1
|
Wei Y, Ma L, Peng Q, Lu L. Establishing an oxidative stress mitochondria-related prognostic model in hepatocellular carcinoma based on multi-omics characteristics and machine learning computational framework. Discov Oncol 2024; 15:287. [PMID: 39014263 PMCID: PMC11252104 DOI: 10.1007/s12672-024-01147-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has high incidence and mortality rates worldwide. Damaged mitochondria are characterized by the overproduction of reactive oxygen species (ROS), which can promote cancer development. The prognostic value of the interplay between mitochondrial function and oxidative stress in HCC requires further investigation. Gene expression data of HCC samples were collected from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and International Cancer Genome Consortium (ICGC). We screened prognostic oxidative stress mitochondria-related (OSMT) genes at the bulk transcriptome level. Based on multiple machine learning algorithms, we constructed a consensus oxidative stress mitochondria-related signature (OSMTS), which contained 26 genes. In addition, we identified six of these genes as having a suitable prognostic value for OSMTS to reduce the difficulty of clinical application. Univariate and multivariate analyses verified the OSMTS as an independent prognostic factor for overall survival (OS) in HCC patients. The OSMTS-related nomogram demonstrated to be a powerful tool for the clinical diagnosis of HCC. We observed differences in biological function and immune cell infiltration in the tumor microenvironment between the high- and low-risk groups. The highest expression of the OSMTS was detected in hepatocytes at the single-cell transcriptome level. Hepatocytes in the high- and low-risk groups differed significantly in terms of biological function and intercellular communication. Moreover, at the spatial transcriptome level, high expression of OSMTS was mainly in regions enriched in hepatocytes and B cells. Potential drugs targeting specific risk subgroups were identified. Our study revealed that the OSMTS can serve as a promising tool for prognosis prediction and precise intervention in HCC patients.
Collapse
Affiliation(s)
- Yitian Wei
- Department of Medical Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lujuan Ma
- Department of Medical Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Qian Peng
- Department of Medical Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lin Lu
- Department of Medical Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
2
|
Ma Y, Zheng Y, Zhou Y, Weng N, Zhu Q. Mitophagy involved the biological processes of hormones. Biomed Pharmacother 2023; 167:115468. [PMID: 37703662 DOI: 10.1016/j.biopha.2023.115468] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
Mitochondria fulfill vital functions in energy production, maintaining ion balance, and facilitating material metabolism. Mitochondria are sacrificed to protect cells or induce apoptosis when the body is under stress. The regulatory pathways of mitophagy include both ubiquitin-dependent and non-dependent pathways. The involvement of mitophagy has been demonstrated in the onset and progression of numerous diseases, highlighting its significant role. Endocrine hormones are chemical substances secreted by endocrine organs or endocrine cells, which participate in the regulation of physiological functions and internal environmental homeostasis of the body. Imbalances in endocrine hormones contribute to the development of various diseases. However, the precise impact of mitophagy on the physiological and pathological processes involving endocrine hormones remains unclear. This article aims to comprehensively overview recent advancements in understanding the mechanisms through which mitophagy regulates endocrine hormones.
Collapse
Affiliation(s)
- Yifei Ma
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu 610041, Sichuan, PR China
| | - Ying Zheng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu 610041, Sichuan, PR China
| | - Ying Zhou
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu 610041, Sichuan, PR China
| | - Ningna Weng
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350011, PR China.
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
3
|
Barreto GE. Repurposing of Tibolone in Alzheimer's Disease. Biomolecules 2023; 13:1115. [PMID: 37509151 PMCID: PMC10377087 DOI: 10.3390/biom13071115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disease characterised by the accumulation of amyloid-beta and tau in the brain, leading to the progressive loss of memory and cognition. The causes of its pathogenesis are still not fully understood, but some risk factors, such as age, genetics, and hormones, may play a crucial role. Studies show that postmenopausal women have a higher risk of developing AD, possibly due to the decrease in hormone levels, especially oestrogen, which may be directly related to a reduction in the activity of oestrogen receptors, especially beta (ERβ), which favours a more hostile cellular environment, leading to mitochondrial dysfunction, mainly affecting key processes related to transport, metabolism, and oxidative phosphorylation. Given the influence of hormones on biological processes at the mitochondrial level, hormone therapies are of clinical interest to reduce the risk or delay the onset of symptoms associated with AD. One drug with such potential is tibolone, which is used in clinics to treat menopause-related symptoms. It can reduce amyloid burden and have benefits on mitochondrial integrity and dynamics. Many of its protective effects are mediated through steroid receptors and may also be related to neuroglobin, whose elevated levels have been shown to protect against neurological diseases. Its importance has increased exponentially due to its implication in the pathogenesis of AD. In this review, we discuss recent advances in tibolone, focusing on its mitochondrial-protective effects, and highlight how valuable this compound could be as a therapeutic alternative to mitigate the molecular pathways characteristic of AD.
Collapse
Affiliation(s)
- George E Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
4
|
Turek J, Gąsior Ł. Estrogen fluctuations during the menopausal transition are a risk factor for depressive disorders. Pharmacol Rep 2023; 75:32-43. [PMID: 36639604 PMCID: PMC9889489 DOI: 10.1007/s43440-022-00444-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023]
Abstract
Women are significantly more likely to develop depression than men. Fluctuations in the ovarian estrogen hormone levels are closely linked with women's well-being. This narrative review discusses the available knowledge on the role of estrogen in modulating brain function and the correlation between changes in estrogen levels and the development of depression. Equally discussed are the possible mechanisms underlying these effects, including the role of estrogen in modulating brain-derived neurotrophic factor activity, serotonin neurotransmission, as well as the induction of inflammatory response and changes in metabolic activity, are discussed.
Collapse
Affiliation(s)
- Justyna Turek
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland
| | - Łukasz Gąsior
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland
| |
Collapse
|
5
|
Álvarez-Delgado C. The role of mitochondria and mitochondrial hormone receptors on the bioenergetic adaptations to lactation. Mol Cell Endocrinol 2022; 551:111661. [PMID: 35483518 DOI: 10.1016/j.mce.2022.111661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/18/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022]
Abstract
The most recognized role of mitochondria is producing more than 90% of the total cellular energy in the form of ATP. In addition, mitochondrial function encompasses the maintenance of antioxidant balance, the regulation of intracellular calcium concentrations, the progression of cell death, and the biosynthesis of purines, hemes, lipids, amino acids and steroid hormones. Mitochondria are also important hormone targets. Estrogens, progestagens, and prolactin, are among the hormones that can impact mitochondrial function and modulate the underlying adaptations to changing bioenergetic and metabolic needs. Lactation represents a metabolic challenge with significant increases in energy requirements and fluctuating levels of hormones. To meet these bioenergetic demands, liver mitochondria increase their state 3 and 4 respiration, adjust superoxide dismutase activity, and elevate succinate dehydrogenase-related respiration. Skeletal muscle mitochondria respond by increasing their respiratory control ratio and adjusting catalase activity. In this review, these adaptations are described considering the lactation hormonal milieu.
