1
|
Pun TB, Thapa Magar R, Koech R, Owen KJ, Adorada DL. Emerging Trends and Technologies Used for the Identification, Detection, and Characterisation of Plant-Parasitic Nematode Infestation in Crops. PLANTS (BASEL, SWITZERLAND) 2024; 13:3041. [PMID: 39519959 PMCID: PMC11548156 DOI: 10.3390/plants13213041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Accurate identification and estimation of the population densities of microscopic, soil-dwelling plant-parasitic nematodes (PPNs) are essential, as PPNs cause significant economic losses in agricultural production systems worldwide. This study presents a comprehensive review of emerging techniques used for the identification of PPNs, including morphological identification, molecular diagnostics such as polymerase chain reaction (PCR), high-throughput sequencing, meta barcoding, remote sensing, hyperspectral analysis, and image processing. Classical morphological methods require a microscope and nematode taxonomist to identify species, which is laborious and time-consuming. Alternatively, quantitative polymerase chain reaction (qPCR) has emerged as a reliable and efficient approach for PPN identification and quantification; however, the cost associated with the reagents, instrumentation, and careful optimisation of reaction conditions can be prohibitive. High-throughput sequencing and meta-barcoding are used to study the biodiversity of all tropical groups of nematodes, not just PPNs, and are useful for describing changes in soil ecology. Convolutional neural network (CNN) methods are necessary to automate the detection and counting of PPNs from microscopic images, including complex cases like tangled nematodes. Remote sensing and hyperspectral methods offer non-invasive approaches to estimate nematode infestations and facilitate early diagnosis of plant stress caused by nematodes and rapid management of PPNs. This review provides a valuable resource for researchers, practitioners, and policymakers involved in nematology and plant protection. It highlights the importance of fast, efficient, and robust identification protocols and decision-support tools in mitigating the impact of PPNs on global agriculture and food security.
Collapse
Affiliation(s)
- Top Bahadur Pun
- School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Roniya Thapa Magar
- DOE Joint Genome Institute, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Richard Koech
- School of Health, Medical and Applied Sciences, Central Queensland University, Bundaberg, QLD 4760, Australia;
| | - Kirsty J. Owen
- School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, QLD 4305, Australia
| | - Dante L. Adorada
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4305, Australia
| |
Collapse
|
2
|
Shift from morphological to recent advanced molecular approaches for the identification of nematodes. Genomics 2022; 114:110295. [DOI: 10.1016/j.ygeno.2022.110295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 01/08/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022]
|
3
|
Kostina EV, Sinyakov AN, Ryabinin VA. A many probes-one spot hybridization oligonucleotide microarray. Anal Bioanal Chem 2018; 410:5817-5823. [PMID: 29934850 DOI: 10.1007/s00216-018-1190-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/30/2018] [Accepted: 06/11/2018] [Indexed: 12/30/2022]
Abstract
A variant of the hybridization oligonucleotide microarray, utilizing the principle of many probes-one spot (MPOS-microarrays), is proposed. A case study based on Orthopoxviruses (Variola, Monkeypox, and Ectromelia viruses) demonstrates a considerable increase in the fluorescence signal (up to 100-fold) when several oligonucleotide probes are printed to one spot. Moreover, the specificity of detection also increases (almost 1000-fold), allowing the use of probes that individually lack such high specificity. The optimal probes have a Tm of 32-37 °C and length of 13-15 bases. We suggest that the high specificity and sensitivity of the MPOS-microarray is a result of cooperativity of DNA binding with all probes immobilized in the spot. This variant of DNA detection can be useful for designing biosensors, tools for point-of-care (POC) diagnostics, microbial ecology, analysis of clustered regularly interspaced short palindromic repeats (CRISPR), and others. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Elena V Kostina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 8, Novosibirsk, 630090, Russia
| | - Alexander N Sinyakov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 8, Novosibirsk, 630090, Russia
| | - Vladimir A Ryabinin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 8, Novosibirsk, 630090, Russia.
