1
|
Michel E, Zory R, Guerin O, Prate F, Sacco G, Chorin F. Assessing muscle quality as a key predictor to differentiate fallers from non-fallers in older adults. Eur Geriatr Med 2024; 15:1301-1311. [PMID: 39096327 PMCID: PMC11615084 DOI: 10.1007/s41999-024-01020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/01/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND Falling is an important public health issue because of its prevalence and severe consequences. Evaluating muscle performance is important when assessing fall risk. The study aimed to identify factors [namely muscle capacity (strength, quality, and power) and spatio-temporal gait attributes] that best discriminate between fallers and non-fallers in older adults. The hypothesis is that muscle quality, defined as the ratio of muscle strength to muscle mass, is the best predictor of fall risk. METHODS 184 patients were included, 81% (n = 150) were women and the mean age was 73.6 ± 6.83 years. We compared body composition, mean grip strength, spatio-temporal parameters, and muscle capacity of fallers and non-fallers. Muscle quality was calculated as the ratio of maximum strength to fat-free mass. Mean handgrip and power were also controlled by fat-free mass. We performed univariate analysis, logistic regression, and ROC curves. RESULTS The falling patients had lower muscle quality, muscle mass-controlled power, and mean weighted handgrip than the non-faller. Results showing that lower muscle quality increases fall risk (effect size = 0.891). Logistic regression confirmed muscle quality as a significant predictor (p < .001, OR = 0.82, CI [0.74; 0.89]). ROC curves demonstrated muscle quality as the most predictive factor of falling (AUC = 0.794). CONCLUSION This retrospective study showed that muscle quality is the best predictor of fall risk, above spatial and temporal gait parameters. Our results underscore muscle quality as a clinically meaningful assessment and may be a useful complement to other assessments for fall prevention in the aging population.
Collapse
Affiliation(s)
- Emeline Michel
- Department of Geriatric Medicine, Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Clinique Gériatrique de Soins Ambulatoires, 06003, Nice, France.
- Université Côte d'Azur, LAMHESS, Nice, France.
| | - Raphael Zory
- Université Côte d'Azur, LAMHESS, Nice, France
- Institut Universitaire de France (IUF), Paris, France
| | - Olivier Guerin
- Department of Geriatric Medicine, Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Clinique Gériatrique de Soins Ambulatoires, 06003, Nice, France
- Université Côte d'Azur, INSERM, CNRS, Nice, France
| | - Frederic Prate
- Department of Geriatric Medicine, Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Clinique Gériatrique de Soins Ambulatoires, 06003, Nice, France
| | - Guillaume Sacco
- Department of Geriatric Medicine, Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Clinique Gériatrique de Soins Ambulatoires, 06003, Nice, France
- Université Côte d'Azur, UPR 7276 CoBTek, Nice, France
| | - Fréderic Chorin
- Department of Geriatric Medicine, Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Clinique Gériatrique de Soins Ambulatoires, 06003, Nice, France
- Université Côte d'Azur, LAMHESS, Nice, France
| |
Collapse
|
2
|
Willoughby DS, Florez C, Davis J, Keratsopoulos N, Bisher M, Parra M, Taylor L. Decreased Neuromuscular Function and Muscle Quality along with Increased Systemic Inflammation and Muscle Proteolysis Occurring in the Presence of Decreased Estradiol and Protein Intake in Early to Intermediate Post-Menopausal Women. Nutrients 2024; 16:197. [PMID: 38257090 PMCID: PMC10819584 DOI: 10.3390/nu16020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Menopause causes a reduction in estradiol (E2) and may be associated with neuromuscular degeneration. Compared to pre-menopausal (PRE-M) women, this study sought to determine dietary protein intake and whether lower levels of circulating E2 in post-menopausal women (POST-M) were occurring alongside increased levels of biomarkers of axonal and neuromuscular junction degeneration (NMJ), inflammation, muscle protein degradation, and reduced indices of muscle quality and performance. Employing a cross-sectional design, PRE-M (n = 6) and POST-M (n = 6) dietary analysis data were collected and participants then donated a blood and urine sample followed by assessments for body composition, motor unit activation, and muscle performance. Independent group t-tests were performed to determine differences between groups (p ≤ 0.05). In POST-M women, E2, motor unit activity, muscle quality, and muscle performance were significantly less than those for PRE-M women; however, the levels of c-terminal fragment of agrin, tumor necrosis factor-α, and urinary titin were significantly greater (p < 0.05). POST-M women were also shown to be ingesting fewer total calories and less protein than PRE-M (p < 0.05). Reduced E2 and dietary protein intake in POST-M women occurs in conjunction with increased levels of biomarkers of NMJ degradation, inflammation, and muscle proteolysis, which may be associated with reduced motor unit activation and muscle quality.
Collapse
Affiliation(s)
- Darryn S. Willoughby
- School of Health Professions, University of Mary Hardin-Baylor, Belton, TX 76513, USA
| | - Christine Florez
- School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX 76513, USA; (C.F.)
| | - Jaci Davis
- School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX 76513, USA; (C.F.)
| | - Nikolas Keratsopoulos
- School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX 76513, USA; (C.F.)
| | - Morgan Bisher
- School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX 76513, USA; (C.F.)
| | - Mandy Parra
- School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX 76513, USA; (C.F.)
| | - Lemuel Taylor
- School of Health Professions, University of Mary Hardin-Baylor, Belton, TX 76513, USA
| |
Collapse
|
3
|
Sørensen DM, Bostock H, Abrahao A, Alaamel A, Alaydin HC, Ballegaard M, Boran E, Cengiz B, de Carvalho M, Dunker Ø, Fuglsang-Frederiksen A, Graffe CC, Jones KE, Kallio M, Kalra S, Krarup C, Krøigård T, Liguori R, Lupescu T, Maitland S, Matamala JM, Moldovan M, Moreno-Roco J, Nilsen KB, Phung L, Santos MO, Themistocleous AC, Uysal H, Vacchiano V, Whittaker RG, Zinman L, Tankisi H. Estimating motor unit numbers from a CMAP scan: Repeatability study on three muscles at 15 centres. Clin Neurophysiol 2023; 151:92-99. [PMID: 37236129 DOI: 10.1016/j.clinph.2023.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/16/2023] [Accepted: 04/15/2023] [Indexed: 05/28/2023]
Abstract
OBJECTIVE To assess the repeatability and suitability for multicentre studies of MScanFit motor unit number estimation (MUNE), which involves modelling compound muscle action potential (CMAP) scans. METHODS Fifteen groups in 9 countries recorded CMAP scans twice, 1-2 weeks apart in healthy subjects from abductor pollicis brevis (APB), abductor digiti minimi (ADM) and tibialis anterior (TA) muscles. The original MScanFit program (MScanFit-1) was compared with a revised version (MScanFit-2), designed to accommodate different muscles and recording conditions by setting the minimal motor unit size as a function of maximum CMAP. RESULTS Complete sets of 6 recordings were obtained from 148 subjects. CMAP amplitudes differed significantly between centres for all muscles, and the same was true for MScanFit-1 MUNE. With MScanFit-2, MUNE differed less between centres but remained significantly different for APB. Coefficients of variation between repeats were 18.0% for ADM, 16.8% for APB, and 12.1% for TA. CONCLUSIONS It is recommended for multicentre studies to use MScanFit-2 for analysis. TA provided the least variable MUNE values between subjects and the most repeatable within subjects. SIGNIFICANCE MScanFit was primarily devised to model the discontinuities in CMAP scans in patients and is less suitable for healthy subjects with smooth scans.
Collapse
Affiliation(s)
- D M Sørensen
- Department of Clinical Neurophysiology, Aarhus University Hospital, Denmark
| | - H Bostock
- UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - A Abrahao
- Department of Medicine, University of Toronto, Toronto, Canada
| | - A Alaamel
- Department of Neurology, Akdeniz University Hospital, Antalya, Turkey
| | - H C Alaydin
- Department of Neurology, Gazi University, Ankara, Turkey
| | - M Ballegaard
- Department of Clinical Neurology, Zealand University Hospital, Roskilde, Denmark
| | - E Boran
- Department of Neurology, Gazi University, Ankara, Turkey
| | - B Cengiz
- Department of Neurology, Gazi University, Ankara, Turkey
| | - M de Carvalho
- Faculty of Medicine, iMM, Centro de Estudos Egas Moniz, Universidade de Lisboa, Department of Neurosciences and Mental Health, CHULN, Lisbon, Portugal
| | - Ø Dunker
- Department of Neurology and Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Norway
| | - A Fuglsang-Frederiksen
- Department of Clinical Neurophysiology, Aarhus University Hospital, Denmark; Department of Clinical Institute, Aarhus University, Aarhus, Denmark
| | - C C Graffe
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - K E Jones
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - M Kallio
- Department of Clinical Neurophysiology, Oulu University Hospital, Oulu, Finland
| | - S Kalra
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - C Krarup
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - T Krøigård
- Department of Neurology, Odense University Hospital, Denmark
| | - R Liguori
- Dipertimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - T Lupescu
- Department of Neurology, Agrippa Ionescu Hospital, Bucharest, Romania
| | - S Maitland
- Translational and Clinical Research Institute, Newcastle University, United Kingdom
| | - J M Matamala
- Translational Neurology and Neurophysiology Lab, Department of Neurological Sciences and Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
| | - M Moldovan
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - J Moreno-Roco
- Translational Neurology and Neurophysiology Lab, Department of Neurological Sciences and Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
| | - K B Nilsen
- Department of Neurology and Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Norway
| | - L Phung
- Department of Medicine, University of Toronto, Toronto, Canada
| | - M O Santos
- Faculty of Medicine, iMM, Centro de Estudos Egas Moniz, Universidade de Lisboa, Department of Neurosciences and Mental Health, CHULN, Lisbon, Portugal
| | - A C Themistocleous
- Nuffield Department of Clinical Neurosciences University of Oxford, Oxford, United Kingdom
| | - H Uysal
- Department of Medicine, University of Toronto, Toronto, Canada
| | - V Vacchiano
- Dipertimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - R G Whittaker
- Translational and Clinical Research Institute, Newcastle University, United Kingdom
| | - L Zinman
- UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - H Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Denmark; Department of Clinical Institute, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
4
|
Clark BC. Neural Mechanisms of Age-Related Loss of Muscle Performance and Physical Function. J Gerontol A Biol Sci Med Sci 2023; 78:8-13. [PMID: 36738253 PMCID: PMC10272985 DOI: 10.1093/gerona/glad029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND This article discusses the putative neural mechanisms of age-related muscle weakness within the broader context of the development of function-promoting therapies for sarcopenia and age-related mobility limitations. We discuss here the evolving definition of sarcopenia and its primary defining characteristic, weakness. METHODS This review explores the premise that impairments in the nervous system's ability to generate maximal force or power contribute to sarcopenia. RESULTS Impairments in neural activation are responsible for a substantial amount of age-related weakness. The neurophysiological mechanisms of weakness are multifactorial. The roles of supraspinal descending command mechanisms, spinal motor neuron firing responsivity, and neuromuscular junction transmission failure in sarcopenia are discussed. Research/clinical gaps and recommendations for future work are highlighted. CONCLUSION Further research is needed to map putative neural mechanisms, determine the clinical relevance of age-related changes in neural activation to sarcopenia, and evaluate the effectiveness of various neurotherapeutic approaches to enhancing physical function.