Collapse
Affiliation(s)
- Carolina Álvarez-Delgado
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| |
Collapse
|
6
|
Lipko NB. Photobiomodulation: Evolution and Adaptation. Photobiomodul Photomed Laser Surg 2022; 40:213-233. [DOI: 10.1089/photob.2021.0145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Nancy B. Lipko
- Nancy B. Lipko, MD, MBA, Home Office, Beachwood, Ohio, USA
| |
Collapse
|
7
|
Wang T, Ma F, Qian HL. Defueling the cancer: ATP synthase as an emerging target in cancer therapy. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:82-95. [PMID: 34703878 PMCID: PMC8517097 DOI: 10.1016/j.omto.2021.08.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reprogramming of cellular metabolism is a hallmark of cancer. Mitochondrial ATP synthase (MAS) produces most of the ATP that drives the cell. High expression of the MAS-composing proteins is found during cancer and is linked to a poor prognosis in glioblastoma, ovarian cancer, prostate cancer, breast cancer, and clear cell renal cell carcinoma. Cell surface-expressed ATP synthase, translocated from mitochondrion to cell membrane, involves the angiogenesis, tumorigenesis, and metastasis of cancer. ATP synthase has therefore been considered a therapeutic target. We review recent various ATP synthase inhibitors that suppress tumor growth and are being tested for the clinic.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100021, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hai-Li Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
8
|
Shaw GA. Mitochondria as the target for disease related hormonal dysregulation. Brain Behav Immun Health 2021; 18:100350. [PMID: 34746877 PMCID: PMC8554460 DOI: 10.1016/j.bbih.2021.100350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria play an important role in the synthesis of steroid hormones, including the sex hormone estrogen. Sex-specific regulation of these hormones is important for phenotypic development and downstream, sex-specific activational effects in both brain and behavior. First, mitochondrial contribution to the synthesis of estrogen, followed by a discussion of the signaling interactions between estrogen and the mitochondria will be reviewed. Next, disorders with an established sex difference related to aging, mood, and cognition will be examined. Finally, review of mitochondria as a biomarker of disease and data supporting efforts in targeting mitochondria as a therapeutic target for the amelioration of these disorders will be discussed. Taken together, this review aims to assess the influence of E2 on mitochondrial function within the brain via exploration of E2-ER interactions within neural mitochondria and how they may act to influence the development and presentation of neurodegenerative and neurocognitive diseases with known sex differences.
Collapse
Affiliation(s)
- Gladys A. Shaw
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
9
|
Alemany M. Estrogens and the regulation of glucose metabolism. World J Diabetes 2021; 12:1622-1654. [PMID: 34754368 PMCID: PMC8554369 DOI: 10.4239/wjd.v12.i10.1622] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/10/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
The main estrogens: estradiol, estrone, and their acyl-esters have been studied essentially related to their classical estrogenic and pharmacologic functions. However, their main effect in the body is probably the sustained control of core energy metabolism. Estrogen nuclear and membrane receptors show an extraordinary flexibility in the modulation of metabolic responses, and largely explain gender and age differences in energy metabolism: part of these mechanisms is already sufficiently known to justify both. With regard to energy, the estrogen molecular species act essentially through four key functions: (1) Facilitation of insulin secretion and control of glucose availability; (2) Modulation of energy partition, favoring the use of lipid as the main energy substrate when more available than carbohydrates; (3) Functional protection through antioxidant mechanisms; and (4) Central effects (largely through neural modulation) on whole body energy management. Analyzing the different actions of estrone, estradiol and their acyl esters, a tentative classification based on structure/effects has been postulated. Either separately or as a group, estrogens provide a comprehensive explanation that not all their quite diverse actions are related solely to specific molecules. As a group, they constitute a powerful synergic action complex. In consequence, estrogens may be considered wardens of energy homeostasis.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, University of Barcelona, Barcelona 08028, Catalonia, Spain
| |
Collapse
|
10
|
Shaw GA, Hyer MM, Dustin E, Dyer SK, Targett IL, Neigh GN. Acute LPS exposure increases synaptosomal metabolism during estrus but not diestrus. Physiol Behav 2021; 239:113523. [PMID: 34229031 DOI: 10.1016/j.physbeh.2021.113523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/09/2021] [Accepted: 06/30/2021] [Indexed: 11/15/2022]
Abstract
The hormones estrogen and progesterone alter physiological functions, including the estrus cycle and relevant neurological and synaptic activity. Here, we determined the extent to which estrus cycle stage interacts with an inflammatory stimulus, lipopolysaccharide (LPS), to alter synaptic mitochondrial respiration in female rats. LPS elevated synaptic mitochondrial respiration of rats in estrus, but not diestrus. Likewise, estrogen concentration correlated with multiple respiratory metrics in LPS treated females in estrus. These data suggest estrogen likely modulates synaptic mitochondrial respiration in a high progesterone environment.
Collapse
Affiliation(s)
- Gladys A Shaw
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 East Marshall Street, Box 980709, Richmond, VA 23298, United States
| | - Molly M Hyer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 East Marshall Street, Box 980709, Richmond, VA 23298, United States
| | - Elizabeth Dustin
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 East Marshall Street, Box 980709, Richmond, VA 23298, United States
| | - Samya K Dyer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 East Marshall Street, Box 980709, Richmond, VA 23298, United States
| | - Imogen L Targett
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 East Marshall Street, Box 980709, Richmond, VA 23298, United States
| | - Gretchen N Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 East Marshall Street, Box 980709, Richmond, VA 23298, United States.
| |
Collapse
|
11
|
Anti-Apoptotic and Antioxidant Activities of the Mitochondrial Estrogen Receptor Beta in N2A Neuroblastoma Cells. Int J Mol Sci 2021; 22:ijms22147620. [PMID: 34299239 PMCID: PMC8306648 DOI: 10.3390/ijms22147620] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022] Open
Abstract
Estrogens are steroid hormones that play a crucial role in the regulation of the reproductive and non-reproductive system physiology. Among non-reproductive systems, the nervous system is mainly affected by estrogens due to their antioxidant, anti-apoptotic, and anti-inflammatory activities, which are mediated by membranous and nuclear estrogen receptors, and also by non-estrogen receptor-associated estrogen actions. Neuronal viability and functionality are also associated with the maintenance of mitochondrial functions. Recently, the localization of estrogen receptors, especially estrogen receptor beta, in the mitochondria of many types of neuronal cells is documented, indicating the direct involvement of the mitochondrial estrogen receptor beta (mtERβ) in the maintenance of neuronal physiology. In this study, cell lines of N2A cells stably overexpressing a mitochondrial-targeted estrogen receptor beta were generated and further analyzed to study the direct involvement of mtERβ in estrogen neuroprotective antioxidant and anti-apoptotic actions. Results from this study revealed that the presence of estrogen receptor beta in mitochondria render N2A cells more resistant to staurosporine- and H2O2-induced apoptotic stimuli, as indicated by the reduced activation of caspase-9 and -3, the increased cell viability, the increased ATP production, and the increased resistance to mitochondrial impairment in the presence or absence of 17-β estradiol (E2). Thus, the direct involvement of mtERβ in antioxidant and anti-apoptotic activities is documented, rendering mtERβ a promising therapeutic target for mitochondrial dysfunction-associated degenerative diseases.