| |
Collapse
|
4
|
A review of methods for nematode identification. J Microbiol Methods 2016; 138:37-49. [PMID: 27262374 DOI: 10.1016/j.mimet.2016.05.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/23/2016] [Accepted: 05/31/2016] [Indexed: 12/15/2022]
Abstract
Nematodes are non-segmented roundworms found in soil, aquatic environment, plants, or animals. Either useful or pathogenic, they greatly influence environmental equilibrium, human and animal health, as well as plant production. Knowledge on their taxonomy and biology are key issues to answer the different challenges associated to these organisms. Nowadays, most of the nematode taxonomy remains unknown or unclear. Several approaches are available for parasite identification, from the traditional morphology-based techniques to the sophisticated high-throughput sequencing technologies. All these techniques have advantages or drawbacks depending on the sample origin and the number of nematodes to be processed. This review proposes an overview of all newly available methods available to identify known and/or unknown nematodes with a specific focus on emerging high-throughput molecular techniques.
Collapse
|
5
|
Castillo-Quan JI, Kinghorn KJ, Bjedov I. Genetics and pharmacology of longevity: the road to therapeutics for healthy aging. ADVANCES IN GENETICS 2015; 90:1-101. [PMID: 26296933 DOI: 10.1016/bs.adgen.2015.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aging can be defined as the progressive decline in tissue and organismal function and the ability to respond to stress that occurs in association with homeostatic failure and the accumulation of molecular damage. Aging is the biggest risk factor for human disease and results in a wide range of aging pathologies. Although we do not completely understand the underlying molecular basis that drives the aging process, we have gained exceptional insights into the plasticity of life span and healthspan from the use of model organisms such as the worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster. Single-gene mutations in key cellular pathways that regulate environmental sensing, and the response to stress, have been identified that prolong life span across evolution from yeast to mammals. These genetic manipulations also correlate with a delay in the onset of tissue and organismal dysfunction. While the molecular genetics of aging will remain a prosperous and attractive area of research in biogerontology, we are moving towards an era defined by the search for therapeutic drugs that promote healthy aging. Translational biogerontology will require incorporation of both therapeutic and pharmacological concepts. The use of model organisms will remain central to the quest for drug discovery, but as we uncover molecular processes regulated by repurposed drugs and polypharmacy, studies of pharmacodynamics and pharmacokinetics, drug-drug interactions, drug toxicity, and therapeutic index will slowly become more prevalent in aging research. As we move from genetics to pharmacology and therapeutics, studies will not only require demonstration of life span extension and an underlying molecular mechanism, but also the translational relevance for human health and disease prevention.
Collapse
Affiliation(s)
- Jorge Iván Castillo-Quan
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK; Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Kerri J Kinghorn
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK; Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Ivana Bjedov
- Cancer Institute, University College London, London, UK
| |
Collapse
|
6
|
Labbadia J, Morimoto RI. Proteostasis and longevity: when does aging really begin? F1000PRIME REPORTS 2014; 6:7. [PMID: 24592319 PMCID: PMC3914504 DOI: 10.12703/p6-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aging is a complex process regulated by multiple cellular pathways, including the proteostasis network. The proteostasis network consists of molecular chaperones, stress-response transcription factors, and protein degradation machines that sense and respond to proteotoxic stress and protein misfolding to ensure cell viability. A loss of proteostasis is associated with aging and age-related disorders in diverse model systems, moreover, genetic or pharmacological enhancement of the proteostasis network has been shown to extend lifespan and suppress age-related disease. However, our understanding of the relationship between aging, proteostasis, and the proteostasis network remains unclear. Here, we propose, from studies in Caenorhabditis elegans, that proteostasis collapse is not gradual but rather a sudden and early life event that triggers proteome mismanagement, thereby affecting a multitude of downstream processes. Furthermore, we propose that this phenomenon is not stochastic but is instead a programmed re-modeling of the proteostasis network that may be conserved in other species. As such, we postulate that changes in the proteostasis network may be one of the earliest events dictating healthy aging in metazoans.