Collapse
Affiliation(s)
- Brian C Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI) and the Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| |
Collapse
|
5
|
Imrani L, Boudaoud S, Lahaye C, Moreau C, Ghezal M, Ben Manaa S, Doulazmi M, Laforêt J, Marin F, Kinugawa K. High-density Surface Electromyography as Biomarker of Muscle Aging. J Gerontol A Biol Sci Med Sci 2023; 78:25-33. [PMID: 35876634 DOI: 10.1093/gerona/glac143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Indexed: 01/31/2023] Open
Abstract
Sarcopenia is a muscle disease with adverse changes that increase throughout the lifetime but with different chronological scales between individuals. Addressing "early muscle aging" is becoming a critical issue for prevention. Through the CHRONOS study, we demonstrated the ability of the high-density surface electromyography (HD-sEMG), a noninvasive, wireless, portable technology, to detect both healthy muscle aging and accelerated muscle aging related to a sedentary lifestyle, one of the risk factors of sarcopenia. The HD-sEMG signals were analyzed in 91 healthy young, middle-aged, and old subjects (25-75 years) distributed according to their physical activity status (82 active and 9 sedentary; International Physical Activity Questionnaire) and compared with current methods for muscle evaluation, including muscle mass (dual-energy X-ray absorptiometry [DXA], ultrasonography), handgrip strength, and physical performance. The HD-sEMG signals were recorded from the rectus femoris during sit-to-stand trials, and 2 indexes were analyzed: muscular contraction intensity and muscle contraction dynamics. The clinical parameters did not differ significantly across the aging and physical activity levels. Inversely, the HD-sEMG indexes were correlated to age and were different significantly through the age categories of the 82 active subjects. They were significantly different between sedentary subjects aged 45-54 years and active ones at the same age. The HD-sEMG indexes of sedentary subjects were not significantly different from those of older active subjects (≥55 years). The muscle thicknesses evaluated using ultrasonography were significantly different between the 5 age decades but did not show a significant difference with physical activity. The HD-sEMG technique can assess muscle aging and physical inactivity-related "early aging," outperforming clinical and DXA parameters.
Collapse
Affiliation(s)
- Loubna Imrani
- Université de Technologie de Compiègne (UTC), CNRS UMR 7338 Biomechanics and Bioengineering, Centre de Recherche de Royallieu- Alliance Sorbonne Université, Compiegne, France
| | - Sofiane Boudaoud
- Université de Technologie de Compiègne (UTC), CNRS UMR 7338 Biomechanics and Bioengineering, Centre de Recherche de Royallieu- Alliance Sorbonne Université, Compiegne, France
| | - Clément Lahaye
- Université Clermont Auvergne, INRAE UMR 1019 Human Nutrition Research Unit, CRNH Auvergne, CHU Clermont-Ferrand, Geriatrics Department, Clermont-Ferrand, France
| | - Caroline Moreau
- Sorbonne Université, CNRS, UMR Biological Adaptation and Aging, AP-HP, Charles Foix Hospital, Functional Exploration Unit for Older Patients, Ivry-sur-Seine, France
| | - Myriam Ghezal
- Sorbonne Université, CNRS, UMR Biological Adaptation and Aging, AP-HP, Charles Foix Hospital, Functional Exploration Unit for Older Patients, Ivry-sur-Seine, France
| | - Safa Ben Manaa
- Sorbonne Université, CNRS, UMR Biological Adaptation and Aging, AP-HP, Charles Foix Hospital, Functional Exploration Unit for Older Patients, Ivry-sur-Seine, France
| | - Mohamed Doulazmi
- Sorbonne University, CNRS, UMR 8256 Biological Adaptation and Aging, Paris, France
| | - Jérémy Laforêt
- Université de Technologie de Compiègne (UTC), CNRS UMR 7338 Biomechanics and Bioengineering, Centre de Recherche de Royallieu- Alliance Sorbonne Université, Compiegne, France
| | - Frédéric Marin
- Université de Technologie de Compiègne (UTC), CNRS UMR 7338 Biomechanics and Bioengineering, Centre de Recherche de Royallieu- Alliance Sorbonne Université, Compiegne, France
| | - Kiyoka Kinugawa
- Sorbonne Université, CNRS, UMR Biological Adaptation and Aging, AP-HP, Charles Foix Hospital, Functional Exploration Unit for Older Patients, Ivry-sur-Seine, France
| |
Collapse
|
6
|
Siddique U, Frazer AK, Avela J, Walker S, Ahtiainen JP, Howatson G, Tallent J, Kidgell DJ. Determining the cortical, spinal and muscular adaptations to strength-training in older adults: A systematic review and meta-analysis. Ageing Res Rev 2022; 82:101746. [PMID: 36223874 DOI: 10.1016/j.arr.2022.101746] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 01/31/2023]
Abstract
There are observable decreases in muscle strength as a result of ageing that occur from the age of 40, which are thought to occur as a result of changes within the neuromuscular system. Strength-training in older adults is a suitable intervention that may counteract the age-related loss in force production. The neuromuscular adaptations (i.e., cortical, spinal and muscular) to strength-training in older adults are largely equivocal and a systematic review with meta-analysis will serve to clarify the present circumstances regarding the benefits of strength-training in older adults. 20 studies entered the meta-analysis and were analysed using a random-effects model. A best evidence synthesis that included 36 studies was performed for variables that had insufficient data for meta-analysis. One study entered both. There was strong evidence that strength-training increases maximal force production, rate of force development and muscle activation in older adults. There was limited evidence for strength-training to improve voluntary-activation, the volitional-wave and spinal excitability, but strong evidence for increased muscle mass. The findings suggest that strength-training performed between 2 and 12 weeks increases strength, rate of force development and muscle activation, which likely improves motoneurone excitability by increased motor unit recruitment and improved discharge rates.
Collapse
Affiliation(s)
- Ummatul Siddique
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Ashlyn K Frazer
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Janne Avela
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Finland
| | - Simon Walker
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Finland
| | - Juha P Ahtiainen
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Finland
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, UK; Water Research Group, North West University, Potchefstroom, South Africa
| | - Jamie Tallent
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia; School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
| | - Dawson J Kidgell
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia.
| |
Collapse
|
7
|
Sanchez MM, Bagdasarian IA, Darch W, Morgan JT. Organotypic cultures as aging associated disease models. Aging (Albany NY) 2022; 14:9338-9383. [PMID: 36435511 PMCID: PMC9740367 DOI: 10.18632/aging.204361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/21/2022] [Indexed: 11/24/2022]
Abstract
Aging remains a primary risk factor for a host of diseases, including leading causes of death. Aging and associated diseases are inherently multifactorial, with numerous contributing factors and phenotypes at the molecular, cellular, tissue, and organismal scales. Despite the complexity of aging phenomena, models currently used in aging research possess limitations. Frequently used in vivo models often have important physiological differences, age at different rates, or are genetically engineered to match late disease phenotypes rather than early causes. Conversely, routinely used in vitro models lack the complex tissue-scale and systemic cues that are disrupted in aging. To fill in gaps between in vivo and traditional in vitro models, researchers have increasingly been turning to organotypic models, which provide increased physiological relevance with the accessibility and control of in vitro context. While powerful tools, the development of these models is a field of its own, and many aging researchers may be unaware of recent progress in organotypic models, or hesitant to include these models in their own work. In this review, we describe recent progress in tissue engineering applied to organotypic models, highlighting examples explicitly linked to aging and associated disease, as well as examples of models that are relevant to aging. We specifically highlight progress made in skin, gut, and skeletal muscle, and describe how recently demonstrated models have been used for aging studies or similar phenotypes. Throughout, this review emphasizes the accessibility of these models and aims to provide a resource for researchers seeking to leverage these powerful tools.
Collapse
Affiliation(s)
- Martina M. Sanchez
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | | | - William Darch
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Joshua T. Morgan
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| |
Collapse
|
8
|
Factors of Muscle Quality and Determinants of Muscle Strength: A Systematic Literature Review. Healthcare (Basel) 2022; 10:healthcare10101937. [PMID: 36292384 PMCID: PMC9601777 DOI: 10.3390/healthcare10101937] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/04/2022] Open
Abstract
Muscle quality defined as the ratio of muscle strength to muscle mass disregards underlying factors which influence muscle strength. The aim of this review was to investigate the relationship of phase angle (PhA), echo intensity (EI), muscular adipose tissue (MAT), muscle fiber type, fascicle pennation angle (θf), fascicle length (lf), muscle oxidative capacity, insulin sensitivity (IS), neuromuscular activation, and motor unit to muscle strength. PubMed search was performed in 2021. The inclusion criteria were: (i) original research, (ii) human participants, (iii) adults (≥18 years). Exclusion criteria were: (i) no full-text, (ii) non-English or -German language, (iii) pathologies. Forty-one studies were identified. Nine studies found a weak−moderate negative (range r: [−0.26]−[−0.656], p < 0.05) correlation between muscle strength and EI. Four studies found a weak−moderate positive correlation (range r: 0.177−0.696, p < 0.05) between muscle strength and PhA. Two studies found a moderate-strong negative correlation (range r: [−0.446]−[−0.87], p < 0.05) between muscle strength and MAT. Two studies found a weak-strong positive correlation (range r: 0.28−0.907, p < 0.05) between θf and muscle strength. Muscle oxidative capacity was found to be a predictor of muscle strength. This review highlights that the current definition of muscle quality should be expanded upon as to encompass all possible factors of muscle quality.
