1
|
Linterman MA. Age-dependent changes in T follicular helper cells shape the humoral immune response to vaccination. Semin Immunol 2023; 69:101801. [PMID: 37379670 DOI: 10.1016/j.smim.2023.101801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Vaccination is an excellent strategy to limit the morbidity and mortality associated with infectious disease. Vaccination creates protective, long-lived antibody-mediated immunity by inducing the germinal centre response, an intricate immune reaction that produces memory B cells and long-lived antibody-secreting plasma cells that provide protection against (re)infection. The magnitude and quality of the germinal centre response declines with age, contributing to poor vaccine-induced immunity in older individuals. T follicular helper cells are essential for the formation and function of the germinal centre response. This review will discuss how age-dependent changes in T follicular helper cells influence the germinal centre response, and the evidence that age-dependent changes need not be a barrier to successful vaccination in the later years of life.
Collapse
Affiliation(s)
- Michelle A Linterman
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom.
| |
Collapse
|
2
|
Chen J, Deng JC, Goldstein DR. How aging impacts vaccine efficacy: known molecular and cellular mechanisms and future directions. Trends Mol Med 2022; 28:1100-1111. [PMID: 36216643 PMCID: PMC9691569 DOI: 10.1016/j.molmed.2022.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 01/26/2023]
Abstract
Aging leads to a gradual dysregulation of immune functions, one consequence of which is reduced vaccine efficacy. In this review, we discuss several key contributing factors to the age-related decline in vaccine efficacy, such as alterations within the lymph nodes where germinal center (GC) reactions take place, alterations in the B cell compartment, alterations in the T cell compartment, and dysregulation of innate immune pathways. Additionally, we discuss several methods currently used in vaccine development to bolster vaccine efficacy in older adults. This review highlights the multifactorial defects that impair vaccine responses with aging.
Collapse
Affiliation(s)
- Judy Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jane C Deng
- Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA; Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Daniel R Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
Abstract
Innate and adaptive immune responses decline with age, leading to greater susceptibility to infectious diseases and reduced responses to vaccines. Diseases are more severe in old than in young individuals and have a greater impact on health outcomes such as morbidity, disability, and mortality. Aging is characterized by increased low-grade chronic inflammation, so-called inflammaging, that represents a link between changes in immune cells and a number of diseases and syndromes typical of old age. In this review we summarize current knowledge on age-associated changes in immune cells with special emphasis on B cells, which are more inflammatory and less responsive to infections and vaccines in the elderly. We highlight recent findings on factors and pathways contributing to inflammaging and how these lead to dysfunctional immune responses. We summarize recent published studies showing that adipose tissue, which increases in size with aging, contributes to inflammaging and dysregulated B cell function.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA; .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA.,Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Alain Diaz
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA;
| | - Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA;
| | - Denisse Garcia
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA;
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA; .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| |
Collapse
|
4
|
Lin X, Lin F, Liang T, Ducatez MF, Zanin M, Wong SS. Antibody Responsiveness to Influenza: What Drives It? Viruses 2021; 13:v13071400. [PMID: 34372607 PMCID: PMC8310379 DOI: 10.3390/v13071400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 02/06/2023] Open
Abstract
The induction of a specific antibody response has long been accepted as a serological hallmark of recent infection or antigen exposure. Much of our understanding of the influenza antibody response has been derived from studying antibodies that target the hemagglutinin (HA) protein. However, growing evidence points to limitations associated with this approach. In this review, we aim to highlight the issue of antibody non-responsiveness after influenza virus infection and vaccination. We will then provide an overview of the major factors known to influence antibody responsiveness to influenza after infection and vaccination. We discuss the biological factors such as age, sex, influence of prior immunity, genetics, and some chronic infections that may affect the induction of influenza antibody responses. We also discuss the technical factors, such as assay choices, strain variations, and viral properties that may influence the sensitivity of the assays used to measure influenza antibodies. Understanding these factors will hopefully provide a more comprehensive picture of what influenza immunogenicity and protection means, which will be important in our effort to improve influenza vaccines.