Collapse
|
12
|
Epigallocatechin-3-Gallate Plus Omega-3 Restores the Mitochondrial Complex I and F 0F 1-ATP Synthase Activities in PBMCs of Young Children with Down Syndrome: A Pilot Study of Safety and Efficacy. Antioxidants (Basel) 2021; 10:antiox10030469. [PMID: 33809669 PMCID: PMC8002266 DOI: 10.3390/antiox10030469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/14/2021] [Indexed: 12/15/2022] Open
Abstract
Down syndrome (DS) is a major genetic cause of intellectual disability. DS pathogenesis has not been fully elucidated, and no specific pharmacological therapy is available. DYRK1A overexpression, oxidative stress and mitochondrial dysfunction were described in trisomy 21. Epigallocatechin-3-gallate (EGCG) is a multimodal nutraceutical with antioxidant properties. EGCG inhibits DYRK1A overexpression and corrects DS mitochondrial dysfunction in vitro. The present study explores safety profiles in DS children aged 1–8 years treated with EGCG (10 mg/kg/die, suspended in omega-3, per os, in fasting conditions, for 6 months) and EGCG efficacy in restoring mitochondrial complex I and F0F1-ATP synthase (complex V) deficiency, assessed on PBMCs. The Griffiths Mental Developmental Scales—Extended Revised (GMDS-ER) was used for developmental profiling. Results show that decaffeinated EGCG (>90%) plus omega-3 is safe in DS children and effective in reverting the deficit of mitochondrial complex I and V activities. Decline of plasma folates was observed in 21% of EGCG-treated patients and should be carefully monitored. GMDS-ER scores did not show differences between the treated group compared to the DS control group. In conclusion, EGCG plus omega-3 can be safely administered under medical supervision in DS children aged 1–8 years to normalize mitochondria respiratory chain complex activities, while results on the improvement of developmental performance are still inconclusive.
Collapse
|
13
|
Liao TL, Lee YC, Tzeng CR, Wang YP, Chang HY, Lin YF, Kao SH. Mitochondrial translocation of estrogen receptor β affords resistance to oxidative insult-induced apoptosis and contributes to the pathogenesis of endometriosis. Free Radic Biol Med 2019; 134:359-373. [PMID: 30684560 DOI: 10.1016/j.freeradbiomed.2019.01.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/10/2019] [Accepted: 01/20/2019] [Indexed: 11/18/2022]
Abstract
Endometriosis is the major cause of female infertility and has been linked to the action of estrogen and estrogen receptor (ER). A new pool of ERβ locates within mitochondria, which regulates the endometriotic cell withstanding external insults, but its effect remains controversial. We hypothesize that mitochondrial estrogen receptor ERβ (mtERβ) is a pivotal regulator in estradiol-mediated cell protection leading to the endometriotic progression. We observed elevated levels of ERβ in the endometriotic tissues. A dramatic increase of ERβ in mitochondria (mtERβ) was found in the ectopic endometriotic tissues, or the estradiol-primed primary endometriotic cells. We analyzed the mtERβ-specific overexpressing clone (mtsERβ), which exhibited higher mitochondrial bioenergetics and lower reactive oxygen species (ROS) generation. The mtsERβ-overexpressed endometriotic cells displayed an enhanced migration phenotype, whereas significantly attenuated migration by mitochondrial respiratory inhibitor (oligomycin) or ERβ deficiency by shERβ. Further investigations revealed that ERβ directly modulated mitochondrial DNA (mtDNA) gene expression by interacting with mtDNA D-loop and polymerase γ. The mtsERβ afforded a resistance to oxidative insult-induced apoptosis through the induction of the ROS scavenger enzyme Mn-superoxide dismutase and anti-apoptotic protein Bcl-2. Collectively, the demonstration of mtERβ responses in restoration of mitochondrial bioenergetics and inhibition of mitochondria-dependent apoptotic events provides insight into the pathogenesis of endometriosis, suggesting ERβ-selective estrogen receptor modulator may serve as novel therapeutics of endometriosis in the future.
Collapse
Affiliation(s)
- Tien-Ling Liao
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ching Lee
- The Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chii-Ruey Tzeng
- Center for Reproductive Medicine and Sciences, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yi-Pei Wang
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Heng-Yu Chang
- Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Feng Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shu-Huei Kao
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Center for Reproductive Medicine and Sciences, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
14
|
Rabaglino MB, Keller‐Wood M, Wood CE. A transcriptomics model of estrogen action in the ovine fetal hypothalamus: evidence for estrogenic effects of ICI 182,780. Physiol Rep 2018; 6:e13871. [PMID: 30221477 PMCID: PMC6139289 DOI: 10.14814/phy2.13871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 01/13/2023] Open
Abstract
Estradiol plays a critical role in stimulating the fetal hypothalamus-pituitary-adrenal axis at the end of gestation. Estradiol action is mediated through nuclear and membrane receptors that can be modulated by ICI 182,780, a pure antiestrogen compound. The objective of this study was to evaluate the transcriptomic profile of estradiol and ICI 182,780, testing the hypothesis that ICI 182,780 antagonizes the action of estradiol in the fetal hypothalamus. Chronically catheterized ovine fetuses were infused for 48 h with: vehicle (Control, n = 6), 17β-estradiol 500 μg/kg/day (Estradiol, n = 4), ICI 182,780 5 μg/kg/day (ICI 5 μg, n = 4) and ICI 182,780 5 mg/kg/day (ICI 5 mg, n = 5). Fetal hypothalami were collected afterward, and gene expression was measured through microarray. Statistical analysis of transcriptomic data was performed with Bioconductor-R and Cytoscape software. Unexpectedly, 35% and 15.5% of the upregulated differentially expressed genes (DEG) by Estradiol significantly overlapped (P < 0.05) with upregulated DEG by ICI 5 mg and ICI 5 μg, respectively. For the downregulated DEG, these percentages were 29.9% and 15.5%, respectively. There was almost no overlap for DEG following opposite directions between Estradiol and ICI ICI 5 mg or ICI 5 μg. Furthermore, most of the genes in the estrogen signaling pathway - after activation of the epidermal growth factor receptor - followed the same direction in Estradiol, ICI 5 μg or ICI 5 mg compared to Control. In conclusion, estradiol and ICI 182,780 have estrogenic genomic effects in the developing brain, suggesting the possibility that the major action of estradiol on the fetal hypothalamus involves another receptor system rather than estrogen receptors.