Collapse
|
9
|
Verschueren A, Palminha C, Delmont E, Attarian S. Changes in neuromuscular function in elders: Novel techniques for assessment of motor unit loss and motor unit remodeling with aging. Rev Neurol (Paris) 2022; 178:780-787. [PMID: 35863917 DOI: 10.1016/j.neurol.2022.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022]
Abstract
Functional muscle fiber denervation is a major contributor to the decline in physical function observed with aging and is now a recognized cause of sarcopenia, a muscle disorder characterized by progressive and generalized degenerative loss of skeletal muscle mass, quality, and strength. There is an interrelationship between muscle strength, motor unit (MU) number, and aging, which suggests that a portion of muscle weakness in seniors may be attributable to the loss of functional MUs. During normal aging, there is a time-related progression of MU loss, an adaptive sprouting followed by a maladaptive sprouting, and continuing recession of terminal Schwann cells leading to a reduced capacity for compensatory reinnervation in elders. In amyotrophic lateral sclerosis, increasing age at onset predicts worse survival ALS and it is possible that age-related depletion of the motor neuron pool may worsen motor neuron disease. MUNE methods are used to estimate the number of functional MU, data from MUNIX arguing for motor neuron loss with aging will be reviewed. Recently, a new MRI technique MU-MRI could be used to assess the MU recruitment or explore the activity of a single MU. This review presents published studies on the changes of neuromuscular function with aging, then focusing on these two novel techniques for assessment of MU loss and MU remodeling.
Collapse
Affiliation(s)
- A Verschueren
- Reference Centre for Neuromuscular Disorders and ALS, CHU La Timone, Aix-Marseille University, 264, rue Saint Pierre, 13005 Marseille, France.
| | - C Palminha
- Reference Centre for Neuromuscular Disorders and ALS, CHU La Timone, Aix-Marseille University, 264, rue Saint Pierre, 13005 Marseille, France
| | - E Delmont
- Reference Centre for Neuromuscular Disorders and ALS, CHU La Timone, Aix-Marseille University, 264, rue Saint Pierre, 13005 Marseille, France
| | - S Attarian
- Reference Centre for Neuromuscular Disorders and ALS, CHU La Timone, Aix-Marseille University, 264, rue Saint Pierre, 13005 Marseille, France
| |
Collapse
|
10
|
Calf cirfumference as a predictor of skeletal muscle mass in postmenopausal women. CLINICAL NUTRITION OPEN SCIENCE 2022. [DOI: 10.1016/j.nutos.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Macher S, Unger E, Zalaudek M, Weber M, Kranz G, Kranz G, Kasprian G, Sycha T. Denervation Dynamics After Intramuscular BNT Injection in Patients With Focal Spasticity Monitored by MRI and Dynamometry-a Blinded Randomized Controlled Pilot Study. Front Neurol 2021; 12:719030. [PMID: 34867709 PMCID: PMC8640502 DOI: 10.3389/fneur.2021.719030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Botulinumtoxin associated muscle denervation (BNTMD) can be detected by magnet resonance imaging (MRI), MRI may provide further insights into the exact timeline of BNTMD and the potential impact and timing of physical exercise. We aimed to assess the time interval until detection of BNTMD by MRI and whether immediate physical exercise after intramuscular BNT injection has a measurable effect on clinical parameters and the intramuscular denervation dynamics illustrated by MRI. Materials and Methods: Eleven age-matched patients were randomized to an “exercise” or “no-exercise” group. Eighty mouse-units of incobotulinumtoxin were injected into the spastic biceps muscle. MRI of the injected region, hand-held dynamometry of elbow flexor strength and clinical rating scales (mAS, CGI-I) were conducted in predefined intervals. Results: We could not detect BNTMD within 24 h but 7 days after injection independent of group allocation (exercise n = 6, no-exercise n = 5). Denervation signs were more diffuse and spread into adjacent muscles in patients having received exercise. We could not detect differences concerning clinical measures between the two groups. Conclusions: Physical exercise might influence BNTMD dynamics and promote propagation of T2-MR muscle denervation signs from the injected site into adjacent muscles. Trial registration:clinicaltrialsregister.eu, Identifier 2017-003117-25.
Collapse
Affiliation(s)
- Stefan Macher
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Ewald Unger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Martin Zalaudek
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Weber
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gottfried Kranz
- Neurologisches Rehabilitationszentrum Rosenhügel, Neurological Rehabilitation Center, Vienna, Austria
| | - Georg Kranz
- Department of Psychiatry, Medical University of Vienna, Vienna, Austria.,Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China.,The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Sycha
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Fuertes-Alvarez S, Izeta A. Terminal Schwann Cell Aging: Implications for Age-Associated Neuromuscular Dysfunction. Aging Dis 2021; 12:494-514. [PMID: 33815879 PMCID: PMC7990373 DOI: 10.14336/ad.2020.0708] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Action potential is transmitted to muscle fibers through specialized synaptic interfaces called neuromuscular junctions (NMJs). These structures are capped by terminal Schwann cells (tSCs), which play essential roles during formation and maintenance of the NMJ. tSCs are implicated in the correct communication between nerves and muscles, and in reinnervation upon injury. During aging, loss of muscle mass and strength (sarcopenia and dynapenia) are due, at least in part, to the progressive loss of contacts between muscle fibers and nerves. Despite the important role of tSCs in NMJ function, very little is known on their implication in the NMJ-aging process and in age-associated denervation. This review summarizes the current knowledge about the implication of tSCs in the age-associated degeneration of NMJs. We also speculate on the possible mechanisms underlying the observed phenotypes.
Collapse
Affiliation(s)
- Sandra Fuertes-Alvarez
- 1Biodonostia, Tissue Engineering Group, Paseo Dr. Begiristain, s/n, San Sebastian 20014, Spain
| | - Ander Izeta
- 1Biodonostia, Tissue Engineering Group, Paseo Dr. Begiristain, s/n, San Sebastian 20014, Spain.,2Tecnun-University of Navarra, School of Engineering, Department of Biomedical Engineering and Science, Paseo Mikeletegi, 48, San Sebastian 20009, Spain
| |
Collapse
|
13
|
Pasco JA, Stuart AL, Sui SX, Holloway-Kew KL, Hyde NK, Tembo MC, Rufus-Membere P, Kotowicz MA, Williams LJ. Dynapenia and Low Cognition: A Cross-Sectional Association in Postmenopausal Women. J Clin Med 2021; 10:jcm10020173. [PMID: 33418963 PMCID: PMC7825045 DOI: 10.3390/jcm10020173] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/03/2022] Open
Abstract
Dynapenia is a key contributor to physical frailty. Cognitive impairment and dementia accompany frailty, yet links between skeletal muscle and neurocognition are poorly understood. We examined the cross-sectional relationship between lower limb muscle strength and global cognitive function. Participants were 127 women aged 51–87 years, from the Geelong Osteoporosis Study. Peak eccentric strength of the hip-flexors and hip abductors was determined using a hand-held dynamometer, and dynapenia identified as muscle strength t-scores < −1. Cognition was assessed using the Mini-Mental State Examination (MMSE), and MMSE scores below the median were rated as low. Associations between dynapenia and low cognition were examined using logistic regression models. Hip-flexor dynapenia was detected in 38 (71.7%) women with low cognition and 36 (48.7%) with good cognition (p = 0.009); for hip abductor dynapenia, the pattern was similar (21 (39.6%) vs. 9 (12.2%); p < 0.001). While the observed difference for hip-flexor strength was attenuated after adjusting for age and height (adjusted Odds Ratio (OR) 1.95, 95%CI 0.86–4.41), low cognition was nearly 4-fold more likely in association with hip abductor dynapenia (adjusted OR 3.76, 95%CI 1.44–9.83). No other confounders were identified. Our data suggest that low strength of the hip abductors and low cognition are associated and this could be a consequence of poor muscle function contributing to cognitive decline or vice versa. As muscle weakness is responsive to physical interventions, this warrants further investigation.
Collapse
Affiliation(s)
- Julie A. Pasco
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (A.L.S.); (S.X.S.); (K.L.H.-K.); (N.K.H.); (M.C.T.); (P.R.-M.); (M.A.K.); (L.J.W.)
- Department of Medicine-Western Health, The University of Melbourne, St Albans, VIC 3021, Australia
- Barwon Health, Geelong, VIC 3220, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
- Correspondence: ; Tel.: +61-3-421-53331
| | - Amanda L. Stuart
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (A.L.S.); (S.X.S.); (K.L.H.-K.); (N.K.H.); (M.C.T.); (P.R.-M.); (M.A.K.); (L.J.W.)
| | - Sophia X. Sui
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (A.L.S.); (S.X.S.); (K.L.H.-K.); (N.K.H.); (M.C.T.); (P.R.-M.); (M.A.K.); (L.J.W.)
| | - Kara L. Holloway-Kew
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (A.L.S.); (S.X.S.); (K.L.H.-K.); (N.K.H.); (M.C.T.); (P.R.-M.); (M.A.K.); (L.J.W.)
| | - Natalie K. Hyde
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (A.L.S.); (S.X.S.); (K.L.H.-K.); (N.K.H.); (M.C.T.); (P.R.-M.); (M.A.K.); (L.J.W.)
| | - Monica C. Tembo
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (A.L.S.); (S.X.S.); (K.L.H.-K.); (N.K.H.); (M.C.T.); (P.R.-M.); (M.A.K.); (L.J.W.)
| | - Pamela Rufus-Membere
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (A.L.S.); (S.X.S.); (K.L.H.-K.); (N.K.H.); (M.C.T.); (P.R.-M.); (M.A.K.); (L.J.W.)
| | - Mark A. Kotowicz
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (A.L.S.); (S.X.S.); (K.L.H.-K.); (N.K.H.); (M.C.T.); (P.R.-M.); (M.A.K.); (L.J.W.)