Collapse
Affiliation(s)
- Xia Lin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | - Fangmei Lin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | - Tingting Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | | | - Mark Zanin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Sook-San Wong
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +86-178-2584-6078
| |
Collapse
|
5
|
Guthmiller JJ, Utset HA, Wilson PC. B Cell Responses against Influenza Viruses: Short-Lived Humoral Immunity against a Life-Long Threat. Viruses 2021; 13:965. [PMID: 34067435 PMCID: PMC8224597 DOI: 10.3390/v13060965] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/25/2022] Open
Abstract
Antibodies are critical for providing protection against influenza virus infections. However, protective humoral immunity against influenza viruses is limited by the antigenic drift and shift of the major surface glycoproteins, hemagglutinin and neuraminidase. Importantly, people are exposed to influenza viruses throughout their life and tend to reuse memory B cells from prior exposure to generate antibodies against new variants. Despite this, people tend to recall memory B cells against constantly evolving variable epitopes or non-protective antigens, as opposed to recalling them against broadly neutralizing epitopes of hemagglutinin. In this review, we discuss the factors that impact the generation and recall of memory B cells against distinct viral antigens, as well as the immunological limitations preventing broadly neutralizing antibody responses. Lastly, we discuss how next-generation vaccine platforms can potentially overcome these obstacles to generate robust and long-lived protection against influenza A viruses.
Collapse
Affiliation(s)
- Jenna J. Guthmiller
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (H.A.U.); (P.C.W.)
| | - Henry A. Utset
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (H.A.U.); (P.C.W.)
| | - Patrick C. Wilson
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (H.A.U.); (P.C.W.)
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Frasca D, Blomberg BB. Aging induces B cell defects and decreased antibody responses to influenza infection and vaccination. IMMUNITY & AGEING 2020; 17:37. [PMID: 33292323 PMCID: PMC7674578 DOI: 10.1186/s12979-020-00210-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Background Aging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to vaccination. Among the several factors involved, in addition to increased frailty and high-risk conditions, the age-associated decrease in cellular and humoral immune responses plays a relevant role. This is in large part due to inflammaging, the chronic low-grade inflammatory status of the elderly, associated with intrinsic inflammation of the immune cells and decreased immune function. Results Aging is usually associated with reduced influenza virus-specific and influenza vaccine-specific antibody responses but some elderly individuals with higher pre-exposure antibody titers, due to a previous infection or vaccination, have less probability to get infected. Examples of this exception are the elderly individuals infected during the 2009 pandemic season who made antibodies with broader epitope recognition and higher avidity than those made by younger individuals. Several studies have allowed the identification of B cell intrinsic defects accounting for sub-optimal antibody responses of elderly individuals. These defects include 1) reduced class switch recombination, responsible for the generation of a secondary response of class switched antibodies, 2) reduced de novo somatic hypermutation of the antibody variable region, 3) reduced binding and neutralization capacity, as well as binding specificity, of the secreted antibodies, 4) increased epigenetic modifications that are associated with lower antibody responses, 5) increased frequencies of inflammatory B cell subsets, and 6) shorter telomeres. Conclusions Although influenza vaccination represents the most effective way to prevent influenza infection, vaccines with greater immunogenicity are needed to improve the response of elderly individuals. Recent advances in technology have made possible a broad approach to better understand the age-associated changes in immune cells, needed to design tailored vaccines and effective therapeutic strategies that will be able to improve the immune response of vulnerable individuals.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, RMSB 3146A, 1600 NW 10th Ave, Miami, FL, 33136, USA.