Collapse
Affiliation(s)
- Maria Belen Rabaglino
- Department of Physiology and Functional GenomicsCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Maureen Keller‐Wood
- PharmacodynamicsCollege of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Charles E. Wood
- Department of Physiology and Functional GenomicsCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
15
|
Burstein SR, Kim HJ, Fels JA, Qian L, Zhang S, Zhou P, Starkov AA, Iadecola C, Manfredi G. Estrogen receptor beta modulates permeability transition in brain mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2018; 1859:423-433. [PMID: 29550215 PMCID: PMC5912174 DOI: 10.1016/j.bbabio.2018.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/24/2022]
Abstract
Recent evidence highlights a role for sex and hormonal status in regulating cellular responses to ischemic brain injury and neurodegeneration. A key pathological event in ischemic brain injury is the opening of a mitochondrial permeability transition pore (MPT) induced by excitotoxic calcium levels, which can trigger irreversible damage to mitochondria accompanied by the release of pro-apoptotic factors. However, sex differences in brain MPT modulation have not yet been explored. Here, we show that mitochondria isolated from female mouse forebrain have a lower calcium threshold for MPT than male mitochondria, and that this sex difference depends on the MPT regulator cyclophilin D (CypD). We also demonstrate that an estrogen receptor beta (ERβ) antagonist inhibits MPT and knockout of ERβ decreases the sensitivity of mitochondria to the CypD inhibitor, cyclosporine A. These results suggest a functional relationship between ERβ and CypD in modulating brain MPT. Moreover, co-immunoprecipitation studies identify several ERβ binding partners in mitochondria. Among these, we investigate the mitochondrial ATPase as a putative site of MPT regulation by ERβ. We find that previously described interaction between the oligomycin sensitivity-conferring subunit of ATPase (OSCP) and CypD is decreased by ERβ knockout, suggesting that ERβ modulates MPT by regulating CypD interaction with OSCP. Functionally, in primary neurons and hippocampal slice cultures, modulation of ERβ has protective effects against glutamate toxicity and oxygen glucose deprivation, respectively. Taken together, these results reveal a novel pathway of brain MPT regulation by ERβ that could contribute to sex differences in ischemic brain injury and neurodegeneration.
Collapse
Affiliation(s)
- Suzanne R Burstein
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| | - Hyun Jeong Kim
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Jasmine A Fels
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| | - Liping Qian
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Sheng Zhang
- Proteomics and Mass Spectrometry Facility, 139 Biotechnology Building, Cornell University, 526 Campus Road, Ithaca, NY 14853, USA
| | - Ping Zhou
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Anatoly A Starkov
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA.
| |
Collapse
|
16
|
Lejri I, Grimm A, Eckert A. Mitochondria, Estrogen and Female Brain Aging. Front Aging Neurosci 2018; 10:124. [PMID: 29755342 PMCID: PMC5934418 DOI: 10.3389/fnagi.2018.00124] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
Mitochondria play an essential role in the generation of steroid hormones including the female sex hormones. These hormones are, in turn, able to modulate mitochondrial activities. Mitochondria possess crucial roles in cell maintenance, survival and well-being, because they are the main source of energy as well as of reactive oxygen species (ROS) within the cell. The impairment of these important organelles is one of the central features of aging. In women’s health, estrogen plays an important role during adulthood not only in the estrous cycle, but also in the brain via neuroprotective, neurotrophic and antioxidant modes of action. The hypestrogenic state in the peri- as well as in the prolonged postmenopause might increase the vulnerability of elderly women to brain degeneration and age-related pathologies. However, the underlying mechanisms that affect these processes are not well elucidated. Understanding the relationship between estrogen and mitochondria might therefore provide better insights into the female aging process. Thus, in this review, we first describe mitochondrial dysfunction in the aging brain. Second, we discuss the estrogen-dependent actions on the mitochondrial activity, including recent evidence of the estrogen—brain-derived neurotrophic factor and estrogen—sirtuin 3 (SIRT3) pathways, as well as their potential implications during female aging.
Collapse
Affiliation(s)
- Imane Lejri
- Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland.,Psychiatric University Clinics, University of Basel, Basel, Switzerland
| | - Amandine Grimm
- Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland.,Psychiatric University Clinics, University of Basel, Basel, Switzerland
| | - Anne Eckert
- Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland.,Psychiatric University Clinics, University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Kudryavtseva AV, Krasnov GS, Dmitriev AA, Alekseev BY, Kardymon OL, Sadritdinova AF, Fedorova MS, Pokrovsky AV, Melnikova NV, Kaprin AD, Moskalev AA, Snezhkina AV. Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget 2018; 7:44879-44905. [PMID: 27270647 PMCID: PMC5216692 DOI: 10.18632/oncotarget.9821] [Citation(s) in RCA: 346] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/28/2016] [Indexed: 12/16/2022] Open
Abstract
Aging and cancer are the most important issues to research. The population in the world is growing older, and the incidence of cancer increases with age. There is no doubt about the linkage between aging and cancer. However, the molecular mechanisms underlying this association are still unknown. Several lines of evidence suggest that the oxidative stress as a cause and/or consequence of the mitochondrial dysfunction is one of the main drivers of these processes. Increasing ROS levels and products of the oxidative stress, which occur in aging and age-related disorders, were also found in cancer. This review focuses on the similarities between ageing-associated and cancer-associated oxidative stress and mitochondrial dysfunction as their common phenotype.
Collapse
Affiliation(s)
- Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Boris Y Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga L Kardymon
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Asiya F Sadritdinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Maria S Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey D Kaprin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | |
Collapse
|
18
|
Gaignard P, Liere P, Thérond P, Schumacher M, Slama A, Guennoun R. Role of Sex Hormones on Brain Mitochondrial Function, with Special Reference to Aging and Neurodegenerative Diseases. Front Aging Neurosci 2017; 9:406. [PMID: 29270123 PMCID: PMC5725410 DOI: 10.3389/fnagi.2017.00406] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/24/2017] [Indexed: 01/18/2023] Open
Abstract
The mitochondria have a fundamental role in both cellular energy supply and oxidative stress regulation and are target of the effects of sex steroids, particularly the neuroprotective ones. Aging is associated with a decline in the levels of different steroid hormones, and this decrease may underline some neural dysfunctions. Besides, modifications in mitochondrial functions associated with aging processes are also well documented. In this review, we will discuss studies that describe the modifications of brain mitochondrial function and of steroid levels associated with physiological aging and with neurodegenerative diseases. A special emphasis will be placed on describing and discussing our recent findings concerning the concomitant study of mitochondrial function (oxidative phosphorylation, oxidative stress) and brain steroid levels in both young (3-month-old) and aged (20-month-old) male and female mice.
