1
|
Thompson BJ, Conchola EC, Clevenger KA. Age-related effects of neuromuscular fatigue and acute recovery responses on maximal and rapid torque measures of the leg extensors and flexors. Eur J Appl Physiol 2024; 124:2835-2849. [PMID: 38702553 DOI: 10.1007/s00421-024-05493-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE To examine the effects of neuromuscular fatigue and recovery on maximal and rapid torque characteristics in young and old men for the leg extensors and flexors. METHODS Twenty-one young (age = 24.8 years) and 19 old (72.1 years) men performed maximal voluntary contractions (MVCs) before and at 0, 7, 15, and 30 min following an intermittent submaximal fatigue task. Outcome measures included endurance time, maximal (peak torque; PT) and rapid (absolute and normalized rate of torque development; RTD and nRTD) torque characteristics. RESULTS The old men had greater endurance times than the young men. Differential recovery patterns were observed for PT, and early and late RTD phases between the leg extensor and flexor muscle groups such that the early rapid torque variables and the flexors demonstrated slower recovery compared to later rapid torque variables and the extensors. The normalized RTD variables were reduced less after the fatigue task and differential muscle and age effects were observed where the flexors were reduced more at the early phase (nRTD1/6) compared to the extensors, however, for the later phase (nRTD2/3) the young men exhibited a greater reduction compared to the old men. CONCLUSIONS Dissimilar fatigue recovery patterns across different phases of RTD, lower limb muscles, and age groups may have important fatigue-related performance and injury risk implications across the adult lifespan.
Collapse
Affiliation(s)
- Brennan J Thompson
- Kinesiology and Health Science Department, Utah State University, 6425 Old Main Hill, Logan, UT, 84322, USA.
- Movement Research Clinic, Sorenson Legacy Foundation Center for Clinical Excellence, Utah State University, Logan, UT, USA.
| | - Eric C Conchola
- Dr. Virginia Peters Department of Kinesiology and Health Studies, University of Central Oklahoma, Edmond, OK, USA
| | - Kimberly A Clevenger
- Kinesiology and Health Science Department, Utah State University, 6425 Old Main Hill, Logan, UT, 84322, USA
| |
Collapse
|
2
|
Fitzgerald LF, Bartlett MF, Kent JA. Muscle fatigue, bioenergetic responses and metabolic economy during load- and velocity-based maximal dynamic contractions in young and older adults. Physiol Rep 2023; 11:e15876. [PMID: 37996974 PMCID: PMC10667588 DOI: 10.14814/phy2.15876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
We evaluated whether task-dependent, age-related differences in muscle fatigue (contraction-induced decline in normalized power) develop from differences in bioenergetics or metabolic economy (ME; mass-normalized work/mM ATP). We used magnetic resonance spectroscopy to quantify intracellular metabolites in vastus lateralis muscle of 10 young and 10 older adults during two maximal-effort, 4-min isotonic (20% maximal torque) and isokinetic (120°s-1 ) contraction protocols. Fatigue, inorganic phosphate (Pi), and pH (p ≥ 0.213) differed by age during isotonic contractions. However, older had less fatigue (p ≤ 0.011) and metabolic perturbation (lower [Pi], greater pH; p ≤ 0.031) than young during isokinetic contractions. ME was lower in older than young during isotonic contractions (p ≤ 0.003), but not associated with fatigue in either protocol or group. Rather, fatigue during both tasks was linearly related to changes in [H+ ], in both groups. The slope of fatigue versus [H+ ] was 50% lower in older than young during isokinetic contractions (p ≤ 0.023), consistent with less fatigue in older during this protocol. Overall, regardless of age or task type, acidosis, but not ME, was the primary mechanism for fatigue in vivo. The source of the age-related differences in contraction-induced acidosis in vivo remains to be determined, as does the apparent task-dependent difference in the sensitivity of muscle to [H+ ].
Collapse
Affiliation(s)
- Liam F. Fitzgerald
- Muscle Physiology Laboratory, Department of KinesiologyUniversity of MassachusettsAmherstMassachusettsUSA
| | - Miles F. Bartlett
- Muscle Physiology Laboratory, Department of KinesiologyUniversity of MassachusettsAmherstMassachusettsUSA
| | - Jane A. Kent
- Muscle Physiology Laboratory, Department of KinesiologyUniversity of MassachusettsAmherstMassachusettsUSA
| |
Collapse
|
3
|
Paris MT, Kulkarni SV, Rice CL. Electrically Evoked Isotonic Plantar Flexion Contractions Are Impaired Less than Voluntary After a Dynamic Fatiguing Task. Med Sci Sports Exerc 2023; 55:2096-2102. [PMID: 37379258 DOI: 10.1249/mss.0000000000003243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
PURPOSE Evaluating central and peripheral processes responsible for reduced power after dynamic fatiguing tasks are often limited to isometric torque, which may not accurately reflect dynamic contractile performance. Here, we compare voluntary and electrically evoked peak power (and its determinants: dynamic torque and velocity) and rate of velocity development (RVD) before and after a dynamic fatiguing task using concentric Plantar flexion contractions. METHODS Young (18-32 yr) males ( n = 11) and females ( n = 2) performed maximal-effort isotonic Plantar flexion contractions using a load of 20% isometric torque until an approximately 75% reduction in peak power. Voluntary and electrically evoked (300 Hz tibial nerve stimulation) contractions loaded to 20% and 40% isometric torque through 25° ankle joint range of motion were compared before and 0, 2.5, 5, and 10 min after task termination. RESULTS At task termination, peak power and RVD of voluntary contractions at both loads were reduced more (~40% to 50% reduction) than electrically evoked (~25% to 35% reduction) contractions ( P < 0.001 and P = 0.003). Throughout the recovery period, electrically evoked peak power and RVD returned to baseline sooner (<5 min) than voluntary contractions, which were still depressed at 10 min. Reductions in peak power for the 20% load were equally due to impaired dynamic torque and velocity, whereas velocity was impaired more than dynamic torque ( P < 0.001) for the 40% load. CONCLUSIONS The relative preservation of electrically evoked power and RVD compared with voluntary contractions at task termination and quicker recovery to baseline indicates that the reductions in dynamic contractile performance after task termination are due to both central and peripheral processes; however, the relative contribution of dynamic torque and velocity is load dependent.