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, RMSB 3146A, 1600 NW 10th Ave, Miami, FL, 33136, USA
| |
Collapse
|
7
|
Arvey A, Rowe M, Legutki JB, An G, Gollapudi A, Lei A, Colston B, Putterman C, Smith D, Stiles J, Tarasow T, Ramamoorthy P. Age-associated changes in the circulating human antibody repertoire are upregulated in autoimmunity. IMMUNITY & AGEING 2020; 17:28. [PMID: 33042204 PMCID: PMC7539520 DOI: 10.1186/s12979-020-00193-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/24/2020] [Indexed: 12/26/2022]
Abstract
Background The immune system undergoes a myriad of changes with age. While it is known that antibody-secreting plasma and long-lived memory B cells change with age, it remains unclear how the binding profile of the circulating antibody repertoire is impacted. Results To understand humoral immunity changes with respect to age, we characterized serum antibody binding to high density peptide microarrays in a diverse cohort of 1675 donors. We discovered thousands of peptides that bind antibodies in age-dependent fashion, many of which contain di-serine motifs. Peptide binding profiles were aggregated into an “immune age” by a machine learning regression model that was highly correlated with chronological age. Applying this regression model to previously-unobserved donors, we found that a donor’s predicted immune age is longitudinally consistent over years, suggesting it could be a robust long-term biomarker of humoral immune ageing. Finally, we assayed serum from donors with autoimmune disease and found a significant association between “accelerated immune ageing” and autoimmune disease activity. Conclusions The circulating antibody repertoire has increased binding to thousands of di-serine peptide containing peptides in older donors, which can be represented as an immune age. Increased immune age is associated with autoimmune disease, acute inflammatory disease severity, and may be a broadly relevant biomarker of immune function in health, disease, and therapeutic intervention.
Collapse
Affiliation(s)
- Aaron Arvey
- iCarbonX 2424 Camino Ramon, Suite 125, San Ramon, CA 94583 USA
| | - Michael Rowe
- iCarbonX 2424 Camino Ramon, Suite 125, San Ramon, CA 94583 USA
| | | | - Gang An
- iCarbonX 2424 Camino Ramon, Suite 125, San Ramon, CA 94583 USA
| | | | - Anna Lei
- HealthTell, 145 S. 79th St., Chandler, AZ 85226 USA
| | - Bill Colston
- iCarbonX 2424 Camino Ramon, Suite 125, San Ramon, CA 94583 USA
| | - Chaim Putterman
- Albert Einstein College of Medicine, Division of Rheumatology, Forchheimer 701N, 1300 Morris Park Ave, Bronx, NY 10461 USA.,Azrieli Faculty of Medicine, Bar-Ilan University, Zefat, Israel.,Research Institute, Galilee Medical Center, Nahariya, Israel
| | - David Smith
- HealthTell, 145 S. 79th St., Chandler, AZ 85226 USA
| | | | | | | |
Collapse
|
8
|
Abstract
The age-associated B cell subset has been the focus of increasing interest over the last decade. These cells have a unique cell surface phenotype and transcriptional signature, and they rely on TLR7 or TLR9 signals in the context of Th1 cytokines for their formation and activation. Most are antigen-experienced memory B cells that arise during responses to microbial infections and are key to pathogen clearance and control. Their increasing prevalence with age contributes to several well-established features of immunosenescence, including reduced B cell genesis and damped immune responses. In addition, they are elevated in autoimmune and autoinflammatory diseases, and in these settings they are enriched for characteristic autoantibody specificities. Together, these features identify age-associated B cells as a subset with pivotal roles in immunological health, disease, and aging. Accordingly, a detailed understanding of their origins, functions, and physiology should make them tractable translational targets in each of these settings.
