular pathway interactions contributing to the trait. Thus far, gene expression studies have associated multiple pathways to ageing including mitochondrial electron transport and the oxidative stress response. However, most of the studies are underpowered to detect small age-changes. A systematic survey of gene expression changes as a function of age in human individuals and animal models is lacking. Well designed gene expression studies, especially at the level of biological processes, will provide hypotheses on gene-environmental interactions determining biological ageing rate. Cross-sectional studies monitoring the profile as a chronological marker of ageing must be integrated with prospective studies indicating which profiles represent biomarkers preceding and predicting physiological decline and mortality. New study designs such as the Leiden Longevity Study, including two generations of subjects from longevity families, aim to achieve these combined approaches.
Collapse
Affiliation(s)
- W M Passtoors
- Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Environmental stress induces damage that activates an adaptive response in any organism. The cellular stress response is based on the induction of cytoprotective proteins,the so called stress or heat shock proteins. The stress response as well as stress proteins are ubiquitous,highly conserved mechanism, and genes, respectively, already present in prokaryotes. Chaperones protect the proteome against conformational damage, promoting the function of protein networks. Protein damage takes place during aging and in several degenerative diseases, and presents a threat to overload the cellular defense mechanisms. The preservation of a robust stress response and protein disposal is indispensable for health and longevity. This review summarizes the present knowledge of protein damage, turnover, and the stress response in aging and degenerative diseases.
Collapse
Affiliation(s)
- C Söti
- Department of Medical Chemistry, Semmelweis University PO Box 260, H-1444, Budapest 8, Hungary.
| | | |
Collapse
|
28
|
Terry DF, Wyszynski DF, Nolan VG, Atzmon G, Schoenhofen EA, Pennington JY, Andersen SL, Wilcox MA, Farrer LA, Barzilai N, Baldwin CT, Asea A. Serum heat shock protein 70 level as a biomarker of exceptional longevity. Mech Ageing Dev 2006; 127:862-8. [PMID: 17027907 PMCID: PMC1781061 DOI: 10.1016/j.mad.2006.08.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 08/16/2006] [Accepted: 08/23/2006] [Indexed: 11/21/2022]
Abstract
Heat shock proteins are highly conserved proteins that, when produced intracellularly, protect stress exposed cells. In contrast, extracellular heat shock protein 70 (Hsp70) has been shown to have both protective and deleterious effects. In this study, we assessed heat shock protein 70 for its potential role in human longevity. Because of the importance of HSP to disease processes, cellular protection, and inflammation, we hypothesized that: (1) Hsp70 levels in centenarians and centenarian offspring are different from controls and (2) alleles in genes associated with Hsp70 explain these differences. In this cross-sectional study, we assessed serum Hsp70 levels from participants enrolled in either the New England Centenarian Study (NECS) or the Longevity Genes Project (LGP): 87 centenarians (from LGP), 93 centenarian offspring (from NECS), and 126 controls (43 from NECS, 83 from LGP). We also examined genotypic and allelic frequencies of polymorphisms in HSP70-A1A and HSP70-A1B in 347 centenarians (266 from the NECS, 81 from the LGP), 260 NECS centenarian offspring, and 238 controls (NECS: 53 spousal controls and 106 septuagenarian offspring controls; LGP: 79 spousal controls). The adjusted mean serum Hsp70 levels (ng/mL) for the NECS centenarian offspring, LGP centenarians, LGP spousal controls, and NECS controls were 1.05, 1.13, 3.07, 6.93, respectively, suggesting that a low serum Hsp70 level is associated with longevity; however, no genetic associations were found with two SNPs within two hsp70 genes.
Collapse
Affiliation(s)
- Dellara F Terry
- Geriatrics Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Molecular chaperones are ubiquitous, highly conserved proteins responsible for the maintenance of protein folding homeostasis in cells. Environmental stress causes proteotoxic damage, which triggers chaperone induction and the subsequent reparation of cellular damage by chaperones, including disposing irreparable protein ensembles. We summarize the current view of protein damage, turnover, the stress response and chaperone function in aging, and review novel data showing that accumulation of misfolded proteins outcompete and overload the limited resources of the protein folding, maintenance and turnover system, compromising general protein homeastasis and cellular function. Possible involvement of chaperones and proteolysis in immunosenescence is highlighted. Defects in zinc metabolism are also addressed in relation to aging and changes in chaperone levels.