Collapse
Affiliation(s)
- Michael T Paris
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, ON, CANADA
| | - Sohum V Kulkarni
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, ON, CANADA
| | | |
Collapse
|
4
|
Suslov VM, Lieberman LN, Carlier PG, Ponomarenko GN, Ivanov DO, Rudenko DI, Suslova GA, Adulas EI. Efficacy and safety of hydrokinesitherapy in patients with dystrophinopathy. Front Neurol 2023; 14:1230770. [PMID: 37564736 PMCID: PMC10410449 DOI: 10.3389/fneur.2023.1230770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is one of the most common forms of hereditary muscular dystrophies in childhood and is characterized by steady progression and early disability. It is known that physical therapy can slow down the rate of progression of the disease. According to global recommendations, pool exercises, along with stretching, are preferable for children with DMD, as these types of activities have a balanced effect on skeletal muscles and allow simultaneous breathing exercises. The present study aimed to evaluate the effectiveness of regular pool exercises in patients with Duchenne muscular dystrophy who are capable of independent movement during 4 months of training. 28 patients with genetically confirmed Duchenne muscular dystrophy, who were aged 6.9 ± 0.2 years, were examined. A 6-min distance walking test and timed tests, namely, rising from the floor, 10-meter running, and stair climbing and descending, muscle strength of the upper and lower extremities were assessed on the baseline and during dynamic observation at 2 and 4 months. Hydrorehabilitation course lasted 4 months and was divided into two stages: preparatory and training (depend on individual functional heart reserve (IFHR)). Set of exercises included pool dynamic aerobic exercises. Quantitative muscle MRI of the pelvic girdle and thigh was performed six times: before training (further BT) and after training (further AT) during all course. According to the results of the study, a statistically significant improvement was identified in a 6-min walking test, with 462.7 ± 6.2 m on the baseline and 492.0 ± 6.4 m after 4 months (p < 0.001). The results from the timed functional tests were as follows: rising from the floor test, 4.5 ± 0.3 s on the baseline and 3.8 ± 0.2 s after 4 months (p < 0.001); 10 meter distance running test, 4.9 ± 0.1 s on the baseline and 4.3 ± 0.1 s after 4 months (p < 0.001); 4-stair climbing test, 3.7 ± 0.2 s on the baseline and 3.2 ± 0.2 s after 4 months (p < 0.001); and 4-stair descent test, 3.9 ± 0.1 s on the baseline and 3.2 ± 0.1 s after 4 months (p < 0.001). Skeletal muscle quantitative MRI was performed in the pelvis and the thighs in order to assess the impact of the procedures on the muscle structure. Muscle water T2, a biomarker of disease activity, did not show any change during the training period, suggesting the absence of deleterious effects and negative impact on disease activity. Thus, a set of dynamic aerobic exercises in water can be regarded as effective and safe for patients with DMD.
Collapse
Affiliation(s)
- V. M. Suslov
- Department of Rehabilitation, Federal State Budgetary Educational Institution of Higher Education Saint-Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia
| | - L. N. Lieberman
- Department of Rehabilitation, Federal State Budgetary Educational Institution of Higher Education Saint-Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia
| | - P. G. Carlier
- University Paris-Saclay, CEA, Frédéric Joliot Institute for Life Sciences, SHFJ, Orsay, France
| | - G. N. Ponomarenko
- Federal State Budgetary Institution Federal Scientific Center of the Rehabilitation of the Disabled Named After G. A.Albrecht of the Ministry of Labour and Social Protection of the Russian Federation, Saint Petersburg, Russia
| | - D. O. Ivanov
- Department of Rehabilitation, Federal State Budgetary Educational Institution of Higher Education Saint-Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia
| | - D. I. Rudenko
- Department of Rehabilitation, Federal State Budgetary Educational Institution of Higher Education Saint-Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia
| | - G. A. Suslova
- Department of Rehabilitation, Federal State Budgetary Educational Institution of Higher Education Saint-Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia
| | - E. I. Adulas
- Department of Rehabilitation, Federal State Budgetary Educational Institution of Higher Education Saint-Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia
| |
Collapse
|
5
|
Paris MT, McNeil CJ, Power GA, Rice CL, Dalton BH. Age-related performance fatigability: a comprehensive review of dynamic tasks. J Appl Physiol (1985) 2022; 133:850-866. [PMID: 35952347 DOI: 10.1152/japplphysiol.00319.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adult ageing is associated with a myriad of changes within the neuromuscular system, leading to reductions in contractile function of old adults. One of the consequences of these age-related neuromuscular adaptations is altered performance fatigability, which can limit the ability of old adults to perform activities of daily living. Whereas age-related fatigability of isometric tasks has been well characterized, considerably less is known about fatigability of old adults during dynamic tasks involving movement about a joint, which provides a more functionally relevant task compared to static contractions. This review provides a comprehensive summary of age-related fatigability in dynamic contractions, where the importance of task specificity is highlighted with a brief discussion of the potential mechanisms responsible for differences in fatigability between young and old adults. The angular velocity of the task is critical for evaluating age-related fatigability, as tasks which constrain angular velocity (i.e., isokinetic) produce equivocal age-related differences in fatigability, whereas tasks involving unconstrained velocity (i.e., isotonic-like) consistently induce greater fatigability of old compared to young adults. These unconstrained velocity tasks, that are more closely associated with natural movements, offer an excellent model to uncover the underlying age-related mechanisms of increased fatigability. Future work evaluating the mechanisms of increased age-related fatigability of dynamic tasks should be evaluated using task-specific contractions (i.e., dynamic), particularly for assessment of spinal and supra-spinal components. Advancing our understanding of age-related fatigability is likely to yield novel insights and approaches for improving mobility limitations in old adults.
Collapse
Affiliation(s)
- Michael T Paris
- School of Kinesiology, University of Western Ontario, London, ON, Canada
| | - Chris J McNeil
- School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Charles L Rice
- School of Kinesiology, University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Brian H Dalton
- School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
6
|
Trade-Off Between Maximal Power Output and Fatigue Resistance of the Knee Extensors for Older Men. J Aging Phys Act 2022; 30:1003-1013. [PMID: 35453123 DOI: 10.1123/japa.2021-0384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 11/18/2022]
Abstract
This study investigated associations of fatigue resistance determined by an exercise-induced decrease in neuromuscular power with prefatigue neuromuscular strength and power of the knee extensors in 31 older men (65-88 years). A fatigue task consisted of 50 consecutive maximal effort isotonic knee extensions (resistance: 20% of prefatigue isometric maximal voluntary contraction torque) over a 70° range of motion. The average of the peak power values calculated from the 46th to 50th contractions during the fatigue task was normalized to the prefatigue peak power value, which was defined as neuromuscular fatigue resistance. Neuromuscular fatigue resistance was negatively associated with prefatigue maximal power output (r = -.530) but not with prefatigue maximal voluntary contraction torque (r = -.252). This result highlights a trade-off between prefatigue maximal power output and neuromuscular fatigue resistance, implying that an improvement in maximal power output might have a negative impact on neuromuscular fatigue resistance.
Collapse
|
7
|
Davidson B, Hinks A, Dalton BH, Akagi R, Power GA. Power attenuation from restricting range of motion is minimized in subjects with fast RTD and following isometric training. J Appl Physiol (1985) 2022; 132:497-510. [PMID: 35023762 DOI: 10.1152/japplphysiol.00688.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Time-dependent measures consisting of rate of torque development (RTD), rate of velocity development (RVD), and rate of neuromuscular activation can be used to evaluate explosive muscular performance, which becomes critical when performing movements throughout limited ranges of motion (ROM). Using a HUMAC NORM dynamometer, seven males (27 ± 7 years) and six females (22 ± 3 years) underwent 8 weeks of maximal isometric dorsiflexion training 3 days/week. One leg was trained at 0° (short-muscle tendon unit (MTU) length) and the other at 40° of plantar flexion (long-MTU length). RTD and rate of neuromuscular activation were evaluated during 'fast' maximal isometric contractions. Power, RVD, and rate of neuromuscular activation were assessed during maximal isotonic contractions in four conditions (small (40° to 30° of plantar flexion) ROM at 10 and 50% MVC; large (40° to 0° of plantar flexion) ROM at 10 and 50% MVC) for both legs, pre- and post-training. Despite no change in rate of neuromuscular activation following training, peak power, RTD, and RVD increased at both MTU lengths (p < 0.05). Strong relationships (R2=0.73) were observed between RTD and peak power in the small ROM, indicating that fast time-dependent measures are critical for optimal performance when ROM is constrained. Meanwhile, strong relationships (R2=0.90) between RVD and power were observed at the 50% load, indicating that RVD is critical when limited by load and ROM is not confined. Maximal isometric dorsiflexion training can be used to improve time-dependent measures (RTD, RVD) to minimize power attenuation when ROM is restricted.