Collapse
Affiliation(s)
- Michael P. Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
9
|
Excessive CD11c +Tbet + B cells promote aberrant T FH differentiation and affinity-based germinal center selection in lupus. Proc Natl Acad Sci U S A 2019; 116:18550-18560. [PMID: 31451659 DOI: 10.1073/pnas.1901340116] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Excessive self-reactive and inadequate affinity-matured antigen-specific antibody responses have been reported to coexist in lupus, with elusive cellular and molecular mechanisms. Here, we report that the antigen-specific germinal center (GC) response-a process critical for antibody affinity maturation-is compromised in murine lupus models. Importantly, this defect can be triggered by excessive autoimmunity-relevant CD11c+Tbet+ age-associated B cells (ABCs). In B cell-intrinsic Ship-deficient (ShipΔB) lupus mice, excessive CD11c+Tbet+ ABCs induce deregulated follicular T-helper (TFH) cell differentiation through their potent antigen-presenting function and consequently compromise affinity-based GC selection. Excessive CD11c+Tbet+ ABCs and deregulated TFH cell are also present in other lupus models and patients. Further, over-activated Toll-like receptor signaling in Ship-deficient B cells is critical for CD11c+Tbet+ ABC differentiation, and blocking CD11c+Tbet+ ABC differentiation in ShipΔB mice by ablating MyD88 normalizes TFH cell differentiation and rescues antigen-specific GC responses, as well as prevents autoantibody production. Our study suggests that excessive CD11c+Tbet+ ABCs not only contribute significantly to autoantibody production but also compromise antigen-specific GC B-cell responses and antibody-affinity maturation, providing a cellular link between the coexisting autoantibodies and inadequate affinity-matured antigen-specific antibodies in lupus models and a potential target for treating lupus.
Collapse
|
10
|
Zhang Y, Tech L, George LA, Acs A, Durrett RE, Hess H, Walker LSK, Tarlinton DM, Fletcher AL, Hauser AE, Toellner KM. Plasma cell output from germinal centers is regulated by signals from Tfh and stromal cells. J Exp Med 2018; 215:1227-1243. [PMID: 29549115 PMCID: PMC5881458 DOI: 10.1084/jem.20160832] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 12/22/2017] [Accepted: 02/16/2018] [Indexed: 11/18/2022] Open
Abstract
Plasmablasts generated in germinal centers (GC) emerge at the GC–T zone interface (GTI). Zhang et al. demonstrate two major regulators of this process: Tfh-derived IL-21 and APRIL produced by CD157high fibroblastic reticular cells located in the GTI. Germinal centers (GCs) are the sites where B cells undergo affinity maturation. The regulation of cellular output from the GC is not well understood. Here, we show that from the earliest stages of the GC response, plasmablasts emerge at the GC–T zone interface (GTI). We define two main factors that regulate this process: Tfh-derived IL-21, which supports production of plasmablasts from the GC, and TNFSF13 (APRIL), which is produced by a population of podoplanin+ CD157high fibroblastic reticular cells located in the GTI that are also rich in message for IL-6 and chemokines CXCL12, CCL19, and CCL21. Plasmablasts in the GTI express the APRIL receptor TNFRSF13B (TACI), and blocking TACI interactions specifically reduces the numbers of plasmablasts appearing in the GTI. Plasma cells generated in the GTI may provide an early source of affinity-matured antibodies that may neutralize pathogens or provide feedback regulating GC B cell selection.