Collapse
|
7
|
Cao K, Ryvkin P, Hwang YC, Johnson FB, Wang LS. Analysis of nonlinear gene expression progression reveals extensive pathway and age-specific transitions in aging human brains. PLoS One 2013; 8:e74578. [PMID: 24098339 PMCID: PMC3789733 DOI: 10.1371/journal.pone.0074578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 08/03/2013] [Indexed: 12/15/2022] Open
Abstract
Several recent gene expression studies identified hundreds of genes that are correlated with age in brain and other tissues in human. However, these studies used linear models of age correlation, which are not well equipped to model abrupt changes associated with particular ages. We developed a computational algorithm for age estimation in which the expression of each gene is treated as a dichotomized biomarker for whether the subject is older or younger than a particular age. In addition, for each age-informative gene our algorithm identifies the age threshold with the most drastic change in expression level, which allows us to associate genes with particular age periods. Analysis of human aging brain expression datasets from three frontal cortex regions showed that different pathways undergo transitions at different ages, and the distribution of pathways and age thresholds varies across brain regions. Our study reveals age-correlated expression changes at particular age points and allows one to estimate the age of an individual with better accuracy than previously published methods.
Collapse
Affiliation(s)
- Kajia Cao
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Center for Bioinformatics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Paul Ryvkin
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yih-Chii Hwang
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - F. Brad Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Institute on Aging, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Center for Bioinformatics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Institute on Aging, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
8
|
Shamir L. Quantitative measurement of human ageing using computer-aided radiographic texture analysis. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION 2013. [DOI: 10.1080/21681163.2013.780352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
McCormick MA, Kennedy BK. Genome-scale studies of aging: challenges and opportunities. Curr Genomics 2013; 13:500-7. [PMID: 23633910 PMCID: PMC3468883 DOI: 10.2174/138920212803251454] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 06/08/2012] [Accepted: 07/25/2012] [Indexed: 12/21/2022] Open
Abstract
Whole-genome studies involving a phenotype of interest are increasingly prevalent, in part due to a dramatic increase in speed at which many high throughput technologies can be performed coupled to simultaneous decreases in cost. This type of genome-scale methodology has been applied to the phenotype of lifespan, as well as to whole-transcriptome changes during the aging process or in mutants affecting aging. The value of high throughput discovery-based science in this field is clearly evident, but will it yield a true systems-level understanding of the aging process? Here we review some of this work to date, focusing on recent findings and the unanswered puzzles to which they point. In this context, we also discuss recent technological advances and some of the likely future directions that they portend.
Collapse
|
10
|
Understanding the biology of aging with interaction networks. Maturitas 2011; 69:126-30. [DOI: 10.1016/j.maturitas.2011.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 03/10/2011] [Indexed: 11/22/2022]
|
11
|
Sarup P, Sørensen P, Loeschcke V. Flies selected for longevity retain a young gene expression profile. AGE (DORDRECHT, NETHERLANDS) 2011; 33:69-80. [PMID: 20607427 PMCID: PMC3063640 DOI: 10.1007/s11357-010-9162-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 06/15/2010] [Indexed: 05/29/2023]
Abstract
We investigated correlated responses in the transcriptomes of longevity-selected lines of Drosophila melanogaster to identify pathways that affect life span in metazoan systems. We evaluated the gene expression profile in young, middle-aged, and old male flies, finding that 530 genes were differentially expressed between selected and control flies when measured at the same chronological age. The longevity-selected flies consistently showed expression profiles more similar to control flies one age class younger than control flies of the same age. This finding is in accordance with a younger gene expression profile in longevity-selected lines. Among the genes down-regulated in longevity-selected lines, we found a clear over-representation of genes involved in immune functions, supporting the hypothesis of a life-shortening effect of an overactive immune system, known as inflammaging. We judged the physiological age as the level of cumulative mortality. Eighty-four genes were differentially expressed between the control and longevity-selected lines at the same physiological age, and the overlap between the same chronological and physiological age gene lists included 40 candidate genes for increased longevity. Among these candidates were genes with roles in starvation resistance, immune response regulation, and several that have not yet been linked to longevity. Investigating these genes would provide new knowledge of the pathways that affect life span in invertebrates and, potentially, mammals.