Collapse
Affiliation(s)
- Brooke Davidson
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Brian H Dalton
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Ryota Akagi
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada.,College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
8
|
Ha PL, Peters WB, McGeehan MA, Dalton BH. Age-related reduction in peak power and increased postural displacement variability are related to enhanced vestibular-evoked balance responses in females. Exp Gerontol 2022; 160:111670. [PMID: 35026336 DOI: 10.1016/j.exger.2021.111670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 11/04/2022]
Abstract
Adult aging is associated with reductions in muscle function and standing balance control. However, whether sensorimotor function adapts to maintain upright posture in the presence of age-related muscle weakness is unclear. The purpose was to determine whether vestibular control of balance is altered in older compared to younger females and whether vestibular-evoked balance responses are related to muscle power. Eight young (22.6 ± 1.8 years) and eight older (69.7 ± 6.7 years) females stood quietly on a force plate, while subjected to random, continuous electrical vestibular stimulation (EVS; 0-20 Hz, root mean square amplitude: 1.13 mA). Medial gastrocnemius (MG) and tibialis anterior (TA) surface electromyography (EMG) and force plate anterior-posterior (AP) forces were sampled and associated with the EVS signal in the frequency and time domains. Knee extensor function was evaluated using a Biodex multi-joint dynamometer. The weaker, less powerful older females exhibited a 99 and 42% greater medium-latency peak amplitude for the TA and AP force (p < 0.05), respectively, but no other differences were detected for short- and medium-latency peak amplitudes. The TA (<10 Hz) and MG (<4 Hz) EVS-EMG coherence and EVS-AP force coherence (<2 Hz) was greater in older females than young. A strong correlation was detected for AP force medium-latency peak amplitude with center of pressure displacement variability (r = 0.75; p < 0.05) and TA medium-latency peak amplitude (r = 0.86; p < 0.05). Power was negatively correlated with AP force medium-latency peak amplitude (r = -0.47; p < 0.05). Taken together, an increased vestibular control of balance may compensate for an age-related reduction in power and accompanies greater postural instability in older females than young.
Collapse
Affiliation(s)
- Phuong L Ha
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Wendy B Peters
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Michael A McGeehan
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Brian H Dalton
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada; Department of Human Physiology, University of Oregon, Eugene, OR, United States.
| |
Collapse
|
9
|
Magrini MA, Colquhoun RJ, Ferrell MC, Fleming SR, Mota JA, Siedlik JA, Poidomani NM, Jenkins NDM, DeFreitas JM. The Influence of Motor Unit Number and Muscle Activation on Early Phase Rate of Torque Development in Younger and Older Men. J Mot Behav 2021; 54:422-428. [PMID: 34763617 DOI: 10.1080/00222895.2021.2001412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study examined the influence of muscle activation and motor unit number estimation (MUNE) on early phase voluntary rate of torque development (RTD) in younger (YM) and older (OM) men. Thirty-two YM (n = 17; Age = 22 yrs) and OM (n = 15; Age = 74 yrs) volunteered to participate in this study. Early phase RTD (first 50 ms of a rapid isometric contraction; RTD50) and normalized surface electromyography (first 50 ms of muscle excitation; nEMG50) were recorded from the right quadricep muscle group. MUNE was examined from the right vastus lateralis. Multiple linear regression analyses revealed that nEMG50 had a significant effect on RTD50 independent of age group (p ≤ 0.001). nEMG50 had a significant effect on RTD50 in the OM group (p = 0.037). MUNE had no effect on RTD50 independent of age. Older adults may depend more on muscle activation at contraction onset of early phase RTD compared to younger adults.
Collapse
Affiliation(s)
| | | | - Matt C Ferrell
- Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
The Acute Effects of Fast-Paced Walking on Isometric Peak Torque and Rate of Torque Development in Regularly Exercising and Inactive Older Women. J Aging Phys Act 2021; 30:397-403. [PMID: 34510023 DOI: 10.1123/japa.2021-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/02/2021] [Accepted: 06/28/2021] [Indexed: 11/18/2022]
Abstract
This study aimed to examine the acute effects of fast-paced walking on isometric peak torque and rate of torque development (RTD) in regular exercising and inactive older women. Ten regular exercising (67 ± 4 years) and 10 inactive (68 ± 4 years) older women performed three isometric knee extension contractions before and after a control condition (quiet resting) and an experimental condition of fast-paced walking for 6 min. Peak torque and early (RTD100), late (RTD200), and maximum (peak RTD) RTD measurements were obtained from each contraction. Results showed no significant changes in peak torque, peak RTD, or RTD200 after walking for either group (p > .050). A significant decrease in RTD100 was observed after walking for the inactive group (p = .005) but not for the regular exercisers (p = .909). These findings highlight the importance of physical activity and suggest that a task as simple as walking may impair the rapid strength capacities of inactive older women.
Collapse
|
11
|
D'Emanuele S, Maffiuletti NA, Tarperi C, Rainoldi A, Schena F, Boccia G. Rate of Force Development as an Indicator of Neuromuscular Fatigue: A Scoping Review. Front Hum Neurosci 2021; 15:701916. [PMID: 34305557 PMCID: PMC8301373 DOI: 10.3389/fnhum.2021.701916] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/16/2021] [Indexed: 11/26/2022] Open
Abstract
Because rate of force development (RFD) is an emerging outcome measure for the assessment of neuromuscular function in unfatigued conditions, and it represents a valid alternative/complement to the classical evaluation of pure maximal strength, this scoping review aimed to map the available evidence regarding RFD as an indicator of neuromuscular fatigue. Thus, following a general overview of the main studies published on this topic, we arbitrarily compared the amount of neuromuscular fatigue between the “gold standard” measure (maximal voluntary force, MVF) and peak, early (≤100 ms) and late (>100 ms) RFD. Seventy full-text articles were included in the review. The most-common fatiguing exercises were resistance exercises (37% of the studies), endurance exercises/locomotor activities (23%), isokinetic contractions (17%), and simulated/real sport situations (13%). The most widely tested tasks were knee extension (60%) and plantar flexion (10%). The reason (i.e., rationale) for evaluating RFD was lacking in 36% of the studies. On average, the amount of fatigue for MVF (−19%) was comparable to late RFD (−19%) but lower compared to both peak RFD (−25%) and early RFD (−23%). Even if the rationale for evaluating RFD in the fatigued state was often lacking and the specificity between test task and fatiguing exercise characteristics was not always respected in the included studies, RFD seems to be a valid indicator of neuromuscular fatigue. Based on our arbitrary analyses, peak RFD and early phase RFD appear even to be more sensitive to quantify neuromuscular fatigue than MVF and late phase RFD.
