1
|
Biga PR, Duan JE, Young TE, Marks JR, Bronikowski A, Decena LP, Randolph EC, Pavuluri AG, Li G, Fang Y, Wilkinson GS, Singh G, Nigrin NT, Larschan EN, Lonski AJ, Riddle NC. Hallmarks of aging: A user's guide for comparative biologists. Ageing Res Rev 2024; 104:102616. [PMID: 39643212 DOI: 10.1016/j.arr.2024.102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Since the first description of a set of characteristics of aging as so-called hallmarks or pillars in 2013/2014, these characteristics have served as guideposts for the research in aging biology. They have been examined in a range of contexts, across tissues, in response to disease conditions or environmental factors, and served as a benchmark for various anti-aging interventions. While the hallmarks of aging were intended to capture generalizable characteristics of aging, they are derived mostly from studies of rodents and humans. Comparative studies of aging including species from across the animal tree of life have great promise to reveal new insights into the mechanistic foundations of aging, as there is a great diversity in lifespan and age-associated physiological changes. However, it is unclear how well the defined hallmarks of aging apply across diverse species. Here, we review each of the twelve hallmarks of aging defined by Lopez-Otin in 2023 with respect to the availability of data from diverse species. We evaluate the current methods used to assess these hallmarks for their potential to be adapted for comparative studies. Not unexpectedly, we find that the data supporting the described hallmarks of aging are restricted mostly to humans and a few model systems and that no data are available for many animal clades. Similarly, not all hallmarks can be easily assessed in diverse species. However, for at least half of the hallmarks, there are methods available today that can be employed to fill this gap in knowledge, suggesting that these studies can be prioritized while methods are developed for comparative study of the remaining hallmarks.
Collapse
Affiliation(s)
- Peggy R Biga
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jingyue E Duan
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Tristan E Young
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jamie R Marks
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Anne Bronikowski
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Louis P Decena
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Eric C Randolph
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ananya G Pavuluri
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Guangsheng Li
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Yifei Fang
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | | | - Gunjan Singh
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Nathan T Nigrin
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Erica N Larschan
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Andrew J Lonski
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Nicole C Riddle
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
Dupoué A, Koechlin H, Huber M, Merrien P, Le Grand J, Corporeau C, Fleury E, Bernay B, de Villemereuil P, Morga B, Le Luyer J. Reproductive aging weakens offspring survival and constrains the telomerase response to herpesvirus in Pacific oysters. SCIENCE ADVANCES 2024; 10:eadq2311. [PMID: 39259784 PMCID: PMC11389786 DOI: 10.1126/sciadv.adq2311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
Telomere length (TL) is increasingly recognized as a molecular marker that reflects how reproductive aging affects intergenerational transmissions. Here, we investigated the effects of parental age on offspring survival and the regulation of TL by examining the telomere-elongating activity of telomerase in the Pacific oyster. We assessed the classical hallmarks of aging in parents at three age classes (young, middle-aged, and old) and crossbred them using a split-brood design to examine the consequences of the nine maternal-by-paternal age combinations on their offspring. Reproductive aging leads to increased larval mortality and accelerated telomere shortening in spats, rendering them more susceptible to infection by the Ostreid herpesvirus. Viral exposure stimulates telomerase activity, a response that we identified as adaptive, but weakened by parental aging. While telomerase lengthens a spat's telomere, paradoxically, longer individual TL predicts higher mortality in adults. The telomerase-telomere complex appeared as a conservative biomarker for distinguishing survivors and losers upon exposure to polymicrobial diseases.
Collapse
Affiliation(s)
- Andréaz Dupoué
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | - Hugo Koechlin
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | - Matthias Huber
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | - Pauline Merrien
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | | | | | - Elodie Fleury
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | - Benoît Bernay
- Plateforme Proteogen US EMerode, Université de Caen Normandie, Caen, France
| | - Pierre de Villemereuil
- Institut de Systématique, Évolution, Biodiversité (ISYEB), École Pratique des Hautes Études, PSL, MNHN, CNRS, SU, UA, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| | - Benjamin Morga
- Ifremer, ASIM, Adaptation Santé des Invertébrés Marins, La Tremblade, France
| | - Jérémy Le Luyer
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| |
Collapse
|
3
|
Mohajer F, Khoradmehr A, Riazalhosseini B, Zendehboudi T, Nabipour I, Baghban N. In vitro detection of marine invertebrate stem cells: utilizing molecular and cellular biology techniques and exploring markers. Front Cell Dev Biol 2024; 12:1440091. [PMID: 39239558 PMCID: PMC11374967 DOI: 10.3389/fcell.2024.1440091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Marine invertebrate stem cells (MISCs) represent a distinct category of pluripotent and totipotent cells with remarkable abilities for self-renewal and differentiation into multiple germ layers, akin to their vertebrate counterparts. These unique cells persist throughout an organism's adult life and have been observed in various adult marine invertebrate phyla. MISCs play crucial roles in numerous biological processes, including developmental biology phenomena specific to marine invertebrates, such as senescence, delayed senescence, whole-body regeneration, and asexual reproduction. Furthermore, they serve as valuable models for studying stem cell biology. Despite their significance, information about MISCs remains scarce and scattered in the scientific literature. In this review, we have carefully collected and summarized valuable information about MISC detection by perusing the articles that study and detect MISCs in various marine invertebrate organisms. The review begins by defining MISCs and highlighting their unique features compared to vertebrates. It then discusses the common markers for MISC detection and in vitro techniques employed in invertebrate and vertebrates investigation. This comprehensive review provides researchers and scientists with a cohesive and succinct overview of MISC characteristics, detection methods, and associated biological phenomena in marine invertebrate organisms. We aim to offer a valuable resource to researchers and scientists interested in marine invertebrate stem cells, fostering a better understanding of their broader implications in biology. With ongoing advancements in scientific techniques and the continued exploration of marine invertebrate species, we anticipate that further discoveries will expand our knowledge of MISCs and their broader implications in biology.