- Department of Medicine-Western Health, The University of Melbourne, St Albans, VIC 3021, Australia
- Barwon Health, Geelong, VIC 3220, Australia
| | - Lana J. Williams
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (A.L.S.); (S.X.S.); (K.L.H.-K.); (N.K.H.); (M.C.T.); (P.R.-M.); (M.A.K.); (L.J.W.)
| |
Collapse
|
14
|
Asada Y, Imai T. Measurement of excitation-contraction coupling time in lower extremities. Phys Ther Res 2020; 24:29-34. [PMID: 33981525 DOI: 10.1298/ptr.e10053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/26/2020] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The aim of this study was to apply a novel method to measure excitation-contraction coupling time (ECCT) in normal soleus muscles. METHODS We performed simultaneous recordings of soleus compound muscle action potential (CMAP) and foot movement-related potential (MRP), and measured ankle plantar flexion torque in 36 healthy subjects. We calculated ECCT and examined the relations between CMAP, MRP, ECCT and ankle plantar flexion torque. RESULTS Statistical analyses established reference ranges (mean ± SE) for CMAP (13.4 ± 0.9 mV), MRP (5.3 ± 0.4 m/s2), ECCT (5.2 ± 0.1 ms), torque (85.9 ± 6.4 Nm) and torque/body weight (1.4 ± 0.1 Nm/kg). The torque showed a positive linear correlation with CMAP (p = 0.041) and a negative linear correlation with ECCT (p = 0.045). CONCLUSION Soleus ECCT can be recorded easily, and is useful to assess the impairment of E-C coupling in muscles of the lower extremities.
Collapse
Affiliation(s)
- Yuta Asada
- Sapporo Medical University Graduate School of Health Sciences, Japan
| | - Tomihiro Imai
- Sapporo Medical University Graduate School of Health Sciences, Japan
| |
Collapse
|
15
|
Williams SE, Koch KC, Disselhorst-Klug C. Non-invasive assessment of motor unit activation in relation to motor neuron level and lesion location in stroke and spinal muscular atrophy. Clin Biomech (Bristol, Avon) 2020; 78:105053. [PMID: 32563725 DOI: 10.1016/j.clinbiomech.2020.105053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neuromuscular disorders e.g. spinal muscular atrophy and stroke have a negative impact on functional movement capability. These disorders affect lower and upper motor neurons respectively. METHODS In this study high spatial resolution electromyography was used to record the motor unit activity in 3 groups: healthy subjects, a spinal muscular atrophy group and a stroke group. 7 clinically sensitive parameters were used to analyze the activation patterns of a few motor units. FINDINGS In the case of spinal muscular atrophy there was no effect on motor unit activation but on their number. Stroke was characterized by fewer active motor units and a significantly reduced firing rate with low variability. INTERPRETATION The results suggest, that for stroke, information from the brain is modified thereby resulting in motor units firing at their natural frequency. Thus, high spatial resolution electromyography and the chosen parameters facilitate non-invasive, objective differentiation and analysis of the activation patterns of motor units in neuromuscular disorders.
Collapse
Affiliation(s)
- Sybele E Williams
- Department of Rehabilitation and Prevention Engineering, Institute of Applied Medical Engineering, RWTH Aachen University, 52074 Aachen, Germany.
| | - Kathrin C Koch
- Department of Rehabilitation and Prevention Engineering, Institute of Applied Medical Engineering, RWTH Aachen University, 52074 Aachen, Germany
| | - Catherine Disselhorst-Klug
- Department of Rehabilitation and Prevention Engineering, Institute of Applied Medical Engineering, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
16
|
Gokuladhas S, Schierding W, Cameron-Smith D, Wake M, Scotter EL, O’Sullivan J. Shared Regulatory Pathways Reveal Novel Genetic Correlations Between Grip Strength and Neuromuscular Disorders. Front Genet 2020; 11:393. [PMID: 32391060 PMCID: PMC7194178 DOI: 10.3389/fgene.2020.00393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Muscle weakness is a common consequence of both aging (sarcopenia) and neuromuscular disorders (NMD). Whilst genome-wide association (GWA) studies have identified genetic variants associated with grip strength (GS; measure of muscle strength/weakness) and NMDs, including multiple sclerosis (MS), myasthenia gravis (MG) and amyotrophic lateral sclerosis (ALS), it is not known whether there are common mechanisms between these phenotypes. To examine this, we have integrated GS and NMD associated genetic variants (single nucleotide polymorphisms; SNPs) in a multimorbid analysis that leverages high-throughput chromatin interaction (Hi-C) data and expression quantitative trait loci data to identify target genes (i.e., SNP-mediated gene regulation). Biological pathways enriched by these genes were then identified using next-generation pathway enrichment analysis. Lastly, druggable genes were identified using drug gene interaction (DGI) database. We identified gene regulatory mechanisms associated with GS, MG, MS, and ALS. The SNPs associated with GS regulate a subset of genes that are also regulated by the SNPs of MS, MG, and ALS. Yet, we did not find any genes commonly regulated by all four phenotype associated SNPs. By contrast, we identified significant enrichment in three pathways (mTOR signaling, axon guidance, and alcoholism) that are commonly affected by the gene regulatory mechanisms associated with all four phenotypes. 13% of the genes we identified were known drug targets, and GS shares at least one druggable gene and pathway with each of the NMD phenotypes. We have identified significant biological overlaps between GS and NMD, demonstrating the potential for spatial genetic analysis to identify common mechanisms between potential multimorbid phenotypes. Collectively, our results form the foundation for a shift from a gene to a pathway-based approach to the rationale design of therapeutic interventions and treatments for NMD.
Collapse
Affiliation(s)
| | | | - David Cameron-Smith
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Melissa Wake
- Murdoch Children’s Research Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Emma L. Scotter
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Justin O’Sullivan
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
17
|
Nomura T, Kawae T, Kataoka H, Ikeda Y. Aging, physical activity, and diabetic complications related to loss of muscle strength in patients with type 2 diabetes. Phys Ther Res 2018; 21:33-38. [PMID: 30697507 DOI: 10.1298/ptr.r0002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/27/2018] [Indexed: 12/25/2022]
Abstract
Patients with type 2 diabetes may have motor dysfunctions such as loss of muscle strength. Compared with non-diabetic subjects, patients with diabetes show decreased lower extremity muscle strength. The aim of this review was to describe the influence of factors associated with loss of muscle strength in patients with type 2 diabetes. Aging promotes an accelerated loss of muscle strength in patients with diabetes. Physical inactivity may cause a decline in muscle strength in patients with diabetes. Gradual loss of muscle strength is related to the presence and severity of diabetic neuropathy. Diabetic nephropathy may be a factor contributing to loss of muscle strength, because decrease in skeletal muscle mass is a hallmark of end-stage renal disease. Resistance exercise is an essential component of diabetes treatment regimens and also plays a role in the prevention and management of sarcopenia. Intensive physical therapy intervention should be provided to patients with diabetes having decreased muscle strength.
Collapse
Affiliation(s)
- Takuo Nomura
- Department of Rehabilitation Sciences, Kansai University of Welfare Sciences
| | | | | | | |
Collapse
|
18
|
Sheth KA, Iyer CC, Wier CG, Crum AE, Bratasz A, Kolb SJ, Clark BC, Burghes AHM, Arnold WD. Muscle strength and size are associated with motor unit connectivity in aged mice. Neurobiol Aging 2018; 67:128-136. [PMID: 29656012 PMCID: PMC5981861 DOI: 10.1016/j.neurobiolaging.2018.03.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022]
Abstract
In older adults, the loss of muscle strength (dynapenia) and the loss of muscle mass (sarcopenia) are important contributors to the loss of physical function. We sought to investigate dynapenia, sarcopenia, and the loss of motor unit function in aging mice. C57BL/6J mice were analyzed with cross-sectional (males: 3 vs. 27 months; males and females: 8 vs. 12 vs. 20 months) and longitudinal studies (males: 10-25 months) using in vivo electrophysiological measures of motor unit connectivity (triceps surae compound muscle action potential and motor unit number estimation), in vivo measures of plantar flexion torque, magnetic resonance imaging of hind limb muscle volume, and grip strength. Compound muscle action potential amplitude, motor unit number estimation, and plantar flexion torque were decreased at 20 months. In contrast, grip strength was reduced at 24 months. Motor unit number estimates correlated with muscle torque and hind limb muscle volume. Our results demonstrate that the loss of motor unit connectivity is an early finding in aging male and female mice and that muscle size and contractility are both associated with motor unit number.
Collapse
Affiliation(s)
- Kajri A Sheth
- Department of Neurology, Ohio State University, Columbus, OH, USA
| | - Chitra C Iyer
- Department of Neurology, Ohio State University, Columbus, OH, USA; Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Christopher G Wier
- Department of Neurology, Ohio State University, Columbus, OH, USA; Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Alexander E Crum
- Department of Neurology, Ohio State University, Columbus, OH, USA
| | - Anna Bratasz
- Small Animal Imaging Core, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Stephen J Kolb
- Department of Neurology, Ohio State University, Columbus, OH, USA; Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Brian C Clark
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, USA
| | - Arthur H M Burghes
- Department of Neurology, Ohio State University, Columbus, OH, USA; Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA
| | - W David Arnold
- Department of Neurology, Ohio State University, Columbus, OH, USA; Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, OH, USA; Department of Neuroscience, Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
19
|
Piasecki M, Ireland A, Piasecki J, Stashuk DW, Swiecicka A, Rutter MK, Jones DA, McPhee JS. Failure to expand the motor unit size to compensate for declining motor unit numbers distinguishes sarcopenic from non-sarcopenic older men. J Physiol 2018. [PMID: 29527694 PMCID: PMC5924831 DOI: 10.1113/jp275520] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Key points The age‐related loss of muscle mass is related to the loss of innervating motor neurons and denervation of muscle fibres. Not all denervated muscle fibres are degraded; some may be reinnervated by an adjacent surviving neuron, which expands the innervating motor unit proportional to the numbers of fibres rescued. Enlarged motor units have larger motor unit potentials when measured using electrophysiological techniques. We recorded much larger motor unit potentials in relatively healthy older men compared to young men, but the older men with the smallest muscles (sarcopenia) had smaller motor unit potentials than healthy older men. These findings suggest that healthy older men reinnervate large numbers of muscle fibres to compensate for declining motor neuron numbers, but a failure to do so contributes to muscle loss in sarcopenic men.
