1
|
Díaz-Pérez A, Lope-Piedrafita S, Pérez B, Vázquez-Sufuentes P, Rodriguez-Garcia M, Briones AM, Navarro X, Penas C, Jiménez-Altayó F. Transient cerebral ischaemia alters mesenteric arteries in hypertensive rats: Limited reversal despite suberoylanilide hydroxamic acid cerebroprotection. Life Sci 2024; 359:123247. [PMID: 39547431 DOI: 10.1016/j.lfs.2024.123247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Stroke induces brain injury, especially severe in hypertensive patients, and elevates mortality rates through non-neurological complications. However, the potential effects of a transient ischaemic episode on the peripheral vasculature of hypertensive individuals remain unclear. We investigated whether transient cerebral ischaemia (90 min)/reperfusion (1 or 8 days) induces alterations in mesenteric resistance artery (MRA) properties in adult male spontaneously hypertensive rats (SHR). In addition, we assessed whether the reported cerebroprotective effects of suberoylanilide hydroxamic acid (SAHA; 50 mg/kg; administered intraperitoneally at 1, 4, or 6 h after reperfusion onset) extend over several days and include beneficial effects on MRAs. Functional and structural properties of MRAs were examined at 1- and 8-days post-stroke. Nuclei distribution, collagen content, and oxidative stress were assessed. Ischaemic brain damage was evaluated longitudinally using magnetic resonance imaging. Following stroke, MRAs from SHR exhibited non-reversible impaired contractile responses to the thromboxane A2 receptor agonist U46619. Stroke increased the MRA cross-sectional area, wall thickness, and wall/lm ratio due to augmented collagen deposition. These changes were partially sustained 8 days later. SAHA did not improve U46619-induced contractions but mitigated stroke-induced oxidative stress and collagen deposition, preventing MRA remodelling at 24 h of reperfusion. Furthermore, SAHA induced sustained cerebroprotective effects over 8 days, including reduced brain infarct and oedema, and improved neurological scores. However, SAHA had minimal impact on chronic MRA contractile impairments and remodelling. These findings suggest that stroke causes MRA changes in hypertensive subjects. While SAHA treatment offers sustained protection against brain damage, it cannot fully restore MRA alterations.
Collapse
Affiliation(s)
- Andrea Díaz-Pérez
- Department of Pharmacology, Therapeutic and Toxicology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Institute of Neurosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Silvia Lope-Piedrafita
- Department of Biochemistry and Molecular Biology, Biophysics Unit, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Bellaterra, Spain
| | - Belén Pérez
- Department of Pharmacology, Therapeutic and Toxicology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Institute of Neurosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Paula Vázquez-Sufuentes
- Department of Pharmacology, Therapeutic and Toxicology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, Spain, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Rodriguez-Garcia
- Department of Pharmacology, Therapeutic and Toxicology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ana M Briones
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain; Department of Pharmacology, Universidad Autónoma de Madrid, Instituto Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain
| | - Xavier Navarro
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Clara Penas
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc Jiménez-Altayó
- Department of Pharmacology, Therapeutic and Toxicology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Institute of Neurosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Gogulamudi VR, Machin DR, Henson GD, Lim J, Bramwell RC, Durrant JR, Donato AJ, Lesniewski LA. Sirt1 overexpression attenuates Western-style diet-induced aortic stiffening in mice. Physiol Rep 2022; 10:e15284. [PMID: 35561022 PMCID: PMC9101596 DOI: 10.14814/phy2.15284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023] Open
Abstract
Increased arterial stiffness is a cardiovascular disease risk factor in the setting of advancing age and Western diet (WD) induced obesity. Increases in large artery stiffness, as measured by pulse wave velocity (PWV), occur within 8 weeks of WD feeding in mice. Sirtuin-1 (Sirt1), a NAD-dependent deacetylase, regulates cellular metabolic activity and activation of this protein has been associated with vasoprotection in aged mice. The aim of the study was to elucidate the effect of global Sirt1 overexpression (Sirttg ) on WD-induced arterial stiffening. Sirt1 overexpression did not influence PWV in normal chow (NC) fed mice. However, PWV was higher in wild-type (WT) mice (p < 0.04), but not in Sirttg mice, after 12 weeks of WD and this effect was independent of changes in blood pressure or the passive pressure diameter relation in the carotid artery. Overexpression of Sirt1 was associated with lower collagen and higher elastin mRNA expression in the aorta of WD fed mice (both p < 0.05). Although MMP2 and MMP3 mRNA were both upregulated in WT mice after WD (both p < 0.05), this effect was reversed in Sirttg mice compared to WT mice fed WD (both p < 0.05). Surprisingly, histologically assessed collagen and elastin quality were unchanged in the aortas of WT or Sirttg mice after WD. However, Sirttg mice were protected from WD-induced glucose intolerance, although there was no difference in insulin tolerance between groups. These findings demonstrate a vasoprotective effect of Sirt1 overexpression that limits the increase in arterial stiffness in response to consumption of a WD.