Collapse
Affiliation(s)
- Fatemeh Mohajer
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Behnaz Riazalhosseini
- The Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tuba Zendehboudi
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Neda Baghban
- Food Control Laboratory, Food and Drug Deputy, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
4
|
Frydrychová RČ, Konopová B, Peska V, Brejcha M, Sábová M. Telomeres and telomerase: active but complex players in life-history decisions. Biogerontology 2024; 25:205-226. [PMID: 37610666 DOI: 10.1007/s10522-023-10060-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023]
Abstract
Studies on human telomeres have established that telomeres exert a significant influence on lifespan and health of organisms. However, recent research has indicated that the original idea that telomeres affect lifespan in a universal and central manner across all eukaryotic species is an oversimplification. Indeed, findings from a variety of animal species revealed that the role of telomere biology in aging is more subtle and intricate than previously recognized. Here, we show how telomere biology varies depending on the taxon. We also show how telomere biology corresponds to basic life history traits and affects the life table of a species and investments in growth, body size, reproduction, and lifespan; telomeres are hypothesized to shape evolutionary perspectives for species in an active but complex manner. Our evaluation is based on telomere biology data from many examples from throughout the animal kingdom that vary according to the degree of organismal complexity and life history strategies.
Collapse
Affiliation(s)
- Radmila Čapková Frydrychová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, Ceske Budejovice, Czech Republic.
| | - Barbora Konopová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| | - Vratislav Peska
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Miloslav Brejcha
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, Ceske Budejovice, Czech Republic
| | - Michala Sábová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| |
Collapse
|
5
|
Lunghi E, Bilandžija H. Telomere length and dynamics in Astyanax mexicanus cave and surface morphs. PeerJ 2024; 12:e16957. [PMID: 38435987 PMCID: PMC10908260 DOI: 10.7717/peerj.16957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/25/2024] [Indexed: 03/05/2024] Open
Abstract
Background Telomeres are non-coding DNA repeats at the chromosome ends and their shortening is considered one of the major causes of aging. However, they also serve as a biomarker of environmental exposures and their length and attrition is affected by various stressors. In this study, we examined the average telomere length in Astyanax mexicanus, a species that has both surface-dwelling and cave-adapted populations. The cave morph descended from surface ancestors and adapted to a markedly different environment characterized by specific biotic and abiotic stressors, many of which are known to affect telomere length. Our objective was to explore whether telomere length differs between the two morphs and whether it serves as a biological marker of aging or correlates with the diverse environments the morphs are exposed to. Methods We compared telomere length and shortening between laboratory-reared Pachón cavefish and Rio Choy surface fish of A. mexicanus across different tissues and ages. Results Astyanax mexicanus surface fish exhibited longer average telomere length compared to cavefish. In addition, we did not observe telomere attrition in either cave or surface form as a result of aging in adults up to 9 years old, suggesting that efficient mechanisms prevent telomere-mediated senescence in laboratory stocks of this species, at least within this time frame. Our results suggest that telomere length in Astyanax may be considered a biomarker of environmental exposures. Cavefish may have evolved shorter and energetically less costly telomeres due to the absence of potential stressors known to affect surface species, such as predator pressure and ultra-violet radiation. This study provides the first insights into telomere dynamics in Astyanax morphs and suggests that shorter telomeres may have evolved as an adaptation to caves.