Collapse
Affiliation(s)
- Pernille Sarup
- Aarhus Centre for Environmental Stress Research (ACES), Department of Biological Sciences, Aarhus University, Ny Munkegade 114, Aarhus C, Denmark.
| | | | | |
Collapse
|
12
|
Wang MH, Marinotti O, James AA, Walker E, Githure J, Yan G. Genome-wide patterns of gene expression during aging in the African malaria vector Anopheles gambiae. PLoS One 2010; 5:e13359. [PMID: 20967211 PMCID: PMC2954169 DOI: 10.1371/journal.pone.0013359] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 09/15/2010] [Indexed: 11/23/2022] Open
Abstract
The primary means of reducing malaria transmission is through reduction in longevity in days of the adult female stage of the Anopheles vector. However, assessing chronological age is limited to crude physiologic methods which categorize the females binomially as either very young (nulliparous) or not very young (parous). Yet the epidemiologically relevant reduction in life span falls within the latter category. Age-grading methods that delineate chronological age, using accurate molecular surrogates based upon gene expression profiles, will allow quantification of the longevity-reducing effects of vector control tools aimed at the adult, female mosquito. In this study, microarray analyses of gene expression profiles in the African malaria vector Anopheles gambiae were conducted during natural senescence of females in laboratory conditions. Results showed that detoxification-related and stress-responsive genes were up-regulated as mosquitoes aged. A total of 276 transcripts had age-dependent expression, independently of blood feeding and egg laying events. Expression of 112 (40.6%) of these transcripts increased or decreased monotonically with increasing chronologic age. Seven candidate genes for practical age assessment were tested by quantitative gene amplification in the An. gambiae G3 strain in a laboratory experiment and the Mbita strain in field enclosures set up in western Kenya under conditions closely resembling natural ones. Results were similar between experiments, indicating that senescence is marked by changes in gene expression and that chronological age can be gauged accurately and repeatedly with this method. These results indicate that the method may be suitable for accurate gauging of the age in days of field-caught, female An. gambiae.
Collapse
Affiliation(s)
- Mei-Hui Wang
- Program in Public Health, University of California Irvine, Irvine, California, United States of America
| | - Osvaldo Marinotti
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Anthony A. James
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Edward Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - John Githure
- Division of Human Health, International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Guiyun Yan
- Program in Public Health, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Pincus Z, Slack FJ. Developmental biomarkers of aging in Caenorhabditis elegans. Dev Dyn 2010; 239:1306-14. [PMID: 20151474 DOI: 10.1002/dvdy.22224] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The developmental process of the nematode Caenorhabditis elegans is famously invariant; however, these animals have surprisingly variable lifespans, even in extremely homogenous environments. Inter-individual differences in muscle-function decline, accumulation of lipofuscin in the gut, internal growth of food bacteria, and ability to mobilize heat-shock responses all appear to be predictive of a nematode's remaining lifespan; whether these are causal, or mere correlates of individual decline and death, has yet to be determined. Moreover, few "upstream" causes of inter-individual variability have been identified. It may be the case that variability in lifespan is entirely due to stochastic damage accumulation; alternately, perhaps such variability has a developmental origin and/or genes involved in developmental canalization also act to buffer phenotypic heterogeneity later in life. We review these two hypotheses with an eye toward whether they can be experimentally differentiated.