Abstract Sarcopenia results from the progressive loss of skeletal muscle mass and reduced function in older age. It is likely to be associated with the well‐documented reduction of motor unit numbers innervating limb muscles and the increase in size of surviving motor units via reinnervation of denervated fibres. However, no evidence exists to confirm the extent of motor unit remodelling in sarcopenic individuals. The aim of the present study was to compare motor unit size and number between young (n = 48), non‐sarcopenic old (n = 13), pre‐sarcopenic (n = 53) and sarcopenic (n = 29) men. Motor unit potentials (MUPs) were isolated from intramuscular and surface EMG recordings. The motor unit numbers were reduced in all groups of old compared with young men (all P < 0.001). MUPs were higher in non‐sarcopenic and pre‐sarcopenic men compared with young men (P = 0.039 and 0.001 respectively), but not in the vastus lateralis of sarcopenic old (P = 0.485). The results suggest that extensive motor unit remodelling occurs relatively early during ageing, exceeds the loss of muscle mass and precedes sarcopenia. Reinnervation of denervated muscle fibres probably expands the motor unit size in the non‐sarcopenic and pre‐sarcopenic old, but not in the sarcopenic old. These findings suggest that a failure to expand the motor unit size distinguishes sarcopenic from pre‐sarcopenic muscles. The age‐related loss of muscle mass is related to the loss of innervating motor neurons and denervation of muscle fibres. Not all denervated muscle fibres are degraded; some may be reinnervated by an adjacent surviving neuron, which expands the innervating motor unit proportional to the numbers of fibres rescued. Enlarged motor units have larger motor unit potentials when measured using electrophysiological techniques. We recorded much larger motor unit potentials in relatively healthy older men compared to young men, but the older men with the smallest muscles (sarcopenia) had smaller motor unit potentials than healthy older men. These findings suggest that healthy older men reinnervate large numbers of muscle fibres to compensate for declining motor neuron numbers, but a failure to do so contributes to muscle loss in sarcopenic men.
Collapse
Affiliation(s)
- M Piasecki
- School of Healthcare Science, Manchester Metropolitan University, Manchester, M15GD, UK
| | - A Ireland
- School of Healthcare Science, Manchester Metropolitan University, Manchester, M15GD, UK
| | - J Piasecki
- School of Healthcare Science, Manchester Metropolitan University, Manchester, M15GD, UK
| | - D W Stashuk
- Department of Systems Design Engineering, University of Waterloo, Ontario, N2L 3G1, Canada
| | - A Swiecicka
- Andrology Research Unit, Cardiovascular, Metabolic and Nutritional Sciences Domain, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - M K Rutter
- Andrology Research Unit, Cardiovascular, Metabolic and Nutritional Sciences Domain, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Diabetes Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - D A Jones
- School of Healthcare Science, Manchester Metropolitan University, Manchester, M15GD, UK
| | - J S McPhee
- School of Healthcare Science, Manchester Metropolitan University, Manchester, M15GD, UK
| |
Collapse
|
20
|
Siddiqi A, Poosapadi Arjunan S, Kumar DK. Computational model to investigate the relative contributions of different neuromuscular properties of tibialis anterior on force generated during ankle dorsiflexion. Med Biol Eng Comput 2018; 56:1413-1423. [PMID: 29335929 DOI: 10.1007/s11517-018-1788-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
Abstract
This study describes a new model of the force generated by tibialis anterior muscle with three new features: single-fiber action potential, twitch force, and pennation angle. This model was used to investigate the relative effects and interaction of ten age-associated neuromuscular parameters. Regression analysis (significance level of 0.05) between the neuromuscular properties and corresponding simulated force produced at the footplate was performed. Standardized slope coefficients were computed to rank the effect of the parameters. The results show that reduction in the average firing rate is the reason for the sharp decline in the force and other factors, such as number of muscle fibers, specific force, pennation angle, and innervation ratio. The fast fiber ratio affects the simulated force through two significant interactions. This study has ranked the individual contributions of the neuromuscular factors to muscle strength decline of the TA and identified firing rate decline as the biggest cause followed by decrease in muscle fiber number and specific force. The strategy for strength preservation for the elderly should focus on improving firing rate. Graphical abstract Neuromuscular properties of Tibialis Anterior on force generated during ankle dorsiflexion.
Collapse
Affiliation(s)
- Ariba Siddiqi
- Biosignals Laboratory, School of Engineering, RMIT University, GPO Box 2476, Melbourne, VIC, Australia
| | - Sridhar Poosapadi Arjunan
- Biosignals Laboratory, School of Engineering, RMIT University, GPO Box 2476, Melbourne, VIC, Australia.
| | - Dinesh Kant Kumar
- Biosignals Laboratory, School of Engineering, RMIT University, GPO Box 2476, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Padilla Colón CJ, Molina-Vicenty IL, Frontera-Rodríguez M, García-Ferré A, Rivera BP, Cintrón-Vélez G, Frontera-Rodríguez S. Muscle and Bone Mass Loss in the Elderly Population: Advances in diagnosis and treatment. JOURNAL OF BIOMEDICINE (SYDNEY, NSW) 2018; 3:40-49. [PMID: 30505650 PMCID: PMC6261527 DOI: 10.7150/jbm.23390] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aging is the result of different functional changes leading to a substantial reduction of all human capabilities. A variety of anatomical and physiological changes occur with advancing age. These changes are more evident in the elderly population. There are various methods to measure muscle and bone mass loss, but the dual X-ray absorptiometry (DXA) is considered one of the most efficient. The elderly population (65 years and older) has been increasing throughout the years. Loss of muscle mass (sarcopenia) and loss bone mass (osteopenia or osteoporosis) with advancing age, when untreated, represent a major public health problem for the elderly population and may result in loss of independence in later life. Untreated age-related sarcopenia and osteopenia/osteoporosis increase the risk for falls and fractures, making older individuals more susceptible to the development of mobility limitations or severe disabilities that ultimately affect their capacity for independence. In this review, we will discuss the muscle and bone mass loss in the elderly population and advances in diagnosis and treatment.
Collapse
Affiliation(s)
- Carlos J. Padilla Colón
- Department of Education, Physical Education and Health Programs, San Juan, PR, USA
- Research and Development Service (151), VA Caribbean Healthcare System, San Juan PR, USA
| | - Irma L. Molina-Vicenty
- Research and Development Service (151), VA Caribbean Healthcare System, San Juan PR, USA
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
- Department of Radiological Sciences, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | - María Frontera-Rodríguez
- Research and Development Service (151), VA Caribbean Healthcare System, San Juan PR, USA
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | - Alejandra García-Ferré
- Research and Development Service (151), VA Caribbean Healthcare System, San Juan PR, USA
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | | | - Gerardo Cintrón-Vélez
- Research and Development Service (151), VA Caribbean Healthcare System, San Juan PR, USA
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | - Sebastián Frontera-Rodríguez
- Research and Development Service (151), VA Caribbean Healthcare System, San Juan PR, USA
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| |
Collapse
|
22
|
Arnold WD, Taylor RS, Li J, Nagy JA, Sanchez B, Rutkove SB. Electrical impedance myography detects age-related muscle change in mice. PLoS One 2017; 12:e0185614. [PMID: 29049394 PMCID: PMC5648130 DOI: 10.1371/journal.pone.0185614] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/16/2017] [Indexed: 12/14/2022] Open
Abstract
Loss of muscle mass and strength represents one of the most significant contributors to impaired function in older adults. Convenient and non-invasive biomarkers are needed that can readily identify and track age-related muscle change. Previous data has suggested electrical impedance myography (EIM) has the potential to serve in this capacity. In this study we investigated how changes in EIM compared with other standard measures of muscle structure and function in aged compared with young mice. A total of 19 male mice aged approximately 25 months and 19 male mice aged 3 months underwent surface multifrequency EIM of the right gastrocnemius muscle using standard methods. Fore and hind limb grip strength, sciatic compound muscle action potential amplitude, and in-situ force of the gastrocnemius were also measured; after sacrifice, gastrocnemius myofiber size was assessed using standard histology. Spearman correlation coefficients were calculated to investigate the association between EIM and muscle characteristics. EIM in aged animals demonstrated significantly lower 50 kHz impedance phase (p<0.001) and reactance (p<0.01) values as well as reduced multifrequency parameters. In contrast, absolute gastrocnemius muscle mass was no different between young and aged mice (p = 0.58) but was reduced in aged mice after normalization to body mass (p<0.001). Median myofiber size in the aged mice was not different from that of young mice (p = 0.72). Aged mice showed reduced muscle function on the basis of normalized fore limb (p<0.001) and normalized hind limb (p<0.001) grip strength, as well as normalized gastrocnemius twitch (p<0.001) and normalized maximal isometric force (p<0.001). Sciatic compound muscle action potential amplitude was reduced in aged mice (p<0.05). EIM parameters showed good correlation with reduced standard physiological and electrophysiological measures of muscle health. Our study suggests that EIM is sensitive to aged-related muscle change and may represent a convenient and valuable method of quantifying loss of muscle health.
Collapse
Affiliation(s)
- W. David Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Rebecca S. Taylor
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jia Li
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Janice A. Nagy
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Benjamin Sanchez
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Seward B. Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
23
|
Souza CFD, Vieira MCA, Nascimento RAD, Moreira MA, Câmara SMAD, Maciel ÁCC. Relationship between strength and muscle mass in middle-aged and elderly women: a cross-sectional study. REVISTA BRASILEIRA DE GERIATRIA E GERONTOLOGIA 2017. [DOI: 10.1590/1981-22562017020.170021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Abstract Objective: to analyze the relationship between handgrip strength and lower limb strength and the amount of segmental skeletal muscle mass in middle-aged and elderly women. Methods: an observational, cross-sectional, observational study of 540 women aged between 40 and 80 years in the cities of Parnamirim and Santa Cruz, Rio Grande do Norte, was performed. Sociodemographic data, anthropometric measurements, handgrip dynamometry, knee flexors and extensors of the dominant limbs, as well as the segmental muscle mass of the limbs were evaluated. Data were analyzed using Student's t-Test, Chi-square test, Effect Size and Pearson's Correlation (CI 95%). Results: there were statistically significant weak and moderate correlations between handgrip strength and upper limb muscle mass, knee flexion strength and lower limb muscle mass, and between knee extension strength and lower limb muscle mass for the age groups 40-59 years and 60 years or more (p<0.05). Conclusions: muscle strength correlates with skeletal muscle mass. It could therefore be an indicator of the decrease in strength. It is not the only such indicator, however, as correlations were weak and moderate, which suggests the need for more studies on this theme to elucidate which components may also influence the loss of strength with aging.