Collapse
Affiliation(s)
- Enrico Lunghi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Helena Bilandžija
- Division of Molecular Biology, Ruder Bošković Institute, Zagreb, Croatia
| |
Collapse
|
6
|
Dupoué A, Mello DF, Trevisan R, Dubreuil C, Queau I, Petton S, Huvet A, Guével B, Com E, Pernet F, Salin K, Fleury E, Corporeau C. Intertidal limits shape covariation between metabolic plasticity, oxidative stress and telomere dynamics in Pacific oyster (Crassostrea gigas). MARINE ENVIRONMENTAL RESEARCH 2023; 191:106149. [PMID: 37611374 DOI: 10.1016/j.marenvres.2023.106149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
In intertidal zones, species such as sessile shellfish exhibit extended phenotypic plasticity to face rapid environmental changes, but whether frequent exposure to intertidal limits of the distribution range impose physiological costs for the animal remains elusive. Here, we explored how phenotypic plasticity varied along foreshore range at multiple organization levels, from molecular to cellular and whole organism acclimatization, in the Pacific oyster (Crassostrea gigas). We exposed 7-month-old individuals for up to 16 months to three foreshore levels covering the vertical range for this species, representing 20, 50 and 80% of the time spent submerged monthly. Individuals at the upper range limit produced energy more efficiently, as seen by steeper metabolic reactive norms and unaltered ATP levels despite reduced mitochondrial density. By spending most of their time emerged, oysters mounted an antioxidant shielding concomitant with lower levels of pro-oxidant proteins and postponed age-related telomere attrition. Instead, individuals exposed at the lower limit range near subtidal conditions showed lower energy efficiencies, greater oxidative stress and shorter telomere length. These results unraveled the extended acclimatization strategies and the physiological costs of living too fast in subtidal conditions for an intertidal species.
Collapse
Affiliation(s)
- Andréaz Dupoué
- Ifremer, Univ Brest, CNRS, IRD, UMR 6539, LEMAR, F-29280, Plouzane, France.
| | | | - Rafael Trevisan
- Ifremer, Univ Brest, CNRS, IRD, UMR 6539, LEMAR, F-29280, Plouzane, France; Laboratoire Environnement Ressources Bretagne Occidentale (LER/BO), Ifremer, 29900, Concarneau, France
| | - Christine Dubreuil
- Ifremer, Univ Brest, CNRS, IRD, UMR 6539, LEMAR, F-29280, Plouzane, France
| | - Isabelle Queau
- Ifremer, Univ Brest, CNRS, IRD, UMR 6539, LEMAR, F-29280, Plouzane, France
| | - Sébastien Petton
- Ifremer, Univ Brest, CNRS, IRD, UMR 6539, LEMAR, F-29280, Plouzane, France
| | - Arnaud Huvet
- Ifremer, Univ Brest, CNRS, IRD, UMR 6539, LEMAR, F-29280, Plouzane, France
| | - Blandine Guével
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France; Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, F-35000, Rennes, France
| | - Emmanuelle Com
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France; Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, F-35000, Rennes, France
| | - Fabrice Pernet
- Ifremer, Univ Brest, CNRS, IRD, UMR 6539, LEMAR, F-29280, Plouzane, France
| | - Karine Salin
- Ifremer, Univ Brest, CNRS, IRD, UMR 6539, LEMAR, F-29280, Plouzane, France
| | - Elodie Fleury
- Ifremer, Univ Brest, CNRS, IRD, UMR 6539, LEMAR, F-29280, Plouzane, France
| | | |
Collapse
|
7
|
Ujvari B, Raven N, Madsen T, Klaassen M, Dujon AM, Schultz AG, Nunney L, Lemaître J, Giraudeau M, Thomas F. Telomeres, the loop tying cancer to organismal life-histories. Mol Ecol 2022; 31:6273-6285. [PMID: 35510763 PMCID: PMC9790343 DOI: 10.1111/mec.16488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 01/31/2023]
Abstract
Recent developments in telomere and cancer evolutionary ecology demonstrate a very complex relationship between the need of tissue repair and controlling the emergence of abnormally proliferating cells. The trade-off is balanced by natural and sexual selection and mediated via both intrinsic and environmental factors. Here, we explore the effects of telomere-cancer dynamics on life history traits and strategies as well as on the cumulative effects of genetic and environmental factors. We show that telomere-cancer dynamics constitute an incredibly complex and multifaceted process. From research to date, it appears that the relationship between telomere length and cancer risk is likely nonlinear with good evidence that both (too) long and (too) short telomeres can be associated with increased cancer risk. The ability and propensity of organisms to respond to the interplay of telomere dynamics and oncogenic processes, depends on the combination of its tissue environments, life history strategies, environmental challenges (i.e., extreme climatic conditions), pressure by predators and pollution, as well as its evolutionary history. Consequently, precise interpretation of telomere-cancer dynamics requires integrative and multidisciplinary approaches. Finally, incorporating information on telomere dynamics and the expression of tumour suppressor genes and oncogenes could potentially provide the synergistic overview that could lay the foundations to study telomere-cancer dynamics at ecosystem levels.