Collapse
Affiliation(s)
| | - Daniel R. Machin
- Department of Internal MedicineUniversity of UtahSalt Lake CityUtahUSA
- Department of Nutrition and Integrative PhysiologyFlorida State UniversityTallahasseeFloridaUSA
| | - Grant D. Henson
- Department of Internal MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Jisok Lim
- Department of Internal MedicineUniversity of UtahSalt Lake CityUtahUSA
| | | | | | - Anthony J. Donato
- Department of Internal MedicineUniversity of UtahSalt Lake CityUtahUSA
- Geriatrics Research Education and Clinical CenterVeteran’s Affairs Medical CenterSalt Lake CityUtahUSA
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | - Lisa A. Lesniewski
- Department of Internal MedicineUniversity of UtahSalt Lake CityUtahUSA
- Geriatrics Research Education and Clinical CenterVeteran’s Affairs Medical CenterSalt Lake CityUtahUSA
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
3
|
Jiménez-Altayó F, Marzi J, Galan M, Dantas AP, Ortega M, Rojas S, Egea G, Schenke-Layland K, Jiménez-Xarrié E, Planas AM. Arachnoid membrane as a source of sphingosine-1-phosphate that regulates mouse middle cerebral artery tone. J Cereb Blood Flow Metab 2022; 42:162-174. [PMID: 34474613 PMCID: PMC8721773 DOI: 10.1177/0271678x211033362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Growing evidence indicates that perivascular tissue is critical to modulate vessel function. We hypothesized that the arachnoid membrane surrounding middle cerebral artery (MCA) regulates its function via sphingosine-1-phosphate (S1P)-induced vasoconstriction. The MCA from 3- to 9-month-old male and female wild-type (Oncine France 1 and C57BL/6) mice and sphingosine kinase 2 knockout (SphK2-/-) mice in the C57BL/6 background was mounted in pressure myographs with and without arachnoid membrane. Raman microspectroscopy and imaging were used for in situ detection of S1P. The presence of arachnoid tissue was associated with reduced external and lumen MCA diameters, and with an increase in basal tone regardless of sex and strain background. Strong S1P-positive signals were detected in the arachnoid surrounding the MCA wall in both mice models, as well as in a human post-mortem specimen. Selective S1P receptor 3 antagonist TY 52156 markedly reduced both MCA vasoconstriction induced by exogenous S1P and arachnoid-dependent basal tone increase. Compared to 3-month-old mice, the arachnoid-mediated contractile influence persisted in 9-month-old mice despite a decline in arachnoid S1P deposits. Genetic deletion of SphK2 decreased arachnoid S1P content and vasoconstriction. This is the first experimental evidence that arachnoid membrane regulates the MCA tone mediated by S1P.