Collapse
Affiliation(s)
- Yang Zhang
- Institute of Immunology and Immunotherapy, Medical School/IBR, University of Birmingham, Birmingham, England, UK
| | - Laura Tech
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, Berlin, Germany
| | - Laura A George
- Institute of Immunology and Immunotherapy, Medical School/IBR, University of Birmingham, Birmingham, England, UK
| | - Andreas Acs
- Division of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Russell E Durrett
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX
| | - Henry Hess
- Translational Innovation Platform, Immunology, Merck KGaA, Darmstadt, Germany
| | - Lucy S K Walker
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, England, UK
| | - David M Tarlinton
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Anne L Fletcher
- Institute of Immunology and Immunotherapy, Medical School/IBR, University of Birmingham, Birmingham, England, UK
| | - Anja Erika Hauser
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, Berlin, Germany.,Charité Universitätsmedizin, Berlin, Germany
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, Medical School/IBR, University of Birmingham, Birmingham, England, UK
| |
Collapse
|
11
|
Ana-Sosa-Batiz F, Johnston APR, Hogarth PM, Wines BD, Barr I, Wheatley AK, Kent SJ. Antibody-dependent phagocytosis (ADP) responses following trivalent inactivated influenza vaccination of younger and older adults. Vaccine 2017; 35:6451-6458. [PMID: 29029940 DOI: 10.1016/j.vaccine.2017.09.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 01/10/2023]
Abstract
Globally the most commonly utilised immunisation against influenza is the trivalent inactivated influenza vaccine (TIV) derived from an A/H1N1, an A/H3N2 and aB type influenza virus. Vaccine effectiveness of TIV varies year to year, depending on how well antigenically matched the strains in the vaccine are compared to circulating strains [1,2]. Moreover, vaccine effectiveness can vary within certain subpopulations such as HIV-positive, young children and the elderly. Decreased vaccine effectiveness in the elderly is associated with impaired Ab production, as measured by standard hemagglutination inhibition (HAI) assays. We investigated the level of Antibody Dependent Phagocytosis (ADP)-mediating Abs induced by the 2008-TIV in healthy Australian adults aged over and under 60years to determine if this immune function was also reduced in the elderly. We utilised an ADP assay that measures the uptake of IgG-opsonised HA-coated fluorescent microspheres by a monocytic cell line. We also measured HA-specific Abs that are close enough to bind to dimeric FcγRIIa ectodomains in an ELISA-based assay. Furthermore, we compared the extent of cross-reactive recognition of diverse influenza strains by ADP-mediating Abs found in pre- and post-vaccination sera in both of these groups. We found that young adults and older adults mounted similar ADP activity against HAs contained in the 2008-TIV, despite older adults have diminished HI responses. The level of cross-reactive antibodies against other HAs was limited in both groups. We conclude that seasonal influenza vaccination elicits limited cross-reactive ADP to HA in both young and older adults. New influenza vaccination strategies that elicit cross-reactive and polyfunctional antibodies are needed.
Collapse
Affiliation(s)
- Fernanda Ana-Sosa-Batiz
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC 3000, Australia
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Australia
| | - P Mark Hogarth
- Burnett Institute, 85 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Bruce D Wines
- Burnett Institute, 85 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Ian Barr
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC 3000, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC 3000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC 3000, Australia; Melbourne Sexual Health Centre, Central Clinical School, Monash University, 580 Swanston Street, Carlton, VIC 3053, Melbourne, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Australia.
| |
Collapse
|
12
|
Frasca D, Blomberg BB. Adipose Tissue Inflammation Induces B Cell Inflammation and Decreases B Cell Function in Aging. Front Immunol 2017; 8:1003. [PMID: 28894445 PMCID: PMC5581329 DOI: 10.3389/fimmu.2017.01003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/04/2017] [Indexed: 12/22/2022] Open
Abstract