Collapse
Affiliation(s)
- Beata Ujvari
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Nynke Raven
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Thomas Madsen
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Marcel Klaassen
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Antoine M. Dujon
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Aaron G. Schultz
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Leonard Nunney
- Department of Evolution, Ecology and Organismal BiologyUniversity of California, RiversideRiversideCaliforniaUSA
| | - Jean‐François Lemaître
- Université de LyonLyonFrance,Laboratoire de Biométrie et Biologie ÉvolutiveUniversité Lyon 1CNRSUMR5558VilleurbanneFrance
| | - Mathieu Giraudeau
- CREEC/CANECEV (CREES)MIVEGECUnité Mixte de RecherchesIRD 224–CNRS 5290–Université de MontpellierMontpellierFrance,LIENSsUMR 7266 CNRS‐La Rochelle UniversitéLa RochelleFrance
| | - Frédéric Thomas
- CREEC/CANECEV (CREES)MIVEGECUnité Mixte de RecherchesIRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| |
Collapse
|
8
|
Dégletagne C, Abele D, Glöckner G, Alric B, Gruber H, Held C. Presence of male mitochondria in somatic tissues and their functional importance at the whole animal level in the marine bivalve Arctica islandica. Commun Biol 2021; 4:1104. [PMID: 34545198 PMCID: PMC8452683 DOI: 10.1038/s42003-021-02593-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/16/2021] [Indexed: 02/08/2023] Open
Abstract
Metazoans normally possess a single lineage of mitochondria inherited from the mother (♀-type mitochondria) while paternal mitochondria are absent or eliminated in fertilized eggs. In doubly uniparental inheritance (DUI), which is specific to the bivalve clade including the ocean quahog, Arctica islandica, ♂-type mitochondria are retained in male gonads and, in a few species, small proportions of ♂-type mitochondria co-exist with ♀-type in somatic tissues. To the best of our knowledge, we report, for the first time in metazoan, the natural occurrence of male and female individuals with exclusively ♂-type mitochondria in somatic tissues of the bivalve A. islandica. Mitochondrial genomes differ by ~5.5% at DNA sequence level. Exclusive presence of ♂-type mitochondria affects mitochondrial complexes partially encoded by mitochondrial genes and leads to a sharp drop in respiratory capacity. Through a combination of whole mitochondrial genome sequencing and molecular assays (gene presence and expression), we demonstrate that 1) 11% of individuals of an Icelandic population appear homoplasmic for ♂-type mitochondria in somatic tissues, 2) ♂-type mitochondrial genes are transcribed and 3) individuals with ♂-type mitochondria in somatic cells lose 30% of their wild-type respiratory capacity. This mitochondrial pattern in A. islandica is a special case of DUI, highlighted in individuals from both sexes with functional consequences at cellular and conceivably whole animal level.
Collapse
Affiliation(s)
- Cyril Dégletagne
- grid.10894.340000 0001 1033 7684Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany ,grid.7849.20000 0001 2150 7757Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France
| | - Doris Abele
- grid.10894.340000 0001 1033 7684Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Gernot Glöckner
- grid.6190.e0000 0000 8580 3777Institute for Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | - Benjamin Alric
- grid.7849.20000 0001 2150 7757Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France
| | - Heike Gruber
- grid.419520.b0000 0001 2222 4708Max Planck Institute for Evolutionary Biology, Department of Evolutionary Theory, Plön, Germany
| | - Christoph Held
- grid.10894.340000 0001 1033 7684Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| |
Collapse
|
9
|
Holtze S, Gorshkova E, Braude S, Cellerino A, Dammann P, Hildebrandt TB, Hoeflich A, Hoffmann S, Koch P, Terzibasi Tozzini E, Skulachev M, Skulachev VP, Sahm A. Alternative Animal Models of Aging Research. Front Mol Biosci 2021; 8:660959. [PMID: 34079817 PMCID: PMC8166319 DOI: 10.3389/fmolb.2021.660959] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/08/2021] [Indexed: 12/23/2022] Open
Abstract
Most research on mechanisms of aging is being conducted in a very limited number of classical model species, i.e., laboratory mouse (Mus musculus), rat (Rattus norvegicus domestica), the common fruit fly (Drosophila melanogaster) and roundworm (Caenorhabditis elegans). The obvious advantages of using these models are access to resources such as strains with known genetic properties, high-quality genomic and transcriptomic sequencing data, versatile experimental manipulation capabilities including well-established genome editing tools, as well as extensive experience in husbandry. However, this approach may introduce interpretation biases due to the specific characteristics of the investigated species, which may lead to inappropriate, or even false, generalization. For example, it is still unclear to what extent knowledge of aging mechanisms gained in short-lived model organisms is transferable to long-lived species such as humans. In addition, other specific adaptations favoring a long and healthy life from the immense evolutionary toolbox may be entirely missed. In this review, we summarize the specific characteristics of emerging animal models that have attracted the attention of gerontologists, we provide an overview of the available data and resources related to these models, and we summarize important insights gained from them in recent years. The models presented include short-lived ones such as killifish (Nothobranchius furzeri), long-lived ones such as primates (Callithrix jacchus, Cebus imitator, Macaca mulatta), bathyergid mole-rats (Heterocephalus glaber, Fukomys spp.), bats (Myotis spp.), birds, olms (Proteus anguinus), turtles, greenland sharks, bivalves (Arctica islandica), and potentially non-aging ones such as Hydra and Planaria.