Collapse
Affiliation(s)
- Francesc Jiménez-Altayó
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Julia Marzi
- Department of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany.,NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University of Tübingen, Tübingen, Germany
| | - María Galan
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, 16689Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain
| | - Ana Paula Dantas
- Institut Clínic Del Tòrax, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marisa Ortega
- Unit of Human Anatomy and Embriology, Department of Morphological Sciences, Faculty of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Institute of Legal Medicine and Forensic Sciences of Catalonia, Hospitalet de Llobregat, Catalonia, Spain
| | - Santiago Rojas
- Unit of Human Anatomy and Embriology, Department of Morphological Sciences, Faculty of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Gustavo Egea
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain; IDIBAPS-University of Barcelona, Barcelona, Spain
| | - Katja Schenke-Layland
- Department of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany.,NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University of Tübingen, Tübingen, Germany.,Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Elena Jiménez-Xarrié
- Stroke Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Anna M Planas
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain; Area of Neurosciences, IDIBAPS, Barcelona, Spain
| |
Collapse
|
4
|
Jiménez-Altayó F, Sánchez-Ventura J, Vila E, Giménez-Llort L. Crosstalk between Peripheral Small Vessel Properties and Anxious-like Profiles: Sex, Genotype, and Interaction Effects in Mice with Normal Aging and 3×Tg-AD mice at Advanced Stages of Disease. J Alzheimers Dis 2019; 62:1531-1538. [PMID: 29504535 DOI: 10.3233/jad-171019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cardiovascular disease resulting from oxidative stress and inflammation can exacerbate Alzheimer's disease. This brief report provides the first evidence of compromised small peripheral mesenteric resistance artery (MRA) properties in 15-month-old 3xTg-AD mice. Females showed worse physiologically relevant MRA structural (increased passive external and internal diameters, cross sectional area) and functional (increased active internal diameters) alterations suggesting sex-dependent dysfunctions. At both physiological and high intraluminal pressures, vascular alterations correlated with the anxious-like behavioral profile, in a sex-dependent manner. Finally, the results unveil a crosstalk between peripheral small vessel properties and behavior in both 3xTg-AD mice and age-matched counterparts with normal aging.
Collapse
Affiliation(s)
- Francesc Jiménez-Altayó
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Judith Sánchez-Ventura
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elisabet Vila
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Jiménez-Xarrié E, Pérez B, Dantas AP, Puertas-Umbert L, Martí-Fabregas J, Chamorro Á, Planas AM, Vila E, Jiménez-Altayó F. Uric Acid Treatment After Stroke Prevents Long-Term Middle Cerebral Artery Remodelling and Attenuates Brain Damage in Spontaneously Hypertensive Rats. Transl Stroke Res 2018; 11:1332-1347. [PMID: 30219993 DOI: 10.1007/s12975-018-0661-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/02/2018] [Accepted: 08/30/2018] [Indexed: 01/21/2023]
Abstract
Hypertension is the most important modifiable risk factor for stroke and is associated with poorer post-stroke outcomes. The antioxidant uric acid is protective in experimental normotensive ischaemic stroke. However, it is unknown whether this treatment exerts long-term protection in hypertension. We aimed to evaluate the impact of transient intraluminal middle cerebral artery (MCA) occlusion (90 min)/reperfusion (1-15 days) on brain and vascular damage progression in adult male Wistar-Kyoto (WKY; n = 36) and spontaneously hypertensive (SHR; n = 37) rats treated (i.v./120 min post-occlusion) with uric acid (16 mg kg-1) or vehicle (Locke's buffer). Ischaemic brain damage was assessed longitudinally with magnetic resonance imaging and properties of MCA from both hemispheres were studied 15 days after stroke. Brain lesions in WKY rats were associated with a transitory increase in circulating IL-18 and cerebrovascular oxidative stress that did not culminate in long-term MCA alterations. In SHR rats, more severe brain damage and poorer neurofunctional outcomes were coupled to higher cortical cerebral blood flow at the onset of reperfusion, a transient increase in oxidative stress and long-lasting stroke-induced MCA hypertrophic remodelling. Thus, stroke promotes larger brain and vascular damage in hypertensive rats that persists for long-time. Uric acid administered during early reperfusion attenuated short- and long-term brain injuries in both normotensive and hypertensive rats, an effect that was associated with abolishment of the acute oxidative stress response and prevention of stroke-induced long-lasting MCA remodelling in hypertension. These results suggest that uric acid might be an effective strategy to improve stroke outcomes in hypertensive subjects.