Collapse
Affiliation(s)
- Pauline Gaignard
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Le Kremlin-Bicêtre, France
- Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Philippe Liere
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Patrice Thérond
- Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Michael Schumacher
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Abdelhamid Slama
- Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Rachida Guennoun
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
19
|
Grimm A, Eckert A. Brain aging and neurodegeneration: from a mitochondrial point of view. J Neurochem 2017; 143:418-431. [PMID: 28397282 PMCID: PMC5724505 DOI: 10.1111/jnc.14037] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/27/2017] [Accepted: 04/06/2017] [Indexed: 12/16/2022]
Abstract
Aging is defined as a progressive time-related accumulation of changes responsible for or at least involved in the increased susceptibility to disease and death. The brain seems to be particularly sensitive to the aging process since the appearance of neurodegenerative diseases, including Alzheimer's disease, is exponential with the increasing age. Mitochondria were placed at the center of the 'free-radical theory of aging', because these paramount organelles are not only the main producers of energy in the cells, but also to main source of reactive oxygen species. Thus, in this review, we aim to look at brain aging processes from a mitochondrial point of view by asking: (i) What happens to brain mitochondrial bioenergetics and dynamics during aging? (ii) Why is the brain so sensitive to the age-related mitochondrial impairments? (iii) Is there a sex difference in the age-induced mitochondrial dysfunction? Understanding mitochondrial physiology in the context of brain aging may help identify therapeutic targets against neurodegeneration. This article is part of a series "Beyond Amyloid".
Collapse
Affiliation(s)
- Amandine Grimm
- University of BaselTransfaculty Research PlatformMolecular & Cognitive NeuroscienceNeurobiology Laboratory for Brain Aging and Mental HealthBaselSwitzerland
- University of BaselPsychiatric University ClinicsBaselSwitzerland
| | - Anne Eckert
- University of BaselTransfaculty Research PlatformMolecular & Cognitive NeuroscienceNeurobiology Laboratory for Brain Aging and Mental HealthBaselSwitzerland
- University of BaselPsychiatric University ClinicsBaselSwitzerland
| |
Collapse
|
20
|
Abstract
UNLABELLED A decline in estradiol (E2)-mediated cognitive benefits denotes a critical window for the therapeutic effects of E2, but the mechanism for closing of the critical window is unknown. We hypothesized that upregulating the expression of estrogen receptor α (ERα) or estrogen receptor β (ERβ) in the hippocampus of aged animals would restore the therapeutic potential of E2 treatments and rejuvenate E2-induced hippocampal plasticity. Female rats (15 months) were ovariectomized, and, 14 weeks later, adeno-associated viral vectors were used to express ERα, ERβ, or green fluorescent protein (GFP) in the CA1 region of the dorsal hippocampus. Animals were subsequently treated for 5 weeks with cyclic injections of 17β-estradiol-3-benzoate (EB, 10 μg) or oil vehicle. Spatial memory was examined 48 h after EB/oil treatment. EB treatment in the GFP (GFP + EB) and ERβ (ERβ + EB) groups failed to improve episodic spatial memory relative to oil-treated animals, indicating closing of the critical window. Expression of ERβ failed to improve cognition and was associated with a modest learning impairment. Cognitive benefits were specific to animals expressing ERα that received EB treatment (ERα + EB), such that memory was improved relative to ERα + oil and GFP + EB. Similarly, ERα + EB animals exhibited enhanced NMDAR-mediated synaptic transmission compared with the ERα + oil and GFP + EB groups. This is the first demonstration that the window for E2-mediated benefits on cognition and hippocampal E2 responsiveness can be reinstated by increased expression of ERα. SIGNIFICANCE STATEMENT Estradiol is neuroprotective, promotes synaptic plasticity in the hippocampus, and protects against cognitive decline associated with aging and neurodegenerative diseases. However, animal models and clinical studies indicate a critical window for the therapeutic treatment such that the beneficial effects are lost with advanced age and/or with extended hormone deprivation. We used gene therapy to upregulate expression of the estrogen receptors ERα and ERβ and demonstrate that the window for estradiol's beneficial effects on memory and hippocampal synaptic function can be reinstated by enhancing the expression of ERα. Our findings suggest that the activity of ERα controls the therapeutic window by regulating synaptic plasticity mechanisms involved in memory.
Collapse
|
21
|
Naugle MM, Lozano SA, Guarraci FA, Lindsey LF, Kim JE, Morrison JH, Janssen WG, Yin W, Gore AC. Age and Long-Term Hormone Treatment Effects on the Ultrastructural Morphology of the Median Eminence of Female Rhesus Macaques. Neuroendocrinology 2016; 103:650-64. [PMID: 26536204 PMCID: PMC4860175 DOI: 10.1159/000442015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/29/2015] [Indexed: 12/26/2022]
Abstract
The median eminence (ME) of the hypothalamus comprises the hypothalamic nerve terminals, glia (especially tanycytes) and the portal capillary vasculature that transports hypothalamic neurohormones to the anterior pituitary gland. The ultrastructure of the ME is dynamically regulated by hormones and undergoes organizational changes during development and reproductive cycles in adult females, but relatively little is known about the ME during aging, especially in nonhuman primates. Therefore, we used a novel transmission scanning electron microscopy technique to examine the cytoarchitecture of the ME of young and aged female rhesus macaques in a preclinical monkey model of menopausal hormone treatments. Rhesus macaques were ovariectomized and treated for 2 years with vehicle, estradiol (E2), or estradiol + progesterone (E2 + P4). While the overall cytoarchitecture of the ME underwent relatively few changes with age and hormones, changes to some features of neural and glial components near the portal capillaries were observed. Specifically, large neuroterminal size was greater in aged compared to young adult animals, an effect that was mitigated or reversed by E2 alone but not by E2 + P4 treatment. Overall glial size and the density and tissue fraction of the largest subset of glia were greater in aged monkeys, and in some cases reversed by E2 treatment. Mitochondrial size was decreased by E2, but not E2 + P4, only in aged macaques. These results contrast substantially with work in rodents, suggesting that the ME of aging macaques is less vulnerable to age-related disorganization, and that the effects of E2 on monkeys' ME are age specific.