Collapse
Affiliation(s)
- Susanne Holtze
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Ekaterina Gorshkova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Stan Braude
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Alessandro Cellerino
- Biology Laboratory, Scuola Normale Superiore, Pisa, Italy
- Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Philip Dammann
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- Central Animal Laboratory, University Hospital Essen, Essen, Germany
| | - Thomas B. Hildebrandt
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Faculty of Veterinary Medicine, Free University of Berlin, Berlin, Germany
| | - Andreas Hoeflich
- Division Signal Transduction, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Philipp Koch
- Core Facility Life Science Computing, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Eva Terzibasi Tozzini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Maxim Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir P. Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Arne Sahm
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| |
Collapse
|
10
|
Mikuła-Pietrasik J, Pakuła M, Markowska M, Uruski P, Szczepaniak-Chicheł L, Tykarski A, Książek K. Nontraditional systems in aging research: an update. Cell Mol Life Sci 2020; 78:1275-1304. [PMID: 33034696 PMCID: PMC7904725 DOI: 10.1007/s00018-020-03658-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
Abstract
Research on the evolutionary and mechanistic aspects of aging and longevity has a reductionist nature, as the majority of knowledge originates from experiments on a relatively small number of systems and species. Good examples are the studies on the cellular, molecular, and genetic attributes of aging (senescence) that are primarily based on a narrow group of somatic cells, especially fibroblasts. Research on aging and/or longevity at the organismal level is dominated, in turn, by experiments on Drosophila melanogaster, worms (Caenorhabditis elegans), yeast (Saccharomyces cerevisiae), and higher organisms such as mice and humans. Other systems of aging, though numerous, constitute the minority. In this review, we collected and discussed a plethora of up-to-date findings about studies of aging, longevity, and sometimes even immortality in several valuable but less frequently used systems, including bacteria (Caulobacter crescentus, Escherichia coli), invertebrates (Turritopsis dohrnii, Hydra sp., Arctica islandica), fishes (Nothobranchius sp., Greenland shark), reptiles (giant tortoise), mammals (blind mole rats, naked mole rats, bats, elephants, killer whale), and even 3D organoids, to prove that they offer biogerontologists as much as the more conventional tools. At the same time, the diversified knowledge gained owing to research on those species may help to reconsider aging from a broader perspective, which should translate into a better understanding of this tremendously complex and clearly system-specific phenomenon.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Martyna Pakuła
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Małgorzata Markowska
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Paweł Uruski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | | | - Andrzej Tykarski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| |
Collapse
|
11
|
Louzon M, Zahn S, Capelli N, Massemin S, Coeurdassier M, Pauget B, Gimbert F, de Vaufleury A. Impact of ageing and soil contaminants on telomere length in the land snail. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110766. [PMID: 32531572 DOI: 10.1016/j.ecoenv.2020.110766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Telomeres (TLs) are non-coding DNA sequences that are usually shortened with ageing and/or chemical exposure. Bioindicators such as the land snail can be used to assess the environmental risk of contaminated soils. As for most invertebrates, the evolution of TLs with ageing or exposure to contaminants is unknown in this mollusc. The aims of this study were to explore the relationships between ageing, contaminant exposure, sublethal effects and TL length in the terrestrial gastropod Cantareus aspersus. TL length was investigated in haemocytes from five age classes of C. aspersus. The impact of contaminants on sub-adult snails exposed to Cd, Hg or a mixture of polycyclic aromatic hydrocarbons (PAHs) in soils for one or two months was studied. Bioaccumulation, growth, sexual maturity and TLs were measured. TL attrition was significant for the juvenile and sub-adult stages, but not later. Exposure to Cd increased the mortality (around 30%). Exposure to polluted soils inhibited growth (19-40%) and sexual maturity (6-100%). Although the health of the snails exposed to Cd, Hg and PAHs was altered, TL length in haemocytes was not disturbed, suggesting a high capacity of this snail species to maintain its TLs in haemocytes under chemical stress. These results first address TL length in snails and reveal that the relationship commonly proposed for vertebrates between TL shortening and ageing or exposure to contaminants cannot be generalized.