Aging is the greatest risk factor for developing chronic diseases. Inflamm-aging, the age-related increase in low-grade chronic inflammation, may be a common link in age-related diseases. This review summarizes recent published data on potential cellular and molecular mechanisms of the age-related increase in inflammation, and how these contribute to decreased humoral immune responses in aged mice and humans. Briefly, we cover how aging and related inflammation decrease antibody responses in mice and humans, and how obesity contributes to the mechanisms for aging through increased inflammation. We also report data in the literature showing adipose tissue infiltration with immune cells and how these cells are recruited and contribute to local and systemic inflammation. We show that several types of immune cells infiltrate the adipose tissue and these include macrophages, neutrophils, NK cells, innate lymphoid cells, eosinophils, T cells, B1, and B2 cells. Our main focus is how the adipose tissue affects immune responses, in particular B cell responses and antibody production. The role of leptin in generating inflammation and decreased B cell responses is also discussed. We report data published by us and by other groups showing that the adipose tissue generates pro-inflammatory B cell subsets which induce pro-inflammatory T cells, promote insulin resistance, and secrete pathogenic autoimmune antibodies.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
13
|
Russell Knode LM, Naradikian MS, Myles A, Scholz JL, Hao Y, Liu D, Ford ML, Tobias JW, Cancro MP, Gearhart PJ. Age-Associated B Cells Express a Diverse Repertoire of V H and Vκ Genes with Somatic Hypermutation. THE JOURNAL OF IMMUNOLOGY 2017; 198:1921-1927. [PMID: 28093524 DOI: 10.4049/jimmunol.1601106] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/20/2016] [Indexed: 12/18/2022]
Abstract
The origin and nature of age-associated B cells (ABCs) in mice are poorly understood. In this article, we show that their emergence required MHC class II and CD40/CD40L interactions. Young donor B cells were adoptively transferred into congenic recipients and allowed to remain for 1 mo in the absence of external Ag. B cells expressing the T-bet transcription factor, a marker for ABCs, were generated after multiple cell divisions from C57BL/6 donors but not from MHC class II- or CD40-deficient donors. Furthermore, old CD154 (CD40L)-deficient mice did not accrue ABCs, confirming that they arise primarily through T-dependent interactions. To determine what Igs ABCs express, we sequenced VH and Vκ rearranged genes from unimmunized 22-mo-old C57BL/6 mice and showed that they had a heterogeneous repertoire, which was comparable to that seen in old follicular and marginal zone B cell subsets. However, in contrast to the follicular and marginal zone cells, ABCs displayed significant somatic hypermutation. The mutation frequency was lower than found in germinal center cells after deliberate immunization, suggesting that ABCs have undergone mild stimulation from endogenous Ags over time. These observations show that quiescent ABCs are Ag-experienced cells that accumulate during T cell-dependent responses to diverse Ags during the life of an individual.
Collapse
Affiliation(s)
- Lisa M Russell Knode
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Martin S Naradikian
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Arpita Myles
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jean L Scholz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Yi Hao
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Danya Liu
- Emory Transplant Center and Department of Surgery, Emory University, Atlanta, GA 30322; and
| | - Mandy L Ford
- Emory Transplant Center and Department of Surgery, Emory University, Atlanta, GA 30322; and
| | - John W Tobias
- Penn Molecular Profiling Facility, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224;
| |
Collapse
|
14
|
Naradikian MS, Myles A, Beiting DP, Roberts KJ, Dawson L, Herati RS, Bengsch B, Linderman SL, Stelekati E, Spolski R, Wherry EJ, Hunter C, Hensley SE, Leonard WJ, Cancro MP. Cutting Edge: IL-4, IL-21, and IFN-γ Interact To Govern T-bet and CD11c Expression in TLR-Activated B Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:1023-8. [PMID: 27430719 DOI: 10.4049/jimmunol.1600522] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/20/2016] [Indexed: 01/19/2023]
Abstract
T-bet and CD11c expression in B cells is linked with IgG2c isotype switching, virus-specific immune responses, and humoral autoimmunity. However, the activation requisites and regulatory cues governing T-bet and CD11c expression in B cells remain poorly defined. In this article, we reveal a relationship among TLR engagement, IL-4, IL-21, and IFN-γ that regulates T-bet expression in B cells. We find that IL-21 or IFN-γ directly promote T-bet expression in the context of TLR engagement. Further, IL-4 antagonizes T-bet induction. Finally, IL-21, but not IFN-γ, promotes CD11c expression independent of T-bet. Using influenza virus and Heligmosomoides polygyrus infections, we show that these interactions function in vivo to determine whether T-bet(+) and CD11c(+) B cells are formed. These findings suggest that T-bet(+) B cells seen in health and disease share the common initiating features of TLR-driven activation within this circumscribed cytokine milieu.