Collapse
Affiliation(s)
- Samuel D'Emanuele
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Cantor Tarperi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Alberto Rainoldi
- Department of Medical Sciences, University of Turin, Turin, Italy.,NeuroMuscularFunction
- Research Group, School of Exercise and Sport Sciences (SUISM), University of Turin, Turin, Italy
| | - Federico Schena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Verona, Italy
| | - Gennaro Boccia
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,NeuroMuscularFunction
- Research Group, School of Exercise and Sport Sciences (SUISM), University of Turin, Turin, Italy
| |
Collapse
|
12
|
Ha PL, Dalton BE, Alesi MG, Smith TM, VanDusseldorp TA, Feito Y, Hester GM. Isometric versus isotonic contractions: Sex differences in the fatigability and recovery of isometric strength and high-velocity contractile parameters. Physiol Rep 2021; 9:e14821. [PMID: 33991453 PMCID: PMC8123565 DOI: 10.14814/phy2.14821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to investigate potential sex differences in the fatigue‐ and recovery‐induced responses of isometric strength and power, as well as select dynamic contractile parameters after isometric and isotonic plantar flexor (PF) contractions. Healthy males (n = 12; age = 21.8 ± 2.2 years) and females (n = 14; age = 21.4 ± 2.5 years) performed a 2‐min maximal voluntary isometric contraction and 120 concentric isotonic (30% peak isometric torque) contractions of the PFs on separate visits. Isometric strength, isotonic power, as well as torque‐ and velocity‐related parameters were recorded before, immediately after, and throughout 10 min of recovery. Rate of EMG rise (RER) for the medial gastrocnemius (MG) and soleus was also obtained. All measures responded similarly between sexes after both fatiguing modalities (p > 0.05), except RER of the MG which, in males demonstrated both, a greater decrease during isotonic contractions (p = 0.038, ηp2 = 0.174) and more rapid recovery after isometric exercise (p = 0.043, ηp2 = 0.166). Although not significant, a nearly large effect size was demonstrated for the fatigue‐induced decrease in isometric strength (p = 0.061; d = 0.77) due to relative decreases tending to be greater in males (−29% vs. −17%). Regardless of fatiguing modality, sex differences were minimal for fatigue and recovery‐related responses in muscle function for the PFs, although the difference for RER may indicate a unique origin of fatigue. Further support for the disassociation between the response in isometric strength and power after fatiguing exercise was also demonstrated.
Collapse
Affiliation(s)
- Phuong L Ha
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Benjamin E Dalton
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Michaela G Alesi
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Tyler M Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Trisha A VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Yuri Feito
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Garrett M Hester
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| |
Collapse
|
13
|
Fitzgerald LF, Ryan MM, Bartlett MF, Miehm JD, Kent JA. Muscle architecture, voluntary activation, and low-frequency fatigue do not explain the greater fatigue of older compared with young women during high-velocity contractions. PLoS One 2020; 15:e0234217. [PMID: 33141870 PMCID: PMC7608879 DOI: 10.1371/journal.pone.0234217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/18/2020] [Indexed: 11/18/2022] Open
Abstract
Although high-velocity contractions elicit greater muscle fatigue in older than young adults, the cause of this difference is unclear. We examined the potential roles of resting muscle architecture and baseline contractile properties, as well as changes in voluntary activation and low-frequency fatigue in response to high-velocity knee extensor work. Vastus lateralis muscle architecture was determined in quiescent muscle by ultrasonography in 8 young (23.4±1.8 yrs) and 8 older women (69.6±1.1). Maximal voluntary dynamic (MVDC) and isometric (MVIC), and stimulated (80Hz and 10Hz, 500ms) isometric contractions were performed before and immediately after 120 MVDCs (240°.s-1, one every 2s). Architecture variables did not differ between groups (p≥0.209), but the half-time of torque relaxation (T1/2) was longer in older than young women at baseline (151.9±6.0 vs. 118.8±4.4 ms, respectively, p = 0.001). Older women fatigued more than young (to 33.6±4.7% vs. 55.2±4.2% initial torque, respectively; p = 0.004), with no evidence of voluntary activation failure (ΔMVIC:80Hz torque) in either group (p≥0.317). Low-frequency fatigue (Δ10:80Hz torque) occurred in both groups (p<0.001), as did slowing of T1/2 (p = 0.001), with no differences between groups. Baseline T1/2 was inversely associated with fatigue in older (r2 = 0.584, p = 0.045), but not young women (r2 = 0.147, p = 0.348). These results indicate that differences in muscle architecture, voluntary activation, and low-frequency fatigue do not explain the greater fatigue of older compared with young women during high-velocity contractions. The inverse association between baseline T1/2 and fatigue in older women suggests that factors related to slower muscle contractile properties may be protective against fatigue during fast, repetitive contractions in aging.
Collapse
Affiliation(s)
- Liam F. Fitzgerald
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Margaret M. Ryan
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Miles F. Bartlett
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Jules D. Miehm
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Jane A. Kent
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| |
Collapse
|
14
|
Hinks A, Hess A, Debenham MIB, Chen J, Mazara N, Inkol KA, Cervone DT, Spriet LL, Dalton BH, Power GA. Power loss is attenuated following a second bout of high-intensity eccentric contractions due to the repeated bout effect's protection of rate of torque and velocity development. Appl Physiol Nutr Metab 2020; 46:461-472. [PMID: 33125854 DOI: 10.1139/apnm-2020-0641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High-intensity unaccustomed eccentric contractions result in weakness and power loss because of fatigue and muscle damage. Through the repeated bout effect (RBE), adaptations occur, then damage and weakness are attenuated following a subsequent bout. However, it is unclear whether the RBE protects peak power output. We investigated the influence of the RBE on power production and estimated fatigue- and damage-induced neuromuscular impairments following repeated high-intensity eccentric contractions. Twelve healthy adult males performed 5 sets of 30 maximal eccentric elbow flexions and repeated an identical bout 4 weeks later. Recovery was tracked over 7 days following both bouts. Reduced maximum voluntary isometric contraction torque, and increased serum creatine kinase and self-reported soreness indirectly inferred muscle damage. Peak isotonic power, time-dependent measures - rate of velocity development (RVD) and rate of torque development (RTD) - and several electrophysiological indices of neuromuscular function were assessed. The RBE protected peak power, with a protective index of 66% 24 h after the second eccentric exercise bout. The protection of power also related to preserved RVD (R2 = 0.61, P < 0.01) and RTD (R2 = 0.39, P < 0.01). Furthermore, the RBE's protection against muscle damage permitted the estimation of fatigue-associated neuromuscular performance decrements following eccentric exercise. Novelty: The repeated bout effect protects peak isotonic power. Protection of peak power relates to preserved rates of torque and velocity development, but more so rate of velocity development. The repeated bout effect has little influence on indices of neuromuscular fatigue.
Collapse
Affiliation(s)
- Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Adam Hess
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Mathew I B Debenham
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jackey Chen
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Nicole Mazara
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Keaton A Inkol
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Daniel T Cervone
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lawrence L Spriet
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Brian H Dalton
- School of Health and Exercise Sciences, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
15
|
Kwon M, Senefeld JW, Hunter SK. Attenuated activation of knee extensor muscles during fast contractions in older men and women. Eur J Appl Physiol 2020; 120:2289-2299. [PMID: 32789699 DOI: 10.1007/s00421-020-04451-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/30/2020] [Indexed: 01/07/2023]
Abstract
AIM Reduced physical function and increased risk of falls in older adults are accompanied by age-related reductions in torque development of leg muscles, although the mechanisms and potential sex differences are not understood. PURPOSE To determine the mechanistic origins (neural vs. muscular) for the age-related reduction in torque development, we compared the peak rates of torque development (RTD) during electrically-evoked and fast voluntary contractions of the knee extensors between young and older men and women. METHODS Sets of single- and double-pulse electrical stimulations evoked contractions of the knee extensor muscles in 20 young (23.0 ± 0.8 years; 10 women) and 20 older adults (78.2 ± 1.5 years; 10 women), followed by voluntary isometric knee extension contractions with torque development as fast as possible that matched the torque during electrically-evoked contraction (10-40% maximal torque). RESULTS Peak RTD during fast-voluntary contractions was 41% less than electrically-evoked contractions (p < 0.001), but more so for older adults (44%) than young (38%, p = 0.04), with no sex differences. Peak RTD during fast-voluntary contractions was more variable between contractions for the older than young adults (77%MVC s-1 vs. 47%MVC s-1, p < 0.001). Additionally, older women exhibited greater variability than older men (81%MVC s-1 vs. 72%MVC s-1, p = 0.04) with no sex-related differences within the young adults. CONCLUSION Older adults had slower and more variable RTD during voluntary contractions than young adults, particularly older women. The limited age-related differences in electrically-evoked RTD suggest the primary mechanism for the slower torque development of the knee extensor muscles in older men and women involve reduced neural activation.