Collapse
Affiliation(s)
| | - Sateria A. Lozano
- Division of Pharmacology & Toxicology, University of Texas at Austin, Austin, TX
| | - Fay A. Guarraci
- Department of Psychology, Southwestern University, Georgetown, TX
| | - Larry F. Lindsey
- Center for Learning and Memory, University of Texas at Austin, Austin, TX
| | - Ji E. Kim
- Division of Pharmacology & Toxicology, University of Texas at Austin, Austin, TX
| | - John H. Morrison
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - William G.M. Janssen
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Weiling Yin
- Division of Pharmacology & Toxicology, University of Texas at Austin, Austin, TX
| | - Andrea C. Gore
- Institute for Neuroscience, University of Texas at Austin, Austin, TX
- Division of Pharmacology & Toxicology, University of Texas at Austin, Austin, TX
- Institute for Cellular & Molecular Biology, University of Texas at Austin, Austin, TX
- Correspondence: Andrea C Gore, PhD, The University of Texas at Austin, 107 West Dean Keeton, C0875, Austin, TX, 78712, USA, ; Tel: +1-512-471-3669; Fax: +1-512-471-5002
| |
Collapse
|
22
|
Yin F, Yao J, Sancheti H, Feng T, Melcangi RC, Morgan TE, Finch CE, Pike CJ, Mack WJ, Cadenas E, Brinton RD. The perimenopausal aging transition in the female rat brain: decline in bioenergetic systems and synaptic plasticity. Neurobiol Aging 2015; 36:2282-2295. [PMID: 25921624 DOI: 10.1016/j.neurobiolaging.2015.03.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/20/2015] [Accepted: 03/25/2015] [Indexed: 01/03/2023]
Abstract
The perimenopause is an aging transition unique to the female that leads to reproductive senescence which can be characterized by multiple neurological symptoms. To better understand potential underlying mechanisms of neurological symptoms of perimenopause, the present study determined genomic, biochemical, brain metabolic, and electrophysiological transformations that occur during this transition using a rat model recapitulating fundamental characteristics of the human perimenopause. Gene expression analyses indicated two distinct aging programs: chronological and endocrine. A critical period emerged during the endocrine transition from regular to irregular cycling characterized by decline in bioenergetic gene expression, confirmed by deficits in fluorodeoxyglucose-positron emission tomography (FDG-PET) brain metabolism, mitochondrial function, and long-term potentiation. Bioinformatic analysis predicted insulin/insulin-like growth factor 1 and adenosine monophosphate-activated protein kinase/peroxisome proliferator-activated receptor gamma coactivator 1 alpha (AMPK/PGC1α) signaling pathways as upstream regulators. Onset of acyclicity was accompanied by a rise in genes required for fatty acid metabolism, inflammation, and mitochondrial function. Subsequent chronological aging resulted in decline of genes required for mitochondrial function and β-amyloid degradation. Emergence of glucose hypometabolism and impaired synaptic function in brain provide plausible mechanisms of neurological symptoms of perimenopause and may be predictive of later-life vulnerability to hypometabolic conditions such as Alzheimer's.
Collapse
Affiliation(s)
- Fei Yin
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Jia Yao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Harsh Sancheti
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Tao Feng
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Roberto C Melcangi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Todd E Morgan
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Caleb E Finch
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Christian J Pike
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Wendy J Mack
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Enrique Cadenas
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Roberta D Brinton
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Velarde MC. Mitochondrial and sex steroid hormone crosstalk during aging. LONGEVITY & HEALTHSPAN 2014; 3:2. [PMID: 24495597 PMCID: PMC3922316 DOI: 10.1186/2046-2395-3-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/08/2014] [Indexed: 12/21/2022]
Abstract
Decline in circulating sex steroid hormones accompanies several age-associated pathologies which may influence human healthspan. Mitochondria play important roles in biosynthesis of sex steroid hormones, and these hormones can also regulate mitochondrial function. Understanding the cross talk between mitochondria and sex steroid hormones may provide insights into the pathologies associated with aging. The aim of this review is to summarize the current knowledge regarding the interplay between mitochondria and sex steroid hormones during the aging process. The review describes the effect of mitochondria on sex steroid hormone production in the gonads, and then enumerates the contribution of sex steroid hormones on mitochondrial function in hormone responsive cells. Decline in sex steroid hormones and accumulation of mitochondrial damage may create a positive feedback loop that contributes to the progressive degeneration in tissue function during aging. The review further speculates whether regulation between mitochondrial function and sex steroid hormone action can potentially influence healthspan.
Collapse
Affiliation(s)
- Michael C Velarde
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA.
| |
Collapse
|
24
|
Schreihofer DA, Ma Y. Estrogen receptors and ischemic neuroprotection: Who, what, where, and when? Brain Res 2013; 1514:107-22. [DOI: 10.1016/j.brainres.2013.02.051] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 02/08/2023]
|
25
|
Leclère R, Torregrosa-Muñumer R, Kireev R, García C, Vara E, Tresguerres JAF, Gredilla R. Effect of estrogens on base excision repair in brain and liver mitochondria of aged female rats. Biogerontology 2013; 14:383-94. [PMID: 23666345 DOI: 10.1007/s10522-013-9431-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/02/2013] [Indexed: 10/26/2022]
Abstract
Changes in the endocrine system have been suggested to act as signaling factors in the regulation of age-related events. Among the different hormones that have been linked to the aging process, estrogens have been widely investigated. They have been associated with inflammatory and oxidative processes and several investigations have established a relationship between the protective effects of estrogens and the mitochondrial function. Mitochondrial DNA is subjected to continuous oxidative attack by free radicals, and the base excision repair (BER) pathway is the main DNA repair route present in mitochondria. We have investigated the effect of estrogen levels on some of the key enzymes of BER in brain and liver mitochondria. In both tissues, depletion of estrogens led to an increased mitochondrial AP endonuclease (mtAPE1) activity, while restoration of estrogen levels by exogenous supplementation resulted in restitution of control APE1 activity only in liver. Moreover, in hepatic mitochondria, changes in estrogen levels affected the processing of oxidative lesions but not deaminations. Our results suggest that changes in mtAPE1 activity are related to specific translocation of the enzyme from the cytosol into the mitochondria probably due to oxidative stress changes as a consequence of changes in estrogen levels.