Collapse
Affiliation(s)
- Martin S Naradikian
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Arpita Myles
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Daniel P Beiting
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kenneth J Roberts
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lucas Dawson
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ramin Sedaghat Herati
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Bertram Bengsch
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Susanne L Linderman
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Wistar Institute, Philadelphia, PA 19104; and
| | - Erietta Stelekati
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Rosanne Spolski
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - E John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Christopher Hunter
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Scott E Hensley
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Wistar Institute, Philadelphia, PA 19104; and
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|
15
|
The generation of memory B cells is maintained, but the antibody response is not, in the elderly after repeated influenza immunizations. Vaccine 2016; 34:2834-40. [PMID: 27108193 DOI: 10.1016/j.vaccine.2016.04.023] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/21/2016] [Accepted: 04/07/2016] [Indexed: 01/01/2023]
Abstract
The success of a vaccine in inducing a protective antibody response depends on the longevity of both long-lived plasma cells (PC) and memory B cells. We have previously shown that the in vivo antibody response to a new influenza vaccine, the ex vivo plasmablast response, the in vitro B cell function, measured by AID (activation-induced cytidine deaminase), and the transcription factor E47, are significantly associated and decreased in elderly individuals. We hypothesized that because AID is decreased in the elderly, the ability to generate memory B cells would also be decreased, but our findings here show that memory B cells are maintained in the elderly probably due to further amplification in response to repeated vaccination. We recruited young and elderly individuals immunized in at least two consecutive influenza vaccine seasons in which the influenza A viral strains H1N1 and H3N2 in the vaccine were the same as in the previous year. PBMC were cultured with CpG/IL2 to measure the frequency of IgG vaccine-specific memory B cells. Serum antibody response was measured by hemagglutination inhibition assay. Blood plasmablasts were measured by flow cytometry. Surprisingly, the frequencies of influenza vaccine-specific memory B cells and plasmablasts were similar in young and elderly individuals, but the fold-increase in serum titers after vaccination was lower in the elderly although most of the elderly were seroprotected. We then measured the transcription factor Blimp-1, considered the master regulator of PC differentiation, and found it significantly reduced in cultures of B cells from elderly versus young individuals, as well as E47/AID and IgG secretion. Taken together, these results suggest an impaired memory B cell to PC differentiation in the elderly.
Collapse
|
16
|
Frasca D, Blomberg BB. B Cell-Specific Biomarkers for Optimal Antibody Responses to Influenza Vaccination and Molecular Pathways That Reduce B Cell Function with Aging. Crit Rev Immunol 2016; 36:523-537. [PMID: 28845758 DOI: 10.1615/critrevimmunol.2017020113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This review highlights recent findings on the effects of aging on influenza vaccine responses, with major emphasis on T and B cells, which are significantly impaired by aging. We discuss changes in T cell production and thymic output; T cell subsets; and TCR repertoire, function, and response to latent persistent infection. We also discuss changes in B cell subsets, repertoire, and function, and how function is impaired by increased intrinsic B cell inflammation and reduced signal transduction. This review presents age-related effects on antigen-presenting cells, summarizes recent studies, including our own, aimed at the identification of biomarkers of protective vaccine responses, and provides examples of recent technical advances and insights into human vaccine responses that are helping to define the features associated with successful vaccination and that may enable a more predictive vaccinology in the future.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| |
Collapse
|
17
|
Naradikian MS, Hao Y, Cancro MP. Age-associated B cells: key mediators of both protective and autoreactive humoral responses. Immunol Rev 2015; 269:118-29. [DOI: 10.1111/imr.12380] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Martin S. Naradikian
- Department of Pathology and Laboratory Medicine; Perelman School of Medicine at the University of Pennsylvania; Philadelphia PA USA
| | - Yi Hao
- Department of Microbiology; Tongji Medical College; Huazhong University of Science and Technology, Wuhan, China
| | - Michael P. Cancro
- Department of Pathology and Laboratory Medicine; Perelman School of Medicine at the University of Pennsylvania; Philadelphia PA USA
| |
Collapse
|
18
|
Rubtsova K, Rubtsov AV, Cancro MP, Marrack P. Age-Associated B Cells: A T-bet-Dependent Effector with Roles in Protective and Pathogenic Immunity. THE JOURNAL OF IMMUNOLOGY 2015; 195:1933-7. [PMID: 26297793 DOI: 10.4049/jimmunol.1501209] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A newly discovered B cell subset, age-associated B cells, expresses the transcription factor T-bet, has a unique surface phenotype, and accumulates progressively with age. Moreover, B cells with these general features are associated with viral infections and autoimmunity in both mice and humans. In this article, we review current understanding of the characteristics, origins, and functions of these cells. We also suggest that the protective versus pathogenic actions of these cells reflect appropriate versus aberrant engagement of regulatory mechanisms that control the Ab responses to nucleic acid-containing Ags.