Collapse
|
24
|
Grimaldi S, Duprat L, Grapperon AM, Verschueren A, Delmont E, Attarian S. Global motor unit number index sum score for assessing the loss of lower motor neurons in amyotrophic lateral sclerosis. Muscle Nerve 2017; 56:202-206. [PMID: 28164325 DOI: 10.1002/mus.25595] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/18/2017] [Accepted: 01/25/2017] [Indexed: 11/11/2022]
Abstract
INTRODUCTION We propose a motor unit number index (MUNIX) global sum score in amyotrophic lateral sclerosis (ALS) to estimate the loss of functional motor units. METHODS MUNIX was assessed for 18 ALS patients and 17 healthy controls in 7 muscles: the abductor pollicis brevis (APB), abductor digiti minimi (ADM), tibialis anterior (TA), deltoid, trapezius, submental complex, and orbicularis oris. RESULTS MUNIX was significantly lower in ALS patients than in healthy controls for the APB, ADM, TA, and trapezius muscles. The MUNIX sum score of 4 muscles (ADM + APB + trapezius + TA) was lower in ALS patients (P = 0.01) and was correlated with clinical scores. DISCUSSION The global MUNIX sum score proposed in this study estimates the loss of lower motor neurons in several body regions, including the trapezius, and is correlated with clinical impairment in ALS patients. Muscle Nerve 56: 202-206, 2017.
Collapse
Affiliation(s)
- Stephan Grimaldi
- Reference Center for Neuromuscular Diseases and ALS, APHM, University Hospital of Marseille/Timone University Hospital, 264 rue Saint Pierre, 13005, Marseille, France
| | - Lauréline Duprat
- Reference Center for Neuromuscular Diseases and ALS, APHM, University Hospital of Marseille/Timone University Hospital, 264 rue Saint Pierre, 13005, Marseille, France
| | - Aude-Marie Grapperon
- Reference Center for Neuromuscular Diseases and ALS, APHM, University Hospital of Marseille/Timone University Hospital, 264 rue Saint Pierre, 13005, Marseille, France
| | - Annie Verschueren
- Reference Center for Neuromuscular Diseases and ALS, APHM, University Hospital of Marseille/Timone University Hospital, 264 rue Saint Pierre, 13005, Marseille, France
| | - Emilien Delmont
- Reference Center for Neuromuscular Diseases and ALS, APHM, University Hospital of Marseille/Timone University Hospital, 264 rue Saint Pierre, 13005, Marseille, France
| | - Shahram Attarian
- Reference Center for Neuromuscular Diseases and ALS, APHM, University Hospital of Marseille/Timone University Hospital, 264 rue Saint Pierre, 13005, Marseille, France.,Aix Marseille University, INSERM, GMGF, Marseille, France
| |
Collapse
|
25
|
HE JINBAO, YI XINHUA, LUO ZAIFEI. CHARACTERIZATION OF MOTOR UNIT AT DIFFERENT STRENGTHS WITH MULTI-CHANNEL SURFACE ELECTROMYOGRAPHY. J MECH MED BIOL 2017. [DOI: 10.1142/s0219519417500245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, specific changes in electromyographic characteristics of individual motor units (MUs) associated with different muscle contraction forces are investigated using multi-channel surface electromyography (SEMG). The gradient convolution kernel compensation (GCKC) algorithm is employed to separate individual MUs from their surface interferential electromyography (EMG) signals and provide the discharge instants, which is later used in the spike-triggered averaging (STA) techniques to obtain the complete waveform. The method was tested on experimental SEMG signals acquired during constant force contractions of biceps brachii muscles in five subjects. Electromyographic characteristics including the recruitment number, waveform amplitude, discharge pattern and innervation zone (IZ) are studied. Results show that changes in the action potential of single MU with different contraction force levels are consistent with those for all MUs, and that the amplitude of MU action potentials (MUAPs) provides a useful estimate of the muscle contraction forces.
Collapse
Affiliation(s)
- JINBAO HE
- School of Electronic and Information, Ningbo University of Science, Ningbo, Zhejiang, P. R. China
| | - XINHUA YI
- School of Mechanical Engineering, Ningbo University of Science, Ningbo, Zhejiang, P. R. China
| | - ZAIFEI LUO
- School of Electronic and Information, Ningbo University of Science, Ningbo, Zhejiang, P. R. China
| |
Collapse
|
26
|
Kirkland MC, Downer MB, Holloway BJ, Wallack EM, Lockyer EJ, Buckle NCM, Abbott CL, Ploughman M. Bipedal Hopping Reveals Evidence of Advanced Neuromuscular Aging Among People With Mild Multiple Sclerosis. J Mot Behav 2016; 49:505-513. [PMID: 28033483 DOI: 10.1080/00222895.2016.1241750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Measures of walking such as the timed 25-ft walk test (T25FWT) may not be able to detect subtle impairment in lower limb function among people with multiple sclerosis (MS). We examined bipedal hopping to determine to what extent people with mild (Expanded Disease Severity Scale ≤ 3.5) MS (n = 13) would differ compared to age-, gender-, and education-matched controls (n = 9) and elderly participants (n = 13; ≥ 70 years old). We estimated lower limb power (e.g., hop length, velocity), consistency (e.g., variability of hop length, time), and symmetry (ratio of left to right foot). Participants completed the T25FWT and, after a rest, they then hopped using both feet 4 times along the walkway. We found that although all groups scored below the 6 -s cutoff for T25FWT, the elderly group had significantly shorter hop lengths, more variability, and more asymmetry than the controls. The results of the MS group were not significantly different from the elderly or controls in most measures and most of their values fell between the control and elderly groups. Hop length, but not measures of walking predicted Expanded Disease Severity Scale score (R2 = .38, p = .02). Bipedal hopping is a potentially useful measure of lower limb neuromuscular performance.
Collapse
Affiliation(s)
- Megan C Kirkland
- a Recovery & Performance Laboratory, Faculty of Medicine , Memorial University , St. John's, Newfoundland , Canada
| | - Matthew B Downer
- a Recovery & Performance Laboratory, Faculty of Medicine , Memorial University , St. John's, Newfoundland , Canada
| | - Brett J Holloway
- a Recovery & Performance Laboratory, Faculty of Medicine , Memorial University , St. John's, Newfoundland , Canada
| | - Elizabeth M Wallack
- a Recovery & Performance Laboratory, Faculty of Medicine , Memorial University , St. John's, Newfoundland , Canada
| | - Evan J Lockyer
- a Recovery & Performance Laboratory, Faculty of Medicine , Memorial University , St. John's, Newfoundland , Canada
| | - Natasha C M Buckle
- a Recovery & Performance Laboratory, Faculty of Medicine , Memorial University , St. John's, Newfoundland , Canada
| | - Courtney L Abbott
- a Recovery & Performance Laboratory, Faculty of Medicine , Memorial University , St. John's, Newfoundland , Canada
| | - Michelle Ploughman
- a Recovery & Performance Laboratory, Faculty of Medicine , Memorial University , St. John's, Newfoundland , Canada
| |
Collapse
|
27
|
Pereira PMG, Araújo ALFD, Oliveira ERLD, Costa MDGDS, Geraldes AAR, Cirilo-Sousa MDS. TAXA DE DESENVOLVIMENTO DE FORÇA E ATIVAÇÃO NEURAL EM MULHERES PÓS-MENOPAUSADAS. REV BRAS MED ESPORTE 2016. [DOI: 10.1590/1517-869220162205156276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO Introdução: O envelhecimento associa-se à redução da velocidade de contração e ativação das fibras musculares, influenciando a aptidão física e o desempenho funcional. Objetivo: Verificar o comportamento da taxa de desenvolvimento de força (TDF) e ativação neural em mulheres pós-menopausadas. Métodos: Vinte e quatro mulheres pós-menopausadas (63,2 ± 5,6 anos; 154,5 ± 7,3 cm e 64,7 ± 7,6 kg), funcionalmente independentes e fisicamente ativas, foram submetidas simultaneamente, à mensuração da força isométrica máxima e dos sinais eletromiográficos (EMG) dos seguintes músculos: vasto lateral (VL), reto femoral (RF) e vasto medial (VM), durante uma extensão unilateral do joelho do membro dominante. Tais resultados foram utilizados para calcular a TDF, o impulso contrátil, em intervalos de 20 ms nos primeiros 200 ms da contração muscular pelo uso da curva força/tempo, a taxa de ativação EMG (TAE) e a amplitude média EMG, em intervalos de 40 a 80 ms do início da integração EMG pelo uso da curva EMG/tempo. Resultados: Os valores da força variaram entre 29,19 a 86,04 N.m; a TDF variou de 1459,42 N.m.s-1 para 430,21 N.m.s-1 em 20 ms e 200 ms respectivamente, apontando valores decrescentes com o tempo; para o impulso foram observados valores entre 0,65 a 11,07 N.m.s; na mesma direção da TDF, a TAE apresentou valores decrescentes para o VL (1676,08 a 844,41 µVs-1), para o RF (1320,88 a 637,59 µVs-1) e para o VM (1747,63 a 914,09 µVs-1) em 20 e 200 ms, enquanto a amplitude EMG média teve valores de 33,77 a 50,32 µV para o VL, de 24,93 a 38,07 µV para o RF e de 37,07 a 54,78 µV para o VM em 40 ms e 80 ms, respectivamente. Conclusão: Em mulheres pós-menopausadas, a velocidade de aumento, a manutenção da força e a ativação EMG não são suficientes para manter TDF e TAE crescentes, demonstrando um possível risco de incapacidades funcionais e ocorrência de quedas.