Collapse
Affiliation(s)
- R Leclère
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
Kajta M, Rzemieniec J, Litwa E, Lason W, Lenartowicz M, Krzeptowski W, Wojtowicz AK. The key involvement of estrogen receptor β and G-protein-coupled receptor 30 in the neuroprotective action of daidzein. Neuroscience 2013; 238:345-60. [PMID: 23419549 DOI: 10.1016/j.neuroscience.2013.02.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/05/2013] [Indexed: 01/01/2023]
Abstract
Phytoestrogens have received considerable attention because they provide an array of beneficial effects, such as neuroprotection. To better understand the molecular and functional link between phytoestrogens and classical as well as membrane estrogen receptors (ERs), we investigated the effect of daidzein on the glutamate-mediated apoptotic pathway. Our study demonstrated that daidzein (0.1-10μM) inhibited the pro-apoptotic and neurotoxic effects caused by glutamate treatment. Hippocampal, neocortical and cerebellar tissues responded to the inhibitory action of daidzein on glutamate-activated caspase-3 and lactate dehydrogenase (LDH) release in a similar manner. Biochemical data were supported at the cellular level by Hoechst 33342 and calcein AM staining. The sensitivity of neuronal cells to daidzein-mediated protection was most prominent in hippocampal cultures at an early stage of development 7th day in vitro. A selective estrogen receptor β (ERβ) antagonist, 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5,-a]pyrimidin-3-yl]phenol (PHTPP), and a selective G-protein-coupled receptor 30 (GPR30) antagonist, 3aS(∗),4R(∗),9bR(∗))-4-(6-Bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-3H-cyclopenta[c]quinoline (G15), reversed the daidzein-mediated inhibition of glutamate-induced loss of membrane mitochondrial potential, caspase-3 activity, and LDH release. A selective ERα antagonist, methyl-piperidino-pyrazole (MPP), did not influence any anti-apoptotic effect of daidzein. However, a high-affinity estrogen receptor antagonist, 7α,17β-[9-[(4,4,5,5,5-pentafluoropentyl)sulfinyl]nonyl]estra-1,3,5(10)-triene-3,17-diol (ICI) 182,780, and a selective GPR30 agonist, (±)-1-[(3aR(∗),4S(∗),9bS(∗))-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]-ethanone (G1), intensified the protective action of daidzein against glutamate-induced loss of membrane mitochondrial potential and LDH release. In siRNA ERβ- and siRNA GPR30-transfected cells, daidzein did not inhibit the glutamate-induced effects. Twenty-four hour exposure to glutamate did not affect the cellular distribution of ERβ and GPR30, but caused greater than 100% increase in the levels of the receptors. Co-treatment with daidzein decreased the level of ERβ without significant changing of the GPR30 protein level. Here, we elucidated neuroprotective effects of daidzein at low micromolar concentrations and demonstrated that the phytoestrogens may exert their effects through novel extranuclear GPR30 and the classical transcriptionally acting ERβ. These studies uncover key roles of the ERβ and GPR30 intracellular signaling pathways in mediating the anti-apoptotic action of daidzein and may provide insight into new strategies to treat or prevent neural degeneration.
Collapse
Affiliation(s)
- M Kajta
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland.
| | | | | | | | | | | | | |
Collapse
|
27
|
Buwalda B, Schagen SB. Is basic research providing answers if adjuvant anti-estrogen treatment of breast cancer can induce cognitive impairment? Life Sci 2013; 93:581-8. [PMID: 23353876 DOI: 10.1016/j.lfs.2012.12.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/27/2012] [Accepted: 12/21/2012] [Indexed: 12/23/2022]
Abstract
Adjuvant treatment of cancer by chemotherapy is associated with cognitive impairment in some cancer survivors. Breast cancer patients are frequently also receiving endocrine therapy with selective estrogen receptor modulators (SERMs) and/or aromatase inhibitors (AIs) to suppress the growth of estradiol sensitive breast tumors. Estrogens are well-known, however, to target brain areas involved in the regulation of cognitive behavior. In this review clinical and basic preclinical research is reviewed on the actions of estradiol, SERMs and AIs on brain and cognitive functioning to see if endocrine therapy potentially induces cognitive impairment and in that respect may contribute to the detrimental effects of chemotherapy on cognitive performance in breast cancer patients. Although many clinical studies may be underpowered to detect changes in cognitive function, current basic and clinical reports suggest that there is little evidence that AIs may have a lasting detrimental effect on cognitive performance in breast cancer patients. The clinical data on SERMs are not conclusive, but some studies do suggest that tamoxifen administration may form a risk for cognitive functioning particularly in older women. An explanation may come from basic preclinical research which indicates that tamoxifen often acts agonistic in the absence of estradiol but antagonistic in the presence of endogenous estradiol. It could be hypothesized that the negative effects of tamoxifen in older women is related to the so-called window of opportunity for estrogen. Administration of SERMs beyond this so-called window of opportunity may not be effective or might even have detrimental effects similar to estradiol.
Collapse
Affiliation(s)
- Bauke Buwalda
- Behavioral Physiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| | | |
Collapse
|
28
|
Mechanism of inhibition of mitochondrial ATP synthase by 17β−Estradiol. J Bioenerg Biomembr 2012; 45:261-70. [DOI: 10.1007/s10863-012-9497-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/09/2012] [Indexed: 01/11/2023]
|
29
|
Pavón N, Martínez-Abundis E, Hernández L, Gallardo-Pérez JC, Alvarez-Delgado C, Cerbón M, Pérez-Torres I, Aranda A, Chávez E. Sexual hormones: effects on cardiac and mitochondrial activity after ischemia-reperfusion in adult rats. Gender difference. J Steroid Biochem Mol Biol 2012; 132:135-46. [PMID: 22609314 DOI: 10.1016/j.jsbmb.2012.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/27/2012] [Accepted: 05/03/2012] [Indexed: 11/16/2022]
Abstract
In this work we studied the influence of sex hormones on heart and mitochondrial functions, from adult castrated female and male, and intact rats. Castration was performed at their third week of life and on the fourth month animals were subjected to heart ischemia and reperfusion. Electrocardiogram and blood pressure recordings were made, cytokines levels were measured, histopathological studies were performed and thiobarbituric acid reactive species were determined. At the mitochondrial level respiratory control, transmembranal potential and calcium management were determined; Western blot of some mitochondrial components was also performed. Alterations in cardiac function were worst in intact males and castrated females as compared with those found in intact females and castrated males, cytokine levels were modulated also by hormonal status. Regarding mitochondria, in those obtained from hearts from castrated females without ischemia-reperfusion, all evaluated parameters were similar to those observed in mitochondria after ischemia-reperfusion. The results show hormonal influences on the heart at functional and mitochondrial levels.