Collapse
Affiliation(s)
- Elena Jiménez-Xarrié
- Stroke Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Instituto de Investigación Biomédica (IIB)-Sant Pau, Barcelona, Spain
| | - Belén Pérez
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain
| | - Ana Paula Dantas
- Institut Clínic Cardiovascular, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Lídia Puertas-Umbert
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain
| | - Joan Martí-Fabregas
- Stroke Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Instituto de Investigación Biomédica (IIB)-Sant Pau, Barcelona, Spain
| | - Ángel Chamorro
- Comprehensive Stroke Center, Hospital Clínic, University of Barcelona, Barcelona, Spain.,Àrea de Neurociènces, IDIBAPS, Barcelona, Spain
| | - Anna Maria Planas
- Àrea de Neurociènces, IDIBAPS, Barcelona, Spain.,Departament d'Isquèmia Cerebral i Neurodegeneració, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Elisabet Vila
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain
| | - Francesc Jiménez-Altayó
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain.
| |
Collapse
|
6
|
Inflammatory state of periaortic adipose tissue in mice under obesogenic dietary regimens. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2016. [DOI: 10.1016/j.jnim.2016.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
7
|
Onetti Y, Meirelles T, Dantas AP, Schröder K, Vila E, Egea G, Jiménez-Altayó F. NADPH oxidase 4 attenuates cerebral artery changes during the progression of Marfan syndrome. Am J Physiol Heart Circ Physiol 2016; 310:H1081-90. [PMID: 26945079 DOI: 10.1152/ajpheart.00770.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/01/2016] [Indexed: 12/11/2022]
Abstract
Marfan syndrome (MFS) is a connective tissue disorder that is often associated with the fibrillin-1 (Fbn1) gene mutation and characterized by cardiovascular alterations, predominantly ascending aortic aneurysms. Although neurovascular complications are uncommon in MFS, the improvement in Marfan patients' life expectancy is revealing other secondary alterations, potentially including neurovascular disorders. However, little is known about small-vessel pathophysiology in MFS. MFS is associated with hyperactivated transforming growth factor (TGF)-β signaling, which among numerous other downstream effectors, induces the NADPH oxidase 4 (Nox4) isoform of NADPH oxidase, a strong enzymatic source of H2O2 We hypothesized that MFS induces middle cerebral artery (MCA) alterations and that Nox4 contributes to them. MCA properties from 3-, 6-, or 9-mo-old Marfan (Fbn1(C1039G/+)) mice were compared with those from age/sex-matched wild-type littermates. At 6 mo, Marfan compared with wild-type mice developed higher MCA wall/lumen (wild-type: 0.081 ± 0.004; Marfan: 0.093 ± 0.002; 60 mmHg; P < 0.05), coupled with increased reactive oxygen species production, TGF-β, and Nox4 expression. However, wall stiffness and myogenic autoregulation did not change. To investigate the influence of Nox4 on cerebrovascular properties, we generated Marfan mice with Nox4 deficiency (Nox4(-/-)). Strikingly, Nox4 deletion in Marfan mice aggravated MCA wall thickening (cross-sectional area; Marfan: 6,660 ± 363 μm(2); Marfan Nox4(-/-): 8,795 ± 824 μm(2); 60 mmHg; P < 0.05), accompanied by decreased TGF-β expression and increased collagen deposition and Nox1 expression. These findings provide the first evidence that Nox4 mitigates cerebral artery structural changes in a murine model of MFS.