Collapse
Affiliation(s)
- Zachary Pincus
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
14
|
Shamir L, Wolkow CA, Goldberg IG. Quantitative measurement of aging using image texture entropy. Bioinformatics 2009; 25:3060-3. [PMID: 19808878 DOI: 10.1093/bioinformatics/btp571] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION A key element in understanding the aging of Caenorhabditis elegans is objective quantification of the morphological differences between younger and older animals. Here we propose to use the image texture entropy as an objective measurement that reflects the structural deterioration of the C. elegans muscle tissues during aging. RESULTS The texture entropy and directionality of the muscle microscopy images were measured using 50 animals on Days 0, 2, 4, 6, 8, 10 and 12 of adulthood. Results show that the entropy of the C. elegans pharynx tissues increases as the animal ages, but a sharper increase was measured between Days 2 and 4, and between Days 8 and 10. These results are in agreement with gene expression findings, and support the contention that the process of C. elegans aging has several distinct stages. This can indicate that C. elegans aging is driven by developmental pathways, rather than stochastic accumulation of damage. AVAILABILITY The image data are freely available on the Internet at http://ome.grc.nia.nih.gov/iicbu2008/celegans, and the Haralick and Tamura texture analysis source code can be downloaded at http://ome.grc.nia.nih.gov/wnd-charm.
Collapse
Affiliation(s)
- Lior Shamir
- Laboratory of Genetics, National Institute on Aging/NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
15
|
|
16
|
Johnson TE. Caenorhabditis elegans 2007: the premier model for the study of aging. Exp Gerontol 2007; 43:1-4. [PMID: 17977684 DOI: 10.1016/j.exger.2007.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 09/24/2007] [Indexed: 02/01/2023]
Abstract
This is the 25th anniversary of the discovery of extended longevity mutants in Caenorhabditis elegans. About one hundred papers describing results from studies on C. elegans in aging research appeared this year. Many themes were pursued including dietary restriction, daf-9 action, the role of proteolysis and autophagy, and the continued search for more Age mutants. I use the word "modulate" not "regulate" so as to be consistent with the evolutionary theory of aging, which is also consistent with the empirical findings of all extended longevity (Age) mutants. These Age mutants universally result from deficits in known physiologic systems, rather than in some process designed to kill the animal in old age.
Collapse
Affiliation(s)
- Thomas E Johnson
- University of Colorado, Institute for Behavioral Genetics, Boulder, CO 80309, USA.
| |
Collapse
|
17
|
Zahn JM, Kim SK. Systems biology of aging in four species. Curr Opin Biotechnol 2007; 18:355-9. [PMID: 17681777 PMCID: PMC3224768 DOI: 10.1016/j.copbio.2007.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 07/12/2007] [Indexed: 11/20/2022]
Abstract
Using DNA microarrays to generate transcriptional profiles of the aging process is a powerful tool for identifying biomarkers of aging. In Caenorhabditis elegans, a number of whole-genome profiling studies identified genes that change expression levels with age. High-throughput RNAi screens in worms determined a number of genes that modulate lifespan when silenced. Transcriptional profiling of the fly head identified a molecular pathway, the 'response to light' gene set, that increases expression with age and could be directly related to the tendency for a reduction in light levels to extend fly's lifespan. In mouse, comparing the gene expression profiles of several drugs to the gene expression profile of caloric restriction identified metformin as a drug whose action could potentially mimic caloric restriction in vivo. Finally, genes in the mitochondrial electron transport chain group decrease expression with age in the human, mouse, fly, and worm.
Collapse
Affiliation(s)
- Jacob M. Zahn
- Department of Developmental Biology, Stanford University Medical Center, Stanford, CA 94305, USA
| | - Stuart K. Kim
- Department of Developmental Biology, Stanford University Medical Center, Stanford, CA 94305, USA
- Department of Genetics, Stanford University Medical Center, Stanford, CA 94305, USA
- Corresponding author ()
| |
Collapse
|