Collapse
Affiliation(s)
- Maxime Louzon
- UMR CNRS 6249 Chrono-Environnement, University of Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Sandrine Zahn
- IPHC UMR 7178 DEPE CNRS, University of Strasbourg, 23 Rue du loess, 67087, Strasbourg, Cedex 3, France
| | - Nicolas Capelli
- UMR CNRS 6249 Chrono-Environnement, University of Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Sylvie Massemin
- IPHC UMR 7178 DEPE CNRS, University of Strasbourg, 23 Rue du loess, 67087, Strasbourg, Cedex 3, France
| | - Michaël Coeurdassier
- UMR CNRS 6249 Chrono-Environnement, University of Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | | | - Frédéric Gimbert
- UMR CNRS 6249 Chrono-Environnement, University of Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Annette de Vaufleury
- UMR CNRS 6249 Chrono-Environnement, University of Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France.
| |
Collapse
|
12
|
Koroleva AG, Evtushenko EV, Vershinin AV, Zaytseva EP, Timoshkin OA, Kirilchik SV. Age Dynamics of Telomere Length in Endemic Baikal Planarians. Mol Biol 2020. [DOI: 10.1134/s002689332004007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Johnson AA, Shokhirev MN, Shoshitaishvili B. Revamping the evolutionary theories of aging. Ageing Res Rev 2019; 55:100947. [PMID: 31449890 DOI: 10.1016/j.arr.2019.100947] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/20/2019] [Accepted: 08/21/2019] [Indexed: 01/04/2023]
Abstract
Radical lifespan disparities exist in the animal kingdom. While the ocean quahog can survive for half a millennium, the mayfly survives for less than 48 h. The evolutionary theories of aging seek to explain why such stark longevity differences exist and why a deleterious process like aging evolved. The classical mutation accumulation, antagonistic pleiotropy, and disposable soma theories predict that increased extrinsic mortality should select for the evolution of shorter lifespans and vice versa. Most experimental and comparative field studies conform to this prediction. Indeed, animals with extreme longevity (e.g., Greenland shark, bowhead whale, giant tortoise, vestimentiferan tubeworms) typically experience minimal predation. However, data from guppies, nematodes, and computational models show that increased extrinsic mortality can sometimes lead to longer evolved lifespans. The existence of theoretically immortal animals that experience extrinsic mortality - like planarian flatworms, panther worms, and hydra - further challenges classical assumptions. Octopuses pose another puzzle by exhibiting short lifespans and an uncanny intelligence, the latter of which is often associated with longevity and reduced extrinsic mortality. The evolutionary response to extrinsic mortality is likely dependent on multiple interacting factors in the organism, population, and ecology, including food availability, population density, reproductive cost, age-mortality interactions, and the mortality source.
Collapse
Affiliation(s)
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Boris Shoshitaishvili
- Division of Literatures, Cultures, and Languages, Stanford University, Stanford, CA, United States
| |
Collapse
|
14
|
Long-lived animals with negligible senescence: clues for ageing research. Biochem Soc Trans 2019; 47:1157-1164. [PMID: 31366472 DOI: 10.1042/bst20190105] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/28/2022]
Abstract
Among several theories to explain the complicated process of human ageing, the mitochondrial oxidative stress hypothesis has received recent attention. Considering that lifespan and ageing rates vary considerably across taxa, a better understanding of factors that lead to negligible or extremely rapid senescence in mammals may generate novel approaches to target human ageing. Several species, such as naked mole rats, ocean quahog, rockfish and Greenland shark, have been identified that exhibit negligible senescence and superior resistance to age-related diseases. Considering that the available literature suggests that their outstanding stress resistance is linked to maintenance of protein homeostasis and robust mitochondrial functions, treatments that target protein modification and upregulation of matrix antioxidants may have implications for extending human health span.
Collapse
|
15
|
Olsson M, Wapstra E, Friesen C. Ectothermic telomeres: it's time they came in from the cold. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2016.0449. [PMID: 29335373 PMCID: PMC5784069 DOI: 10.1098/rstb.2016.0449] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 12/17/2022] Open
Abstract
We review the evolutionary ecology and genetics of telomeres in taxa that cannot elevate their body temperature to a preferred level through metabolism but do so by basking or seeking out a warm environment. This group of organisms contains all living things on earth, apart from birds and mammals. One reason for our interest in this synthetic group is the argument that high, stable body temperature increases the risk of malignant tumours if long, telomerase-restored telomeres make cells 'live forever'. If this holds true, ectotherms should have significantly lower cancer frequencies. We discuss to what degree there is support for this 'anti-cancer' hypothesis in the current literature. Importantly, we suggest that ectothermic taxa, with variation in somatic telomerase expression across tissue and taxa, may hold the key to understanding ongoing selection and evolution of telomerase dynamics in the wild. We further review endotherm-specific effects of growth on telomeres, effects of autotomy ('tail dropping') on telomere attrition, and costs of maintaining sexual displays measured in telomere attrition. Finally, we cover plant ectotherm telomeres and life histories in a separate 'mini review'.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.