Collapse
|
28
|
Zhou P, Li X, Li S, Nandedkar SD. A dilemma in stroke application: Standard or modified motor unit number index? Clin Neurophysiol 2016; 127:2756-2759. [PMID: 27417048 DOI: 10.1016/j.clinph.2016.05.185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/25/2016] [Accepted: 05/16/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Ping Zhou
- Guangdong Provincial Work Injury Rehabilitation Center, Guangzhou, China; Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston and TIRR Memorial Hermann Research Center, Houston, TX, USA.
| | - Xiaoyan Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston and TIRR Memorial Hermann Research Center, Houston, TX, USA
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston and TIRR Memorial Hermann Research Center, Houston, TX, USA
| | | |
Collapse
|
29
|
Jones G, Neubauer N, O'Connor B, Jakobi J. EMG Functional tasks recordings determines frailty phenotypes in males and females. Exp Gerontol 2016; 77:12-8. [DOI: 10.1016/j.exger.2016.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/12/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
|
30
|
Piasecki M, Ireland A, Stashuk D, Hamilton-Wright A, Jones DA, McPhee JS. Age-related neuromuscular changes affecting human vastus lateralis. J Physiol 2015; 594:4525-36. [PMID: 26486316 PMCID: PMC4983624 DOI: 10.1113/jp271087] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/12/2015] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS Skeletal muscle size and strength decline in older age. The vastus lateralis, a large thigh muscle, undergoes extensive neuromuscular remodelling in healthy ageing, as characterized by a loss of motor neurons, enlargement of surviving motor units and instability of neuromuscular junction transmission. The loss of motor axons and changes to motor unit potential transmission precede a clinically-relevant loss of muscle mass and function. ABSTRACT The anterior thigh muscles are particularly susceptible to muscle loss and weakness during ageing, although how this is associated with changes to neuromuscular structure and function in terms of motor unit (MU) number, size and MU potential (MUP) stability remains unclear. Intramuscular (I.M.) and surface electromyographic signals were recorded from the vastus lateralis (VL) during voluntary contractions held at 25% maximal knee extensor strength in 22 young (mean ± SD, 25.3 ± 4.8 years) and 20 physically active older men (71.4 ± 6.2 years). MUP size, firing rates, phases, turns and near fibre (NF) jiggle were determined and MU number estimates (MUNEs) were made by comparing average surface MUP with maximal electrically-evoked compound muscle action potentials. Quadriceps cross-sectional area was measured by magnetic resonance imaging. In total, 379 individual MUs were sampled in younger men and 346 in older men. Compared to the MU in younger participants, those in older participants had 8% lower firing rates and larger MUP size (+25%), as well as increased complexity, as indicated by phases (+13%), turns (+20%) and NF jiggle (+11%) (all P < 0.0005). The MUNE values (derived from the area of muscle in range of the surface-electrode) in older participants were ∼70% of those in the young (P < 0.05). Taking into consideration the 30% smaller cross-sectional area of the VL, the total number of MUs in the older muscles was between 50% and 60% lower compared to in young muscles (P < 0.0005). A large portion of the VL MU pool is lost in older men and those recruited during moderate intensity contractions were enlarged and less stable. These MU changes were evident before clinically relevant changes to muscle function were apparent; nevertheless, the changes in MU number and size are probably a prelude to future movement problems.
Collapse
Affiliation(s)
- M Piasecki
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - A Ireland
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - D Stashuk
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - A Hamilton-Wright
- Mathematics and Computer Science, Mount Allison University, Sackville, New Brunswick, Canada
| | - D A Jones
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - J S McPhee
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
31
|
Piasecki M, Ireland A, Jones DA, McPhee JS. Age-dependent motor unit remodelling in human limb muscles. Biogerontology 2015; 17:485-96. [PMID: 26667009 PMCID: PMC4889636 DOI: 10.1007/s10522-015-9627-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/26/2015] [Indexed: 12/14/2022]
Abstract
Voluntary control of skeletal muscle enables humans to interact with and manipulate the environment. Lower muscle mass, weakness and poor coordination are common complaints in older age and reduce physical capabilities. Attention has focused on ways of maintaining muscle size and strength by exercise, diet or hormone replacement. Without appropriate neural innervation, however, muscle cannot function. Emerging evidence points to a neural basis of muscle loss. Motor unit number estimates indicate that by age around 71 years, healthy older people have around 40 % fewer motor units. The surviving low- and moderate-threshold motor units recruited for moderate intensity contractions are enlarged by around 50 % and show increased fibre density, presumably due to collateral reinnervation of denervated fibres. Motor unit potentials show increased complexity and the stability of neuromuscular junction transmissions is decreased. The available evidence is limited by a lack of longitudinal studies, relatively small sample sizes, a tendency to examine the small peripheral muscles and relatively few investigations into the consequences of motor unit remodelling for muscle size and control of movements in older age. Loss of motor neurons and remodelling of surviving motor units constitutes the major change in ageing muscles and probably contributes to muscle loss and functional impairments. The deterioration and remodelling of motor units likely imposes constraints on the way in which the central nervous system controls movements.
Collapse
Affiliation(s)
- Mathew Piasecki
- School of Healthcare Science, Manchester Metropolitan University, Manchester, M15GD, UK
| | - Alex Ireland
- School of Healthcare Science, Manchester Metropolitan University, Manchester, M15GD, UK
| | - David A Jones
- School of Healthcare Science, Manchester Metropolitan University, Manchester, M15GD, UK
| | - Jamie S McPhee
- School of Healthcare Science, Manchester Metropolitan University, Manchester, M15GD, UK.
| |
Collapse
|
32
|
Li X, Nandedkar SD, Zhou P. Modified motor unit number index: A simulation study of the first dorsal interosseous muscle. Med Eng Phys 2015; 38:115-20. [PMID: 26639774 DOI: 10.1016/j.medengphy.2015.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 10/23/2015] [Accepted: 11/06/2015] [Indexed: 12/14/2022]
Abstract
The motor unit number index (MUNIX) technique has provided a quick and convenient approach to estimating motor unit population changes in a muscle. Reduction in motor unit action potential (MUAP) amplitude can lead to underestimation of motor unit numbers using the standard MUNIX technique. This study aims to overcome this limitation by developing a modified MUNIX (mMUNIX) technique. The mMUNIX uses a variable that is associated with the area of compound muscle action potential (CMAP) rather than an arbitrary fixed value (20 mV ms) as used in the standard MUNIX to define the output. The performance of the mMUNIX was evaluated using motoneuron pool and surface electromyography (EMG) models. With a fixed motor unit number, the mMUNIX output remained relatively constant with varying degrees of MUAP amplitude changes, while the standard MUNIX substantially underestimated the motor unit number in such cases. However, when MUAP amplitude remained unchanged, the mMUNIX showed less sensitivity than the standard MUNIX in tracking motor unit loss. The current simulation study demonstrated both the advantages and limitations of the standard and modified MUNIX techniques, which can help guide appropriate application and interpretation of MUNIX measurements.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, 1333B Moursund St., Houston, TX, USA; TIRR Memorial Hermann Research Center, Houston, TX, USA.
| | | | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, 1333B Moursund St., Houston, TX, USA; TIRR Memorial Hermann Research Center, Houston, TX, USA; Guangdong Work Injury Rehabilitation Center, Guangzhou, China
| |
Collapse
|
33
|
Li X, He W, Li C, Wang YC, Slavens BA, Zhou P. Motor unit number index examination in dominant and non-dominant hand muscles. Laterality 2015; 20:699-710. [PMID: 26227495 DOI: 10.1080/1357650x.2015.1041971] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This study investigated the effect of handedness on motor unit number index (MUNIX). Maximal hand strength, compound muscle action potential (CMAP) and voluntary surface electromyography (EMG) signals were measured bilaterally for the first dorsal interosseous (FDI) and thenar muscles in 24 right-handed and 2 left-handed healthy subjects. Mean (±standard error) grip and pinch forces in the dominant hand were 43.99 ± 2.36 kg and 9.36 ± 0.52 kg respectively, significantly larger than those in the non-dominant hand (grip: 41.37 ± 2.29 kg, p < .001; pinch: 8.79 ± 0.46 kg, p < .01). Examination of myoelectric parameters did not show a significant difference among the CMAP area, the MUNIX or motor unit size index (MUSIX) between the two sides in the FDI and thenar muscles. In addition, there was a lack of correlation between the strength and myoelectric parameters in regression analysis. However, strong correlations were observed between dominant and non-dominant hand muscles in both strength and myoelectric measures. Our results indicate that the population of motor units or spinal motor neurons as estimated from MUNIX may not be associated with handedness. Such findings help understand and interpret the MUNIX during its application for clinical or laboratory investigations.
Collapse
Affiliation(s)
- Xiaoyan Li
- a Department of Physical Medicine and Rehabilitation , University of Texas Health Science Center at Houston, and TIRR Memorial Hermann Research Center , Houston , TX , USA
| | | | | | | | | | | |
Collapse
|
34
|
Li L, Li X, Liu J, Zhou P. Alterations in multidimensional motor unit number index of hand muscles after incomplete cervical spinal cord injury. Front Hum Neurosci 2015; 9:238. [PMID: 26005410 PMCID: PMC4424856 DOI: 10.3389/fnhum.2015.00238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/13/2015] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to apply a novel multidimensional motor unit number index (MD-MUNIX) technique to examine hand muscles in patients with incomplete cervical spinal cord injury (SCI). The MD-MUNIX was estimated from the compound muscle action potential (CMAP) and different levels of surface interference pattern electromyogram (EMG) at multiple directions of voluntary isometric muscle contraction. The MD-MUNIX was applied in the first dorsal interosseous (FDI), thenar and hypothenar muscles of SCI (n = 12) and healthy control (n = 12) subjects. The results showed that the SCI subjects had significantly smaller CMAP and MD-MUNIX in all the three examined muscles, compared to those derived from the healthy control subjects. The multidimensional motor unit size index (MD-MUSIX) demonstrated significantly larger values for the FDI and hypothenar muscles in SCI subjects than those from healthy control subjects, whereas the MD-MUSIX enlargement was marginally significant for the thenar muscles. The findings from the MD-MUNIX analyses provide an evidence of motor unit loss in hand muscles of cervical SCI patients, contributing to hand function deterioration.
Collapse
Affiliation(s)
- Le Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University Guangzhou, China ; Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, and TIRR Memorial Hermann Research Center Houston, TX, USA
| | - Xiaoyan Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, and TIRR Memorial Hermann Research Center Houston, TX, USA
| | - Jie Liu
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago Chicago, IL, USA
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, and TIRR Memorial Hermann Research Center Houston, TX, USA ; Biomedical Engineering Program, University of Science and Technology of China Hefei, China
| |
Collapse
|
35
|
Clark BC, Taylor JL, Hong SL, Law TD, Russ DW. Weaker Seniors Exhibit Motor Cortex Hypoexcitability and Impairments in Voluntary Activation. J Gerontol A Biol Sci Med Sci 2015; 70:1112-9. [PMID: 25834195 DOI: 10.1093/gerona/glv030] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 03/02/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Weakness predisposes seniors to a fourfold increase in functional limitations. The potential for age-related degradation in nervous system function to contribute to weakness and physical disability has garnered much interest of late. In this study, we tested the hypothesis that weaker seniors have impairments in voluntary (neural) activation and increased indices of GABAergic inhibition of the motor cortex, assessed using transcranial magnetic stimulation. METHODS Young adults (N = 46; 21.2±0.5 years) and seniors (N = 42; 70.7±0.9 years) had their wrist flexion strength quantified along with voluntary activation capacity (by comparing voluntary and electrically evoked forces). Single-pulse transcranial magnetic stimulation was used to measure motor-evoked potential amplitude and silent period duration during isometric contractions at 15% and 30% of maximum strength. Paired-pulse transcranial magnetic stimulation was used to measure intracortical facilitation and short-interval and long-interval intracortical inhibition. The primary analysis compared seniors to young adults. The secondary analysis compared stronger seniors (top two tertiles) to weaker seniors (bottom tertile) based on strength relative to body weight. RESULTS The most novel findings were that weaker seniors exhibited: (i) a 20% deficit in voluntary activation; (ii) ~20% smaller motor-evoked potentials during the 30% contraction task; and (iii) nearly twofold higher levels of long-interval intracortical inhibition under resting conditions. CONCLUSIONS These findings indicate that weaker seniors exhibit significant impairments in voluntary activation, and that this impairment may be mechanistically associated with increased GABAergic inhibition of the motor cortex.