Collapse
Affiliation(s)
- MinHyuk Kwon
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI, USA.,Department of Kinesiology and Health Promotion, California State Polytechnic University, Pomona, CA, USA
| | - Jonathon W Senefeld
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI, USA.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI, USA.
| |
Collapse
|
16
|
Smith SGVS, Power GA, Bent LR. Foot sole cutaneous stimulation mitigates neuromuscular fatigue during a sustained plantar flexor isometric task. J Appl Physiol (1985) 2020; 129:325-334. [PMID: 32584665 DOI: 10.1152/japplphysiol.00157.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neuromuscular fatigue impairs motor coordination, movement stability, and proprioception, which further decreases performance. A neuromechanical coupling exists between foot sole cutaneous mechanoreceptors and motoneurons of the lower limb, however, the contribution of skin sensory input on muscle fatigue remains unclear. The purpose of this study was to determine if the presence of cutaneous stimulation could mitigate the effect of fatigue of the plantar flexor muscles during a sustained isometric task at 30% maximal voluntary contraction (MVC). Participants (N = 16, age 24.1 ± 2.6 yr) underwent a 30% isometric plantar flexor fatiguing task in a seated position with hip, knee, and ankle angle at 80°, 100°, and 90°, respectively, with intermittent MVCs until task failure. Failure was defined as when the participant could no longer maintain 30% MVC for a minimum of two seconds. Throughout the protocol, electrical stimulation was applied to either the right heel, right metatarsals, or no stimulation. A subset of participants (N = 6) underwent an additional condition with electrical stimulation applied to the left arm. MVCs were also conducted intermittently throughout recovery for 30 min. Foot sole cutaneous stimulation mitigated fatigue, as demonstrated by an ~15% increased time to task failure (TTF) compared with the control condition. When normalized to TTF, MVC torque amplitude was not different at each time epoch, which indicated that each %MVC was maintained longer into the fatigue task during the heel and metatarsal stimulation conditions However, there was no significant effect of cutaneous stimulation on recovery. The results indicate that cutaneous stimulation may serve as a feasible means to mitigate fatigue.NEW & NOTEWORTHY Cutaneous coupling with lower limb motor neurons has long been known. We set out to establish whether this pathway could serve a purpose other than muscular modulation during standing and walking. We found that during a submaximal contraction of the plantar flexor muscles, the addition of intermittent cutaneous stimulation to the skin of the foot sole resulted in an increase in time to task failure by 15%, which was over a minute longer in duration. We conclude that skin stimulation may serve as a mechanism to mitigate fatigue.
Collapse
Affiliation(s)
- Simone G V S Smith
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Leah R Bent
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
17
|
Zhang C, Dong S, Chen C, Zhang Q, Zhou D. Co-substrate addition accelerated amoxicillin degradation and detoxification by up-regulating degradation related enzymes and promoting cell resistance. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122574. [PMID: 32278124 DOI: 10.1016/j.jhazmat.2020.122574] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/06/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
β-Lactam antibiotics are the most commonly used antibiotics, and are difficult to remove by conventional biological treatments because of their persistent and toxic nature. The addition of co-substrates has been successfully employed to improve the removal of refractory pollutants. So, we hypothesized that the co-substrate strategy would increase antibiotic degradation and benefit microbial survival. In this work, we reported that co-substrate (acetate) addition up-regulated key degrading enzymes and resistance related genes in a model bacteria strain (L. aquatilis) when being treated with 0.055 mM amoxicillin (AMO). β-Lactamase, amidases, transaminase, and amide C-N hydrolase showed increased activation. As a result, AMO removal reached ∼95 %, a ∼60 % increase over the control. Furthermore, the addition of acetate drove the down-stream TCA cycle, which accelerated the detoxification of the intermediates and reduced the microbial inhibition by the antibiotic products to as low as ∼15 %. Besides, the expression levels of genes encoding the efflux pump, penicillin binding proteins, and β-Lactamase were up-regulated, and the inhibition of peptidoglycan biosynthesis was down-regulated. The cell density was enhanced by ∼170 % and showed improved DNA replication. In conclusion, the addition of the co-substrate accelerated AMO degradation and detoxification by up-regulating degrading enzymes and promoting cell resistance.
Collapse
Affiliation(s)
- Chongjun Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China; Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Shuangshi Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Congli Chen
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Qifeng Zhang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
18
|
Akagi R, Hinks A, Power GA. Differential changes in muscle architecture and neuromuscular fatigability induced by isometric resistance training at short and long muscle-tendon unit lengths. J Appl Physiol (1985) 2020; 129:173-184. [PMID: 32552430 DOI: 10.1152/japplphysiol.00280.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We evaluated the effects of differential muscle architectural adaptations on neuromuscular fatigue resistance. Seven young males and six females participated in this study. Using a longitudinal within-subject design, legs were randomly assigned to perform isometric training of the tibialis anterior (TA) three times per week for 8 wk at a short (S-group) or long muscle-tendon unit length (L-group). Before and following training, fascicle length (FL) and pennation angle (PA) of the TA were assessed. As well, fatigue-related time course changes in isometric maximal voluntary contraction (MVC) torque and isotonic peak power (20% MVC resistance) were determined before, immediately after, and 1, 2, 5, and 10 min following task failure. The fatiguing task consisted of repeated maximal effort isotonic (20% MVC resistance) contractions over a 40° range of motion until the participant reached a 40% reduction in peak power. Although there was no clear improvement in neuromuscular fatigue resistance following training in either group (P = 0.081; S-group: ∼20%; L-group: ∼51%), the change in neuromuscular fatigue resistance was related positively to the training-induced increase in PA (∼6%, P < 0.001) in the S-group (r = 0.739, P = 0.004) and negatively to the training-induced increase in FL (∼4%, P = 0.001) in the L-group (r = -0.568, P = 0.043). Both groups recovered similarly for MVC torque and peak power after the fatiguing task as compared with before training. We suggest that the relationships between the changes in muscle architecture and neuromuscular fatigue resistance depend on the muscle-tendon unit lengths at which the training is performed.NEW & NOTEWORTHY Eight weeks of isometric training at a long or short muscle-tendon unit length increased and did not change fascicle length, respectively. The "width" of the torque-angle relationship plateau became broader following isometric training at the long length. Despite marked differences in muscle architecture and functional adaptations between the groups, there was only a small-magnitude improvement in neuromuscular fatigue resistance, which was surprisingly negatively related to increased fascicle length in the long length-training group.