Collapse
Affiliation(s)
- Mats Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, Box 463, 405 30 Gothenburg, Sweden .,School of Biological Sciences, The University of Wollongong, 2522 Wollongong, New South Wales, Australia
| | - Erik Wapstra
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart 7001, Tasmania, Australia
| | - Christopher Friesen
- School of Life and Environmental Sciences, University of Sydney, Heydon-Laurence Bldg A08, Science Road, Sydney, NSW 2006, Australia
| |
Collapse
|
16
|
Wojtczyk-Miaskowska A, Schlichtholz B. DNA damage and oxidative stress in long-lived aquatic organisms. DNA Repair (Amst) 2018; 69:14-23. [DOI: 10.1016/j.dnarep.2018.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022]
|
17
|
Cytogenetics in Arctica islandica (Bivalvia, Arctidae): the Longest Lived Non-Colonial Metazoan. Genes (Basel) 2018; 9:genes9060299. [PMID: 29899300 PMCID: PMC6027238 DOI: 10.3390/genes9060299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 11/16/2022] Open
Abstract
Due to its extraordinary longevity and wide distribution, the ocean quahog Arctica islandica has become an important species model in both aging and environmental change research. Notwithstanding that, most genetic studies on ocean quahogs have been focused on fishery related, phylogeographic and phylogenetic aspects but nothing is known about their chromosomes. In this work, the chromosomes of the ocean quahog Arctica islandica were analysed by means of 4′,6-diamidino-2-phenylindole (DAPI)/propidium iodide (PI) staining and fluorescent in situ hybridization (FISH) with rDNA, histone gene and telomeric probes. Whilst both 5S rDNA and 45S rDNA were clustered at single subcentromeric locations on the long arms of chromosome pairs 2 and 12, respectively, histone gene clusters located on the short arms of chromosome pairs 7, 10 and 17. As happens with most bivalves, the location of the vertebrate type telomeric sequence clusters was restricted to chromosome ends. The knowledge of the karyotype can facilitate the anchoring of genomic sequences to specific chromosome pairs in this species.
Collapse
|
18
|
What modulates animal longevity? Fast and slow aging in bivalves as a model for the study of lifespan. Semin Cell Dev Biol 2017; 70:130-140. [PMID: 28778411 DOI: 10.1016/j.semcdb.2017.07.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022]
Abstract
Delineating the physiological and biochemical causes of aging process in the animal kingdom is a highly active area of research not only because of potential benefits for human health but also because aging process is related to life history strategies (growth and reproduction) and to responses of organisms to environmental conditions and stress. In this synthesis, we advocate studying bivalve species as models for revealing the determinants of species divergences in maximal longevity. This taxonomic group includes the longest living metazoan on earth (Arctica islandica), which insures the widest range of maximum life span when shorter living species are also included in the comparative model. This model can also be useful for uncovering factors modulating the pace of aging in given species by taking advantages of the wide disparity of lifespan among different populations of the same species. For example, maximal lifespan in different populations of A islandica range from approximately 36 years to over 500 years. In the last 15 years, research has revealed that either regulation or tolerance to oxidative stress is tightly correlated to longevity in this group which support further investigations on this taxon to unveil putative mechanistic links between Reactive Oxygen Species and aging process.
Collapse
|
19
|
Bamber SD, Westerlund S. Behavioral responses of Arctica islandica (Bivalvia: Arcticidae) to simulated leakages of carbon dioxide from sub-sea geological storage. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:295-305. [PMID: 27776295 DOI: 10.1016/j.aquatox.2016.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/03/2016] [Accepted: 10/08/2016] [Indexed: 06/06/2023]
Abstract
Sub-sea geological storage of carbon dioxide (CO2) provides a viable option for the Carbon Capture and Storage (CCS) approach for reducing atmospheric emissions of this greenhouse gas. Although generally considered to offer a low risk of major leakage, it remains relevant to establish the possible consequences for marine organisms that live in or on sediments overlying these storage areas if such an event may occur. The present study has used a series of laboratory exposures and behavioral bioassays to establish the sensitivity of Arctica islandica to simulated leakages of CO2. This long-lived bivalve mollusc is widely distributed throughout the North Sea, an area where geological storage is currently taking place and where there are plans to expand this operation significantly. A recently published model has predicted a maximum drop of 1.9pH units in seawater at the point source of a substantial escape of CO2 from sub-sea geological storage in this region. Valve movements of A. islandica exposed to reduced pH seawater were recorded continuously using Hall effect proximity sensors. Valve movement regulation is important for optimising the flow of water over the gills, which supplies food and facilitates respiration. A stepwise reduction in seawater pH showed an initial increase in both the rate and extent of valve movements in the majority of individuals tested when pH fell to 6.2 units. Exposing A. islandica to pH 6.2 seawater continuously for seven days resulted in a clear increase in valve movements during the first 40h of exposure, followed by a gradual reduction in activity intensity over the subsequent five days, suggesting acclimation. The ability of both exposed and control bivalves to burrow successfully into sediment on completion of this exposure was very similar. A final exposure trial, testing whether increased valve movements initiated by reduced pH were related to foot extension during attempted burrowing, found no such association. In summary, significant changes in valve behavior did not occur until seawater pH fell to 6.2 units. The response took the form of an increase in valve activity rather than closure. The absence of foot extension coincident with increased valve movements indicates A. islandica were not attempting to burrow, leaving the possibility that valve movements are supporting a respiratory response to hypercapnia. In conclusion, A. islandica appears to be tolerant of reductions in seawater pH equivalent to those predicted for substantial losses of CO2 through leakage from sub-sea geological storage.