Collapse
Affiliation(s)
- Yara Onetti
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Thayna Meirelles
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Ana P Dantas
- Institut Clínic del Tòrax, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; and
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Elisabet Vila
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Gustavo Egea
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institut Clínic del Tòrax, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; and
| | - Francesc Jiménez-Altayó
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain;
| |
Collapse
|
8
|
Foote CA, Castorena-Gonzalez JA, Ramirez-Perez FI, Jia G, Hill MA, Reyes-Aldasoro CC, Sowers JR, Martinez-Lemus LA. Arterial Stiffening in Western Diet-Fed Mice Is Associated with Increased Vascular Elastin, Transforming Growth Factor-β, and Plasma Neuraminidase. Front Physiol 2016; 7:285. [PMID: 27458385 PMCID: PMC4935726 DOI: 10.3389/fphys.2016.00285] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/23/2016] [Indexed: 01/06/2023] Open
Abstract
Consumption of excess fat and carbohydrate (Western diet, WD) is associated with alterations in the structural characteristics of blood vessels. This vascular remodeling contributes to the development of cardiovascular disease, particularly as it affects conduit and resistance arteries. Vascular remodeling is often associated with changes in the elastin-rich internal elastic lamina (IEL) and the activation of transforming growth factor (TGF)-β. In addition, obesity and type II diabetes have been associated with increased serum neuraminidase, an enzyme known to increase TGF-β cellular output. Therefore, we hypothesized that WD-feeding would induce structural modifications to the IEL of mesenteric resistance arteries in mice, and that these changes would be associated with increased levels of circulating neuraminidase and the up-regulation of elastin and TGF-β in the arterial wall. To test this hypothesis, a WD, high in fat and sugar, was used to induce obesity in mice, and the effect of this diet on the structure of mesenteric resistance arteries was investigated. 4-week old, Post-weaning mice were fed either a normal diet (ND) or WD for 16 weeks. Mechanically, arteries from WD-fed mice were stiffer and less distensible, with marginally increased wall stress for a given strain, and a significantly increased Young's modulus of elasticity. Structurally, the wall cross-sectional area and the number of fenestrae found in the internal elastic lamina (IEL) of mesenteric arteries from mice fed a WD were significantly smaller than those of arteries from the ND-fed mice. There was also a significant increase in the volume of elastin, but not collagen in arteries from the WD cohort. Plasma levels of neuraminidase and the amount of TGF-β in mesenteric arteries were elevated in mice fed a WD, while ex vivo, cultured vascular smooth muscle cells exposed to neuraminidase secreted greater amounts of tropoelastin and TGF-β than those exposed to vehicle. These data suggest that consumption of a diet high in fat and sugar causes stiffening of the vascular wall in resistance arteries through a process that may involve increased neuraminidase and TGF-β activity, elevated production of elastin, and a reduction in the size and number of fenestrae in the arterial IEL.
Collapse
Affiliation(s)
| | - Jorge A. Castorena-Gonzalez
- Dalton Cardiovascular Research Center, University of MissouriColumbia, MO, USA
- Department of Biological Engineering, University of MissouriColumbia, MO, USA
| | - Francisco I. Ramirez-Perez
- Dalton Cardiovascular Research Center, University of MissouriColumbia, MO, USA
- Department of Biological Engineering, University of MissouriColumbia, MO, USA
| | - Guanghong Jia
- Diabetes and Cardiovascular Research Center, University of MissouriColumbia, MO, USA
- Harry S. Truman Memorial Veterans HospitalColumbia, MO, USA
| | - Michael A. Hill
- Dalton Cardiovascular Research Center, University of MissouriColumbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of MissouriColumbia, MO, USA
| | | | - James R. Sowers
- Diabetes and Cardiovascular Research Center, University of MissouriColumbia, MO, USA
- Harry S. Truman Memorial Veterans HospitalColumbia, MO, USA
| | - Luis A. Martinez-Lemus
- Dalton Cardiovascular Research Center, University of MissouriColumbia, MO, USA
- Department of Biological Engineering, University of MissouriColumbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of MissouriColumbia, MO, USA
- *Correspondence: Luis A. Martinez-Lemus
| |
Collapse
|