Collapse
Affiliation(s)
- Ryota Akagi
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan.,Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
19
|
Age-related neuromuscular fatigue and recovery after cycling: Measurements in isometric and dynamic modes. Exp Gerontol 2020; 133:110877. [DOI: 10.1016/j.exger.2020.110877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 01/02/2023]
|
20
|
Akagi R, Hinks A, Davidson B, Power GA. Differential contributions of fatigue-induced strength loss and slowing of angular velocity to power loss following repeated maximal shortening contractions. Physiol Rep 2020; 8:e14362. [PMID: 32034892 PMCID: PMC7007446 DOI: 10.14814/phy2.14362] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to investigate the relationship between fatigue-induced reductions in isometric torque and isotonic power and to quantify the extent to which the decreases in angular velocity and dynamic torque can explain the power loss immediately following an isotonic fatiguing task and throughout recovery in seven young males and six young females. All measurements were performed with both legs. For dorsiflexion, fatigue-related time-course changes in isometric maximal voluntary contraction (MVC) torque, angular velocity, dynamic torque, and power production following repeated maximal isotonic contractions (load: 20% MVC) were investigated before, immediately after, and 1, 2, 5 and 10 min after a fatiguing task. There were no relationships between the fatigue-related reductions in isometric MVC torque and peak power at any timepoint, suggesting that fatigue-induced reductions in isometric MVC torque does not entirely reflect fatigue-induced changes in dynamic performance. The relative contribution of fatigue-related reduction in dynamic torque on power loss was greater immediately following the task, and lower throughout recovery than the corresponding decrease in angular velocity. Thus, power loss immediately following the task was more strongly related to the decline in dynamic torque; however, this relationship shifted throughout recovery to a greater dependence on slowing of angular velocity for power loss.
Collapse
Affiliation(s)
- Ryota Akagi
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan.,Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Brooke Davidson
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
21
|
Olmos AA, Stratton MT, Ha PL, VanDusseldorp TA, Bailly AR, Feito Y, Mangine GT, Poisal MJ, Jones JA, Dalton BE, Smith TM, Hester GM. Neuromuscular function of the plantar flexors and predictors of peak power in middle-aged and older males. Exp Gerontol 2019; 125:110677. [PMID: 31374246 DOI: 10.1016/j.exger.2019.110677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
Little evidence exists regarding the contribution of torque and velocity to the age-related decrease in peak power (PP) for the plantar flexors (PFs). A comprehensive assessment of PF neuromuscular function is necessary to elucidate age-related changes, especially between middle-aged and older adults, in order to identify early, age-related decrements. Thus, the purpose of this study was to examine neuromuscular function of the PFs in middle-aged and older males, and identify predictors of PP. Twenty-eight healthy, middle-aged (n = 13; 45.1 ± 2.7 yrs) and older (n = 15; 65.3 ± 3.2 yrs) males performed concentric isotonic PF contractions ranging in intensity from 20% to 70% isometric strength using a dynamometer. PP in addition to velocity and torque at the moment in time PP occurred, as well as the rate of velocity, torque (RTD), and power (RPD) development were recorded. The rate of electromyography rise (RER) was derived from the linear slope of the normalized electromyography signal. Isometric and concentric dynamic strength were assessed, as well as cross-sectional area and muscle quality (i.e., echo intensity) of the PFs via panoramic ultrasonography. The relationship between serum c-terminal agrin levels and select variables was examined to explore the potential role of neuromuscular junction deterioration. Appendicular lean mass and physical activity level were similar between groups (p > 0.05), and only PP (p = 0.046; d = 0.79), RPD (p = 0.026; d = 0.90), RTD (p = 0.022; d = 0.91), and RER (p = 0.010; d = 1.04) were lower in older males. When groups were collapsed, RTD was the only significant predictor of PP, while c-terminal agrin levels were not associated with any variables. Our findings indicate that PP and time-dependent parameters of muscle activation and contractile function of the PFs are dramatically diminished in older adults compared to middle-aged adults. PP is produced at the same velocity and relative intensity in middle-aged and older males, and RTD is most influential for PP. The inability of the PFs to be rapidly activated appeared to be influential for the age-related impairment in PP and time-dependent contractile parameters.
Collapse
Affiliation(s)
- Alex A Olmos
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA 30144, United States of America
| | - Matthew T Stratton
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA 30144, United States of America
| | - Phuong L Ha
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA 30144, United States of America
| | - Trisha A VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA 30144, United States of America
| | - Alyssa R Bailly
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA 30144, United States of America
| | - Yuri Feito
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA 30144, United States of America
| | - Gerald T Mangine
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA 30144, United States of America
| | - Micah J Poisal
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA 30144, United States of America
| | - Joshua A Jones
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA 30144, United States of America
| | - Benjamin E Dalton
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA 30144, United States of America
| | - Tyler M Smith
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA 30144, United States of America
| | - Garrett M Hester
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA 30144, United States of America.
| |
Collapse
|
22
|
Krüger RL, Aboodarda SJ, Jaimes LM, MacIntosh BR, Samozino P, Millet GY. Fatigue and recovery measured with dynamic properties versus isometric force: effects of exercise intensity. ACTA ACUST UNITED AC 2019; 222:jeb.197483. [PMID: 30890621 DOI: 10.1242/jeb.197483] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/13/2019] [Indexed: 11/20/2022]
Abstract
Although fatigue can be defined as an exercise-related decrease in maximal power or isometric force, most studies have assessed only isometric force. The main purpose of this experiment was to compare dynamic measures of fatigue [maximal torque (T max), maximal velocity (V max) and maximal power (P max)] with measures associated with maximal isometric force [isometric maximal voluntary contraction (IMVC) and maximal rate of force development (MRFD)] 10 s after different fatiguing exercises and during the recovery period (1-8 min after). Ten young men completed six experimental sessions (3 fatiguing exercises×2 types of fatigue measurements). The fatiguing exercises were: 30 s all-out intensity (AI), 10 min at severe intensity (SI) and 90 min at moderate intensity (MI). Relative P max decreased more than IMVC after AI exercise (P=0.005) while the opposite was found after SI (P=0.005) and MI tasks (P<0.001). There was no difference between the decrease in IMVC and T max after the AI exercise, but IMVC decreased more than T max immediately following and during the recovery from the SI (P=0.042) and MI exercises (P<0.001). Depression of MRFD was greater than V max after all fatiguing exercises and during recovery (all P<0.05). Despite the general definition of fatigue, isometric assessment of fatigue is not interchangeable with dynamic assessment following dynamic exercises with large muscle mass of different intensities, i.e. the results from isometric function cannot be used to estimate dynamic function and vice versa. This implies different physiological mechanisms for the various measures of fatigue.
Collapse
Affiliation(s)
- Renata L Krüger
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | - Saied Jalal Aboodarda
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | - Libia Marcela Jaimes
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | - Brian R MacIntosh
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | - Pierre Samozino
- Univ Savoie Mont Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, EA 7424, F-73000 Chambéry, France
| | - Guillaume Y Millet
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| |
Collapse
|
23
|
Age Does Not Attenuate Maximal Velocity Adaptations in the Ipsilateral and Contralateral Limbs During Unilateral Resistance Training. J Aging Phys Act 2019; 27:1-8. [DOI: 10.1123/japa.2017-0297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Alota Ignacio Pereira V, Augusto Barbieri F, Moura Zagatto A, Cezar Rocha Dos Santos P, Simieli L, Augusto Barbieri R, Pivetta Carpes F, Teresa Bucken Gobbi L. Muscle Fatigue Does Not Change the Effects on Lower Limbs Strength Caused by Aging and Parkinson's Disease. Aging Dis 2018; 9:988-998. [PMID: 30574412 PMCID: PMC6284767 DOI: 10.14336/ad.2018.0203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/03/2018] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to determine the impact of aging and Parkinson’s disease (PD) on lower limb muscle strength before and after muscle fatigue. One hundred thirty-five individuals were distributed over seven groups according to their age (20, 30, 40, 50, 60, 70 years old) and disease. Participants performed maximum voluntary isometric contractions (MVIC) in a leg press device followed by the muscle fatigue protocol (repeated sit-to-stand task). Immediately after muscle fatigue (less than 2 min), the MVIC were repeated. The peak force, peak rate of force development (first 50, 100, 200 ms), and root mean square and peak values of the vastus lateralis and vastus medialis muscle activity during MVIC were calculated before and after muscle fatigue. We found more pronounced reductions in lower limb muscle strength parameters (lower limb force, RFD-100 and RFD-200 - p<0.05) in individuals over 50 years of age and with PD. In addition, there was an inverse relation between aging and lower limb muscle strength parameters. The main findings were the lack of changes in peak force, RFDs and muscle activity of the vastus lateralis and vastus medialis after muscle fatigue according to aging and PD, and similar lower limb muscle strength parameters (before and after muscle fatigue) and effect of muscle fatigue in PD compared to the aged groups (60 and 70 years old groups).