Collapse
Affiliation(s)
- Kira Rubtsova
- Howard Hughes Medical Institute, National Jewish Health, Denver, CO 80206; Department of Biomedical Science, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045;
| | - Anatoly V Rubtsov
- Howard Hughes Medical Institute, National Jewish Health, Denver, CO 80206; Department of Biomedical Science, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Philippa Marrack
- Howard Hughes Medical Institute, National Jewish Health, Denver, CO 80206; Department of Biomedical Science, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045; Department of Medicine, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045; and Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
19
|
Scalea JR, Redfield RR, Muth BL, Mohamed M, Wilson NA, Ellis TM, Kaufman DB, Djamali A. Older kidney transplant patients experience less antibody-mediated rejection: a retrospective study of patients with mild to moderate sensitization. Clin Transplant 2015; 29:1090-7. [DOI: 10.1111/ctr.12632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Joseph R. Scalea
- Division of Transplantation; Department of Surgery; University of Wisconsin; Madison WI USA
| | - Robert R. Redfield
- Division of Transplantation; Department of Surgery; University of Wisconsin; Madison WI USA
| | - Brenda L. Muth
- Division of Nephrology; Department of Medicine; University of Wisconsin; Madison WI USA
| | - Maha Mohamed
- Division of Nephrology; Department of Medicine; University of Wisconsin; Madison WI USA
| | - Nancy A. Wilson
- Division of Nephrology; Department of Medicine; University of Wisconsin; Madison WI USA
| | - Thomas M. Ellis
- Department of Surgery; HLA Laboratory; University of Wisconsin; Madison WI USA
| | - Dixon B. Kaufman
- Division of Transplantation; Department of Surgery; University of Wisconsin; Madison WI USA
| | - Arjang Djamali
- Division of Nephrology; Department of Medicine; University of Wisconsin; Madison WI USA
| |
Collapse
|
20
|
Immunosenescence in renal transplantation: a changing balance of innate and adaptive immunity. Curr Opin Organ Transplant 2015; 20:417-23. [PMID: 26154914 DOI: 10.1097/mot.0000000000000210] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW With global demographic changes and an overall improved healthcare, more older end-stage renal disease (ESRD) patients receive kidney transplants. At the same time, organs from older donors are utilized more frequently. Those developments have and will continue to impact allocation, immunosuppression and efforts improving organ quality. RECENT FINDINGS Findings mainly outside the field of transplantation have provided insights into mechanisms that drive immunosenescence and immunogenicity, thus providing a rationale for an age-adapted immunosuppression and relevant clinical trials in the elderly. With fewer rejections in the elderly, alloimmune responses appear to be characterized by a decline in effectiveness and an augmented unspecific immune response. SUMMARY Immunosenescence displays broad and ambivalent effects in elderly transplant recipients. Those changes appear to compensate a decline in allospecific effectiveness by a shift towards an augmented unspecific immune response. Immunosuppression needs to target those age-specific changes to optimize outcomes in elderly transplant recipients.
Collapse
|
21
|
“Aging and the Immune System”: Summary of a Satellite Meeting of the 15th International Congress of Immunology held in Milan, Italy, August 2013. Exp Gerontol 2014. [DOI: 10.1016/s0531-5565(14)00113-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|