Collapse
Affiliation(s)
- Mehmet Alper Arslan
- Department of Medical Chemistry, Semmelweis University, P.O. Box 260, H-1444, Budapest 8, Hungary
| | | | | |
Collapse
|
30
|
Mocchegiani E, Costarelli L, Giacconi R, Cipriano C, Muti E, Tesei S, Malavolta M. Nutrient-gene interaction in ageing and successful ageing. A single nutrient (zinc) and some target genes related to inflammatory/immune response. Mech Ageing Dev 2006; 127:517-25. [PMID: 16513158 DOI: 10.1016/j.mad.2006.01.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 01/16/2006] [Indexed: 11/21/2022]
Abstract
In this paper, we reviewed data regarding to the pivotal role played by the zinc-gene interaction in affecting some relevant cytokines (IL-6 and TNF-alpha) and heat shock proteins (Hsp70-2) in ageing, successful ageing (nonagenarians) and in some age-related diseases (atherosclerosis and infections). The polymorphisms of the genes codifying these proteins are predictive on one hand in longevity, such as IL-6 -174G/C locus, on the other hand 1267 Hsp70-2A/B or TNF-alpha -308G/A polymorphisms are associated to worsening atherosclerosis or severe infections, respectively, rather than longevity. Taking into account that longevity has a strong genetic component but, at the same time, is affected by life style and environmental factors, the analysis of these polymorphisms in association to some immune parameters (NK cell cytotoxicity) and nutritional factors (zinc) is a useful tool to unravel the role played by these genetic factors in longevity and in the appearance of age-related diseases. Indeed, these polymorphisms are associated with chronic inflammation, low zinc ion bioavailability, depressed innate immune response and high gene expression of metallothioneins, which have a limited zinc release for an optimal innate immune response in ageing. Therefore, the nutrient (zinc)-gene (IL-6, TNF-alpha and Hsp70-2) interaction is pivotal to keep under control the inflammatory/immune response with subsequent longevity, indicating these genes as "robust" for "healthy ageing".
Collapse
Affiliation(s)
- Eugenio Mocchegiani
- Immunology Ctr. (Section: Nutrition, Immunity and Ageing), Research Department INRCA, Via Birarelli 8, 60121 Ancona, Italy.
| | | | | | | | | | | | | |
Collapse
|
31
|
Guzhova I, Margulis B. Hsp70 Chaperone as a Survival Factor in Cell Pathology. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 254:101-49. [PMID: 17147998 DOI: 10.1016/s0074-7696(06)54003-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heat shock protein Hsp70 is implicated in the mechanism of cell reaction to a variety of cytotoxic factors. The protective function of Hsp70 is related to its ability to promote folding of nascent polypeptides and to remove denatured proteins. Many types of cancer cells contain high amounts of Hsp70, whose protective capacity may pose a problem for therapy in oncology. Hsp70 was shown to be expressed on the surface of cancer cells and to participate in the presentation of tumor antigens to immune cells. Therefore, the chaperone activity of Hsp70 is an important factor that should be taken into consideration in cancer therapy. The protective role of Hsp70 is also evident in neuropathology. Many neurodegenerative processes are associated with the accumulation of insoluble aggregates of misfolded proteins in neural cells. These aggregates hamper intracellular transport, inhibit metabolism, and activate apoptosis through diverse pathways. The increase of Hsp70 content results in the reduction of aggregate size and number and ultimately enhances cell viability.
Collapse
Affiliation(s)
- Irina Guzhova
- Laboratory of Cell Protection Mechanisms, Institute of Cytology, Russian Academy of Science, St Petersburg, Russia
| | | |
Collapse
|
32
|
Abstract
Life presents a continuous series of stresses. Increasing the adaptation capacity of the organism is a long-term survival factor of various organisms and has become an attractive field of intensive therapeutic research. Induction of the heat shock response promotes survival after a wide variety of environmental stresses. Preclinical studies have proven that physiological and pharmacological chaperone inducers and co-inducers are an efficient therapeutic approach in different acute and chronic diseases. In this chapter, we summarize current knowledge of the current state of chaperone modulation and give a comprehensive list of the main drug candidates.
Collapse
Affiliation(s)
- C Soti
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
33
|
Abstract
That evolution of longevity may depend on alterations in the expression of relatively few regulatory genes has been inferred from the rapid increase in lifespan during evolution of the hominid species (Cutler RG (1979) Mech Ageing Dev 9: 337-354). Also the inherent immortality of the embryonic stem cells implies that replicative senescence (Hayflick L (1997) Biochem Mosc 62: 1180-1190) as possibly aging of species are epigenetic phenomena. Evidence is presented to suggest that the epigenetic changes of the longevity determinants to a significant extend concerns the molecular chaperones. Specific involvement of RNA chaperones in cell immortalization and defective RecQ-DNA chaperones in syndromes of premature aging suggest that DNA/RNA - chaperones probably rank high among the determinants of cellular and species longevity.
Collapse
Affiliation(s)
- J Krøll
- Hafnia Unit of Biogerontology, Godthåbsvej 111,3, DK-2000, Frederiksberg, Denmark.
| |
Collapse
|
34
|
Abstract
Hsp70 proteins are central components of the cellular network of molecular chaperones and folding catalysts. They assist a large variety of protein folding processes in the cell by transient association of their substrate binding domain with short hydrophobic peptide segments within their substrate proteins. The substrate binding and release cycle is driven by the switching of Hsp70 between the low-affinity ATP bound state and the high-affinity ADP bound state. Thus, ATP binding and hydrolysis are essential in vitro and in vivo for the chaperone activity of Hsp70 proteins. This ATPase cycle is controlled by co-chaperones of the family of J-domain proteins, which target Hsp70s to their substrates, and by nucleotide exchange factors, which determine the lifetime of the Hsp70-substrate complex. Additional co-chaperones fine-tune this chaperone cycle. For specific tasks the Hsp70 cycle is coupled to the action of other chaperones, such as Hsp90 and Hsp100.
Collapse
Affiliation(s)
- M. P. Mayer
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - B. Bukau
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| |
Collapse
|