Collapse
Affiliation(s)
- Shaw D Bamber
- International Research Institute of Stavanger, Mekjarvik 12, N-4070 Randaberg, Norway.
| | - Stig Westerlund
- International Research Institute of Stavanger, Mekjarvik 12, N-4070 Randaberg, Norway.
| |
Collapse
|
20
|
Biliński T, Paszkiewicz T, Zadrag-Tecza R. Energy excess is the main cause of accelerated aging of mammals. Oncotarget 2016; 6:12909-19. [PMID: 26079722 PMCID: PMC4536988 DOI: 10.18632/oncotarget.4271] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 05/18/2015] [Indexed: 12/22/2022] Open
Abstract
The analysis of cases of unusually high longevity of naked mole rats and an alternative explanation of the phenomenon of calorie restriction effects in monkeys allowed for postulating that any factor preventing an excess of energy consumed, leads to increased lifespan, both in evolutionary and an individual lifetime scale. It is postulated that in mammals the most destructive processes resulting in shortening of life are not restricted to the phenomena explained by the hyperfunction theory of Mikhail Blagosklonny. Hyperfunction, understood as unnecessary or even adverse syntheses of cell components, can be to some extent prevented by lowered intake of nutrients when body growth ceases. We postulate also the contribution of glyco/lipotoxicity to aging, resulting from the excess of energy. Besides two other factors seem to participate in aging. One of them is lack of telomerase activity in some somatic cells. The second factor concerns epigenetic phenomena. Excessive activity of epigenetic maintenance system probably turns off some crucial organismal functions. Another epigenetic factor playing important role could be the micro RNA system deciding on expression of numerous age-related diseases. However, low extrinsic mortality from predation is a conditio sine qua non of the expression of all longevity phenotypes in animals. Among all long-lived animals, naked mole rats are unique in the elimination of neoplasia, which is accompanied by delayed functional symptoms of senescence. The question whether simultaneous disappearance of neoplasia and delayed senescence is accidental or not remains open.
Collapse
Affiliation(s)
- Tomasz Biliński
- Department of Biochemistry and Cell Biology, University of Rzeszow, Rzeszow, Poland
| | | | - Renata Zadrag-Tecza
- Department of Biochemistry and Cell Biology, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
21
|
Dantzer B, Fletcher QE. Telomeres shorten more slowly in slow-aging wild animals than in fast-aging ones. Exp Gerontol 2015; 71:38-47. [DOI: 10.1016/j.exger.2015.08.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/21/2015] [Accepted: 08/22/2015] [Indexed: 01/01/2023]
|
22
|
Gruber H, Wessels W, Boynton P, Xu J, Wohlgemuth S, Leeuwenburgh C, Qi W, Austad SN, Schaible R, Philipp EER. Age-related cellular changes in the long-lived bivalve A. islandica. AGE (DORDRECHT, NETHERLANDS) 2015; 37:90. [PMID: 26318854 PMCID: PMC5005836 DOI: 10.1007/s11357-015-9831-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 08/20/2015] [Indexed: 06/04/2023]
Abstract
One of the biggest challenges to studying causes and effects of aging is identifying changes in cells that are related to senescence instead of simply the passing of chronological time. We investigated two populations of the longest living non-colonial metazoan, Arctica islandica, with lifespans that differed sixfolds. Of four investigated parameters (nucleic acid oxidation, protein oxidation, lipid oxidation, and protein instability), only nucleic acid oxidation increased with age and correlated with relative lifespan. Nucleic acid oxidation levels increased significantly faster and were significantly higher in the shorter-lived than the longer-lived population. In contrast, neither protein oxidation, lipid oxidation, nor protein stability changed over time. Protein resistance to unfolding stress when treated with urea was significantly lower overall in the shorter-lived population, and lipid peroxidation levels were higher in the longer-lived population. With the exception of nucleic acid oxidation, damage levels of A. islandica do not change with age, indicating excellent cellular maintenance in both populations. Since correlations between nucleic acid oxidation and age have also been shown previously in other organisms, and nucleic acid oxidation accumulation rate correlates with relative age in both investigated populations, nucleic acid oxidation may reflect intrinsic aging mechanisms.
Collapse
Affiliation(s)
- Heike Gruber
- Max-Planck-Institute for Evolutionary Biology, August-Thienemann Str. 2, 24306, Plön, Germany,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Koroleva AG, Evtushenko EV, Maximova NV, Vershinin AV, Sitnikova TY, Kirilchik SV. Length and structure of telomeric DNA in three species of Baikal gastropods (Caenogastropoda: Hydrobioidea: Benedictiidae). RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415030060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|