Collapse
Affiliation(s)
- Natalia Pavón
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico, DF, Mexico.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
The Role of Brain Mitochondrial Estrogen Receptor β in The Pathogensis of Female Alzheimer′s Disease*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2012.00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Kim HJ, Magranè J, Starkov AA, Manfredi G. The mitochondrial calcium regulator cyclophilin D is an essential component of oestrogen-mediated neuroprotection in amyotrophic lateral sclerosis. Brain 2012; 135:2865-74. [PMID: 22961554 PMCID: PMC3437032 DOI: 10.1093/brain/aws208] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 06/12/2012] [Accepted: 06/25/2012] [Indexed: 02/02/2023] Open
Abstract
Amyotrophic lateral sclerosis is a devastating neurodegenerative disorder that is more prevalent in males than in females. A similar gender difference has been reported in some strains of transgenic mouse models of familial amyotrophic lateral sclerosis harbouring the G93A mutation in CuZn superoxide dismutase. Mitochondrial damage caused by pathological alterations in Ca(2+) accumulation is frequently involved in neurodegenerative diseases, including CuZn superoxide dismutase-related amyotrophic lateral sclerosis, but its association with gender is not firmly established. In this study, we examined the effects of genetic ablation of cyclophilin D on gender differences in mice expressing G93A mutant CuZn superoxide dismutase. Cyclophilin D is a mitochondrial protein that promotes mitochondrial damage from accumulated Ca(2+). As anticipated, we found that cyclophilin D ablation markedly increased Ca(2+) retention in brain mitochondria of both males and females. Surprisingly, cyclophilin D ablation completely abolished the phenotypic advantage of G93A females, with no effect on disease in males. We also found that the 17β-oestradiol decreased Ca(2+) retention in brain mitochondria, and that cyclophilin D ablation abolished this effect. Furthermore, 17β-oestradiol protected G93A cortical neurons and spinal cord motor neurons against glutamate toxicity, but the protection was lost in neurons lacking cyclophilin D. Taken together, these results identify a novel mechanism of oestrogen-mediated neuroprotection in CuZn superoxide dismutase-related amyotrophic lateral sclerosis, whereby Ca(2+) overload and mitochondrial damage are prevented in a cyclophilin D-dependent manner. Such a protective mechanism may contribute to the lower incidence and later onset of amyotrophic lateral sclerosis, and perhaps other chronic neurodegenerative diseases, in females.
Collapse
Affiliation(s)
- Hyun Jeong Kim
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 525 East 68th St., A-505, New York, NY 10065, USA
| | | | | | | |
Collapse
|
32
|
Arnold S, Victor MB, Beyer C. Estrogen and the regulation of mitochondrial structure and function in the brain. J Steroid Biochem Mol Biol 2012; 131:2-9. [PMID: 22326731 DOI: 10.1016/j.jsbmb.2012.01.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 09/20/2011] [Accepted: 01/20/2012] [Indexed: 12/20/2022]
Abstract
The mitochondrion is the unquestionable cellular compartment that actively preserves most of the cell functions, such as lipid metabolism, ion homeostasis, energy and ROS production, steroid biosynthesis, and control of apoptotic signaling. Thus, this cell organelle depicts a major drop-in centre for regulatory processes within a cell irrespective of the organ or tissue. However, brain tissue is unique in spite of everything due to its extremely high energy demand and sensitivity to oxidative stress. This makes brain cells, in particular neurons, considerably vulnerable against toxins and challenges that attack the mitochondrial structural organization and energetic performance. Estrogens are known to regulate a multitude of cellular functions in neural cells under physiological conditions but also play a protective role under neuropathological circumstances. In recent years, it became evident that estrogens affect distinct cellular processes by interfering with the bioenergetic mitochondrial compartment. According to the general view, estrogens indirectly regulate the mitochondrion through the control of genomic transcription of mitochondrial-located proteins and modulation of cytoplasmic signaling cascades that act upon mitochondrial physiology. More recent but still arguable data suggest that estrogens might directly signal to the mitochondrion either through classical steroid receptors or novel types of receptors/proteins associated with the mitochondrial compartment. This would allow estrogens to more rapidly modulate the function of a mitochondrion than hitherto discussed. Assuming that this novel perception of steroid action is correct, estrogen might influence the energetic control centre through long-lasting nuclear-associated processes and rapid mitochondria-intrinsic temporary mechanisms. In this article, we would like to particularly accentuate the novel conceptual approach of this duality comprising that estrogens govern the mitochondrial structural integrity and functional capacity by different cellular signaling routes. This article is part of a Special Issue entitled 'Neurosteroids'.
Collapse
Affiliation(s)
- Susanne Arnold
- Institute of Neuroanatomy, RWTH Aachen University,Aachen, Germany
| | | | | |
Collapse
|
33
|
Petrović S, Veličković N, Stanojević I, Milošević M, Drakulić D, Stanojlović M, Horvat A. Inhibition of mitochondrial Na+-dependent Ca²+ efflux by 17β-estradiol in the rat hippocampus. Neuroscience 2011; 192:195-204. [PMID: 21726603 DOI: 10.1016/j.neuroscience.2011.06.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 05/20/2011] [Accepted: 06/09/2011] [Indexed: 01/18/2023]
Abstract
Our results, as well as those of others, have indicated that 17β-estradiol (E2) exerts its nongenomic effects in neuronal cells by affecting plasma membrane Ca(2+) flux. In neuronal cells mitochondria possess Ca(2+) buffering properties as they both sequester and release Ca(2+). The goal of this study was to examine the rapid non-genomic effect of E2 on mitochondrial Ca(2+) transport in hippocampal synaptosomes from ovariectomised rats. In addition, we aimed to determine if, and to what extent, E2 receptors participated in mitochondrial Ca(2+) transport modulation by E2 in vitro. E2-specific binding and Ca(2+) transport was monitored. At physiological E2 concentrations (0.1-1.5 nmol/L), specific E2 binding to mitochondria isolated from hippocampal synaptosomes was detected with a B(max.) and K(m) of 37.6±2.6 fmol/mg protein and 0.69±0.14 nmol/L of free E2, respectively. The main mitochondrial Ca(2+) influx mechanism is the Ruthenium Red-sensitive uniporter driven by mitochondrial membrane potential. Despite no effect of E2 on Ca(2+) influx, a physiological E2 concentration (0.5 nmol/L) protected mitochondrial membrane potential and consequently Ca(2+) influx from the uncoupling agent carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (1 μmol/L). In neuronal cells the predominant mitochondrial Ca(2+) efflux mechanism is the Na(+)/Ca(2+) exchanger. E2 caused Ca(2+) efflux inhibition (by 46%) coupled with increased affinity of the Na(+)/Ca(2+) exchanger for Na(+). Using E2 receptor (ERα and ERβ) antagonists and agonists, we confirmed ERβ's involvement in E2-induced mitochondrial membrane potential protection as well as Ca(2+) efflux inhibition. In summary, our results indicate that the non-genomic neuromodulatory role of E2 in rat hippocampus is achieved by affecting mitochondrial Ca(2+) transport via, in part, mitochondrial ERβ.
Collapse
Affiliation(s)
- S Petrović
- Laboratory for Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, PO Box 522, 11001 Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|