Collapse
Affiliation(s)
| | - Janet L Taylor
- Neuroscience Research Australia and the University of New South Wales, Randwick, Australia
| | | | - Timothy D Law
- Ohio Musculoskeletal and Neurological Institute (OMNI) at Ohio University, Athens. Department of Family Medicine at Ohio University, Athens
| | - David W Russ
- Ohio Musculoskeletal and Neurological Institute (OMNI) at Ohio University, Athens. School of Rehabilitation and Communication Sciences at Ohio University, Athens
| |
Collapse
|
36
|
Marciniak C, Li X, Zhou P. An examination of motor unit number index in adults with cerebral palsy. J Electromyogr Kinesiol 2015; 25:444-50. [PMID: 25840713 DOI: 10.1016/j.jelekin.2015.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/22/2015] [Accepted: 02/13/2015] [Indexed: 12/14/2022] Open
Abstract
Spinal motor neuron loss may be a factor contributing to weakness in central disorders. The aim of this study was to assess whether motor unit numbers are reduced in the hand musculature of adults with cerebral palsy (CP) using the motor unit number index (MUNIX) technique. In this prospective, case-control study, 10 adults with CP were matched with healthy controls. MUNIX was computed using area and power of voluntary surface hypothenar electromyographic (EMG) signals and the compound muscle action potential (CMAP) recorded with ulnar nerve stimulation. The motor unit size index (MUSIX) was calculated based on maximum CMAP amplitude and MUNIX value. Gross Motor Function Classification Scale (GMFCS) and Manual Abilities Classification Scale (MACS) levels were rated for CP subjects. MUNIX was significantly lower for CP participants (Mean 167.8 vs. 214.4, p=.022). MUNIX values did not correlate with GMFCS or MACS. MUSIX values were higher, though not significantly, for CP subjects (p=.11). MUSIX increased with increasing MACS levels (r(2)=.4017, p=.049). Thus, motor unit numbers in ulnar hand muscles may be decreased with CP. MUSIX values are associated with greater hand impairment. Therefore, peripheral motor unit loss as a component of the weakness found with CP deserves further evaluation.
Collapse
Affiliation(s)
- Christina Marciniak
- Department of Physical Medicine and Rehabilitation and the Department of Neurology, Northwestern University Feinberg Medical School and the Rehabilitation Institute of Chicago.
| | - Xiaoyan Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, and TIRR Memorial Hermann Research Center, Houston, TX 77030, USA
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, and TIRR Memorial Hermann Research Center, Houston, TX 77030, USA; Biomedical Engineering Program, University of Science and Technology of China, Hefei, 230027, China
| |
Collapse
|
37
|
The effects of testosterone and insulin-like growth factor 1 on motor system form and function. Exp Gerontol 2015; 64:81-6. [PMID: 25681641 DOI: 10.1016/j.exger.2015.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/31/2015] [Accepted: 02/10/2015] [Indexed: 12/25/2022]
Abstract
In this perspective article, we review the effects of selected anabolic hormones on the motoric system and speculate on the role these hormones may have on influencing muscle and physical function via their impact on the nervous system. Both muscle strength and anabolic hormone levels decline around middle age into old age over a similar time period, and several animal and human studies indicate that exogenously increasing anabolic hormones (e.g., testosterone and insulin-like growth factor-1 (IGF-1)) in aged subjects is positively associated with improved muscle strength. While most studies in humans have focused on the effects of anabolic hormones on muscle growth, few have considered the impact these hormones have on the motoric system. However, data from animals demonstrate that administering either testosterone or IGF-1 to cells of the central and peripheral motor system can increase cell excitability, attenuate atrophic changes, and improve regenerative capacity of motor neurons. While these studies do not directly indicate that changes in anabolic hormones contribute to reduced human performance in the elderly (e.g., muscle weakness and physical limitations), they do suggest that additional research is warranted along these lines.
Collapse
|
38
|
Boccia G, Dardanello D, Rosso V, Pizzigalli L, Rainoldi A. The Application of sEMG in Aging: A Mini Review. Gerontology 2014; 61:477-84. [DOI: 10.1159/000368655] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/24/2014] [Indexed: 11/19/2022] Open
|
39
|
Motor unit number index (MUNIX) in the orbicularis oculi muscle of healthy subjects. Muscle Nerve 2014; 51:197-200. [DOI: 10.1002/mus.24292] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 11/07/2022]
|
40
|
Drey M, Sieber CC, Degens H, McPhee J, Korhonen MT, Müller K, Ganse B, Rittweger J. Relation between muscle mass, motor units and type of training in master athletes. Clin Physiol Funct Imaging 2014; 36:70-6. [DOI: 10.1111/cpf.12195] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/09/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Michael Drey
- Institute for Biomedicine of Ageing; University of Erlangen-Nürnberg; Nürnberg Germany
| | - Cornel C. Sieber
- Institute for Biomedicine of Ageing; University of Erlangen-Nürnberg; Nürnberg Germany
| | - Hans Degens
- School of Healthcare Science; Manchester Metropolitan University; Manchester UK
| | - Jamie McPhee
- School of Healthcare Science; Manchester Metropolitan University; Manchester UK
| | - Marko T. Korhonen
- Gerontology Research Center; Department of Health Sciences; University of Jyväskylä; Jyväskylä Finland
| | - Klaus Müller
- German Aerospace Center; Institute of Aerospace Medicine; Cologne Germany
| | - Bergita Ganse
- German Aerospace Center; Institute of Aerospace Medicine; Cologne Germany
| | - Jörn Rittweger
- German Aerospace Center; Institute of Aerospace Medicine; Cologne Germany
| |
Collapse
|
41
|
Zhou P, Nandedkar SD, Barkhaus PE. Voluntary Contraction Direction Dependence of Motor Unit Number Index in Patients with Amyotrophic Lateral Sclerosis. IEEE Trans Neural Syst Rehabil Eng 2014; 22:992-6. [DOI: 10.1109/tnsre.2014.2314391] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Li X, Liu J, Li S, Wang YC, Zhou P. Examination of hand muscle activation and motor unit indices derived from surface EMG in chronic stroke. IEEE Trans Biomed Eng 2014; 61:2891-8. [PMID: 24967982 DOI: 10.1109/tbme.2014.2333034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, we used muscle and motor unit indices, derived from convenient surface electromyography (EMG) measurements, for examination of paretic muscle changes post stroke. For 12 stroke subjects, compound muscle action potential and voluntary surface EMG signals were recorded from paretic and contralateral first dorsal interosseous, abductor pollicis brevis, and abductor digiti minimi muscles. Muscle activation index (AI), motor unit number index (MUNIX), and motor unit size index (MUSIX) were then calculated for each muscle. There was a significant AI reduction for all the three muscles in paretic side compared with contralateral side, providing an evidence of muscle activation deficiency after stroke. The hand MUNIX (defined by summing the values from the three muscles) was significantly reduced in paretic side compared with contralateral side, whereas the hand MUSIX was not significantly different. Furthermore, diverse changes in MUNIX and MUSIX were observed from the three muscles. A major feature of the present examinations is the primary reliance on surface EMG, which offers practical benefits because it is noninvasive, induces minimal discomfort and can be performed quickly.
Collapse
|
43
|
Motoneuron Loss Is Associated With Sarcopenia. J Am Med Dir Assoc 2014; 15:435-9. [DOI: 10.1016/j.jamda.2014.02.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/30/2014] [Accepted: 02/04/2014] [Indexed: 12/14/2022]
|
44
|
Influence of aging on bimanual coordination control. Exp Gerontol 2014; 53:40-7. [DOI: 10.1016/j.exger.2014.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 12/08/2013] [Accepted: 02/08/2014] [Indexed: 10/25/2022]
|
45
|
Dalton BH, Allen MD, Power GA, Vandervoort AA, Rice CL. The effect of knee joint angle on plantar flexor power in young and old men. Exp Gerontol 2014; 52:70-6. [PMID: 24462806 DOI: 10.1016/j.exger.2014.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/19/2013] [Accepted: 01/09/2014] [Indexed: 11/20/2022]
Abstract
Human adult aging is associated with a loss of strength, contractile velocity and hence, power. The principal plantar flexors, consisting of the bi-articular gastrocnemeii and the mono-articular soleus, appear to be affected differently by the aging process. However, the age-related effect of knee joint angle on the torque-angular velocity relationship and power production of this functionally important muscle group is unknown. The purpose was to determine whether flexing the knee, thereby reducing the gastrocnemius contribution to plantar flexion, would exacerbate the age-related decrements in plantar flexion power, or shift the torque-angular velocity relationship differently in older compared with young men. Neuromuscular properties were recorded from 10 young (~25 y) and 10 old (~78 y) men with the knee extended (170°) and flexed (90°), in a randomized order. Participants performed maximal voluntary isometric contractions (MVCs), followed by maximal velocity-dependent shortening contractions at pre-set loads, ranging from 15 to 75% MVC. The young men were ~20-25% stronger, ~12% faster and ~30% more powerful than the old for both knee angles (P<0.05). In both age groups, isometric MVC torque was ~17% greater in the extended than flexed knee position, with no differences in voluntary activation (>95%). The young men produced 7-12% faster angular velocities in the extended knee position for loads ≤30% MVC, but no differences at higher loads; whereas there were no detectable differences in angular velocity between knee positions in the old across all relative loads. For both knee angles, young men produced peak power at 43.3±9.0% MVC, whereas the old men produced peak power at 54.8±7.9% MVC. These data indicate that the young, who have faster contracting muscles compared with the old, can rely more on velocity than torque for generating maximal power.
Collapse
Affiliation(s)
- Brian H Dalton
- Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada; School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Human Physiology, University of Oregon, Eugene, OR, United States.
| | - Matti D Allen
- Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
| | - Geoffrey A Power
- Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada; Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada
| | - Anthony A Vandervoort
- Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada; School of Physical Therapy, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
| | - Charles L Rice
- Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|