Collapse
Affiliation(s)
- Vinicius Alota Ignacio Pereira
- 1Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, Sao Paulo State University (Unesp), Bauru, Brazil
| | - Fabio Augusto Barbieri
- 1Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, Sao Paulo State University (Unesp), Bauru, Brazil
| | - Alessandro Moura Zagatto
- 1Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, Sao Paulo State University (Unesp), Bauru, Brazil
| | - Paulo Cezar Rocha Dos Santos
- 2Posture and Gait Studies Laboratory (LEPLO), Department of Physical Education, Sao Paulo State University (Unesp), Rio Claro, Brazil
| | - Lucas Simieli
- 1Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, Sao Paulo State University (Unesp), Bauru, Brazil
| | - Ricardo Augusto Barbieri
- 3Graduate Program in Physical Education and Sport at School of Physical Education and Sport of Ribeirao Preto (EEFERP), University of Sao Paulo, Centro Universitário Estacio de Ribeirao Preto, Brazil
| | - Felipe Pivetta Carpes
- 4Applied Neuromechanics Group, Laboratory of Neuromechanics, Federal University of Pampa, Uruguaiana, Brazil
| | - Lilian Teresa Bucken Gobbi
- 2Posture and Gait Studies Laboratory (LEPLO), Department of Physical Education, Sao Paulo State University (Unesp), Rio Claro, Brazil
| |
Collapse
|
25
|
KRÜGER RENATAL, ABOODARDA SAIEDJALAL, SAMOZINO PIERRE, RICE CHARLESL, MILLET GUILLAUMEY. Isometric versus Dynamic Measurements of Fatigue: Does Age Matter? A Meta-analysis. Med Sci Sports Exerc 2018; 50:2132-2144. [DOI: 10.1249/mss.0000000000001666] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Zhang C, Li Q, Fu L, Zhou D, Crittenden JC. Quorum sensing molecules in activated sludge could trigger microalgae lipid synthesis. BIORESOURCE TECHNOLOGY 2018; 263:576-582. [PMID: 29783193 DOI: 10.1016/j.biortech.2018.05.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
Cultivating microalgae using wastewater is an economical strategy to produce biofuel; however, microbial contamination has to be controlled strictly. Microalgae lipid accumulation can be triggered by environmental pressures, and here, we studied whether microbial contamination is the pressure for microalgae. We hypothesized this pressure was forced via cell-to-cell communication with quorum sensing molecules (QSMs). In this work, we verified the impacts of QSMs produced by activated sludge (wastewater-born microbial consortiums) on both lipid content and biomass production of the microalgae Chlorophyta sp., since in combination, they determined lipid productivity. With QSMs stress, the lipid content of Chlorophyta sp. increased by ∼84%, while biomass production decreased only slightly. Consistently, enzymes on the fatty acid synthesis pathways were generally up-regulated, while they were slightly down-regulated for DNA replication. In summary, the total lipid production improved by 86%. These results revealed the positive effects of microbial contamination on microalgae biofuel production.
Collapse
Affiliation(s)
- Chaofan Zhang
- School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Qingcheng Li
- School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Liang Fu
- School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Dandan Zhou
- School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China.
| | - John C Crittenden
- School of Environment, Northeast Normal University, Changchun 130117, China; Brook Byers Institute for Sustainable Systems, and School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
27
|
Abstract
Performance fatigability is characterized as an acute decline in motor performance caused by an exercise-induced reduction in force or power of the involved muscles. Multiple mechanisms contribute to performance fatigability and originate from neural and muscular processes, with the task demands dictating the mechanisms. This review highlights that (1) inadequate activation of the motoneuron pool can contribute to performance fatigability, and (2) the demands of the task and the physiological characteristics of the population assessed, dictate fatigability and the involved mechanisms. Examples of task and population differences in fatigability highlighted in this review include contraction intensity and velocity, stability and support provided to the fatiguing limb, sex differences, and aging. A future challenge is to define specific mechanisms of fatigability and to translate these findings to real-world performance and exercise training in healthy and clinical populations across the life span.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin 53201
| |
Collapse
|
28
|
Xiong H, Dong S, Zhang J, Zhou D, Rittmann BE. Roles of an easily biodegradable co-substrate in enhancing tetracycline treatment in an intimately coupled photocatalytic-biological reactor. WATER RESEARCH 2018; 136:75-83. [PMID: 29500974 DOI: 10.1016/j.watres.2018.02.061] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/23/2018] [Accepted: 02/25/2018] [Indexed: 06/08/2023]
Abstract
Intimately coupled photocatalysis and biodegradation (ICPB) was realized in a macroporous carrier in which a photocatalyst was present on the outer surface, while a biofilm accumulated inside the carrier. In ICPB, photocatalysis products are rapidly biodegraded by a protected biofilm, leading to mineralization of the refractory organics, such as antibiotics. However, mineralization in ICPB could be compromised if the photocatalysis products remain refractory or are inhibitory. To address this, we attempted to increase metabolic activity by providing a readily biodegradable co-substrate (acetate) that could act as a source of energy and electrons to improve biotransformation and mineralization of the refractory antibiotic tetracycline (TCH). When we added acetate during ICPB of TCH, TCH removal increased by ∼5%, mineralization increased by ∼20%, and almost all photocatalysis products disappeared. Acetate addition also led to an increase in active biomass, an increase in the biomass's respiratory activity, and evolution of the microbial community to having more members able to biodegrade photocatalysis and biotransformation intermediates. Thus, providing an easily biodegradable co-substrate was an effective means for enhancing TCH removal and mineralization with the ICPB technology.
Collapse
Affiliation(s)
- Houfeng Xiong
- School of Environment, Northeast Normal University, Changchun 130117, China; School of Chemistry and Environmental Engineering, Jiujiang University, Jiujiang 332005, China
| | - Shuangshi Dong
- Engineering Lab for Water Pollution Control and Resources Recovery, Jilin Province, Northeast Normal University, Changchun 130117, China; Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Jun Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Dandan Zhou
- School of Environment, Northeast Normal University, Changchun 130117, China; Engineering Lab for Water Pollution Control and Resources Recovery, Jilin Province, Northeast Normal University, Changchun 130117, China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, AZ 85287-5701, USA
| |
Collapse
|
29
|
Lanning AC, Power GA, Christie AD, Dalton BH. Influence of sex on performance fatigability of the plantar flexors following repeated maximal dynamic shortening contractions. Appl Physiol Nutr Metab 2017. [PMID: 28636840 DOI: 10.1139/apnm-2017-0013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose was to determine sex differences in fatigability during maximal, unconstrained velocity, shortening plantar flexions. The role of time-dependent measures (i.e., rate of torque development, rate of velocity development, and rate of neuromuscular activation) in such sex-related differences was also examined. By task termination, females exhibited smaller reductions in power and similar changes in rate of neuromuscular activation than males, indicating females were less fatigable than males.
Collapse
Affiliation(s)
- Amelia C Lanning
- a Department of Human Physiology, University of Oregon, Eugene, OR 97403, USA
| | - Geoffrey A Power
- b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Anita D Christie
- a Department of Human Physiology, University of Oregon, Eugene, OR 97403, USA
| | - Brian H Dalton
- c School of Health and Exercise Sciences, The University of British Columbia, ART 360, 1147 Research Road, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
30
|
Age differences in dynamic fatigability and variability of arm and leg muscles: Associations with physical function. Exp Gerontol 2016; 87:74-83. [PMID: 27989926 DOI: 10.1016/j.exger.2016.10.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/27/2016] [Accepted: 10/24/2016] [Indexed: 12/25/2022]
Abstract
INTRODUCTION It is not known whether the age-related increase in fatigability of fast dynamic contractions in lower limb muscles also occurs in upper limb muscles. We compared age-related fatigability and variability of maximal-effort repeated dynamic contractions in the knee extensor and elbow flexor muscles; and determined associations between fatigability, variability of velocity between contractions and functional performance. METHODS 35 young (16 males; 21.0±2.6years) and 32 old (18 males; 71.3±6.2years) adults performed a dynamic fatiguing task involving 90 maximal-effort, fast, concentric, isotonic contractions (1 contraction/3s) with a load equivalent to 20% maximal voluntary isometric contraction (MVIC) torque with the elbow flexor and knee extensor muscles on separate days. Old adults also performed tests of balance and walking endurance. RESULTS Old adults had greater fatigue-related reductions in peak velocity compared with young adults for both the elbow flexor and knee extensor muscles (P<0.05) with no sex differences (P>0.05). Old adults had greater variability of peak velocity during the knee extensor, but not during the elbow flexor fatiguing task. The age difference in fatigability was greater for the knee extensor muscles (35.9%) compared with elbow flexor muscles (9.7%, P<0.05). Less fatigability of the knee extensor muscles was associated with greater walking endurance (r=-0.34, P=0.048) and balance (r=-0.41, P=0.014) among old adults. CONCLUSIONS An age-related increase in fatigability of a dynamic fatiguing task was greater for the knee extensor compared with the elbow flexor muscles in males and females, and greater fatigability was associated with lesser walking endurance and balance.
Collapse
|
31
|
Hunter SK, Pereira HM, Keenan KG. The aging neuromuscular system and motor performance. J Appl Physiol (1985) 2016; 121:982-995. [PMID: 27516536 PMCID: PMC5142309 DOI: 10.1152/japplphysiol.00475.2016] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/08/2016] [Indexed: 12/25/2022] Open
Abstract
Age-related changes in the basic functional unit of the neuromuscular system, the motor unit, and its neural inputs have a profound effect on motor function, especially among the expanding number of old (older than ∼60 yr) and very old (older than ∼80 yr) adults. This review presents evidence that age-related changes in motor unit morphology and properties lead to impaired motor performance that includes 1) reduced maximal strength and power, slower contractile velocity, and increased fatigability; and 2) increased variability during and between motor tasks, including decreased force steadiness and increased variability of contraction velocity and torque over repeat contractions. The age-related increase in variability of motor performance with aging appears to involve reduced and more variable synaptic inputs that drive motor neuron activation, fewer and larger motor units, less stable neuromuscular junctions, lower and more variable motor unit action potential discharge rates, and smaller and slower skeletal muscle fibers that coexpress different myosin heavy chain isoforms in the muscle of older adults. Physical activity may modify motor unit properties and function in old men and women, although the effects on variability of motor performance are largely unknown. Many studies are of cross-sectional design, so there is a tremendous opportunity to perform high-impact and longitudinal studies along the continuum of aging that determine 1) the influence and cause of the increased variability with aging on functional performance tasks, and 2) whether lifestyle factors such as physical exercise can minimize this age-related variability in motor performance in the rapidly expanding numbers of very old adults.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin; and
| | - Hugo M Pereira
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin; and
| | - Kevin G Keenan
- Department of Kinesiology, College of Health Sciences, University of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
32
|
Morat T, Gilmore KJ, Rice CL. Neuromuscular function in different stages of sarcopenia. Exp Gerontol 2016; 81:28-36. [PMID: 27108183 DOI: 10.1016/j.exger.2016.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 01/06/2023]
Abstract
This study applied the screening tool developed by the European Working Group on Sarcopenia in Older People (EWGSOP) on seniors aged over 65years and concurrently tested various laboratory-based indices of neuromuscular function. Twenty-four healthy and independent living older adults (9 men, 15 women) with a mean age of 79.1±5.8years participated. Based on gait speed, handgrip strength and muscle mass all subjects were categorized into one of the three conceptual sarcopenia stages (pre-sarcopenia, sarcopenia, severe sarcopenia). Maximal strength of dorsiflexors in the left leg was measured and voluntary activation was assessed by the interpolated twitch technique. In addition, isometric evoked contractile properties were recorded. Skeletal muscle mass was assessed by ultrasound from nine sites. There were roughly equal number of subjects in each sarcopenic category, and age was not different among the 3 groups. There were no differences in handgrip strength and skeletal muscle mass index among the 3 groups. Gait speed was significantly slower (p<0.01) in the severe sarcopenic subjects compared to the pre-sarcopenic group. With no differences in voluntary activation among the groups, the maximal voluntary contractions (MVCs) for severe sarcopenic subjects were 29% lower (p=0.02) and with 19% slower (p=0.02) voluntary rates of torque development (RTD) compared to sarcopenic subjects. Furthermore, the severe group was 34% lower (p=0.04) with 36% slower (p=0.02) RTD compared to pre-sarcopenic subjects. Peak twitch tension was 54% lower (p<0.01) in the severe group compared with the pre-sarcopenic group. Maximal twitch RTD were 40% (p=0.03) slower for the severe group compared to the sarcopenia group, and 51% slower (p=0.03) compared with the pre-sarcopenia group, but when normalized to peak torques there were no statistical differences. The laboratory tests found neuromuscular differences among the 3 groups which generally supported the classification scheme and helped to illustrate some key factors that could explain differences in functional capacities. These initial findings support the assumption that this categorization is relevant for identifying older adults with different neuromuscular properties. However, further studies are needed to provide more insight into the specific neuromuscular changes in the three sarcopenia stages, and how these changes relate to functional capacity. Such studies could ultimately contribute to identifying optimal interventions to improve neuromuscular functioning.
Collapse
Affiliation(s)
- Tobias Morat
- Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, Arthur & Sonia Labatt Health Sciences, Rm. 411D, London, ON N6A 5B9, Canada; German Sport University Cologne, Institute of Movement and Sport Gerontology, Am Sportpark Muengersdorf 6, 50933 Cologne, Germany.
| | - Kevin J Gilmore
- Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, Arthur & Sonia Labatt Health Sciences, Rm. 411D, London, ON N6A 5B9, Canada.
| | - Charles L Rice
- Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, Arthur & Sonia Labatt Health Sciences, Rm. 411D, London, ON N6A 5B9, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|