1
|
Xie G, Shao Z. SPP-5 affects larval arrest via insulin signaling pathway in Caenorhabditis elegans. J Mol Histol 2024; 55:491-502. [PMID: 38869752 DOI: 10.1007/s10735-024-10205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/18/2024] [Indexed: 06/14/2024]
Abstract
Diapause is an endocrine-mediated metabolic and growth arrest state in response to unfavorable external environments. The nematode Caenorhabditis elegans can enter diapause/arrest during embryonic, larval, or adult stages when subjected to detrimental external environments. Larval stage 1 (L1) arrest happens when animals hatch without food. Previous work has shown that the insulin pathway plays a prominent role in regulating L1 arrest. However, the downstream signal molecular mechanisms and biomarkers are still missing. In this study, we showed that SaPosin-like Protein family member SPP-5 is significantly upregulated during L1 arrest, suggesting that it could act as an L1 arrest biomarker. Using RNA interference we demonstrated that spp-5 knockdown accelerated larval development, while the overexpression resulted in L1 arrest. Consistently, SPP-5 level was significantly up-regulated in the L1 arrest daf-2(e1370) mutants, and spp-5(RNAi) suppressed the daf-2(e1370) induced L1 arrest. These results suggest that SPP-5 can serve as an L1 arrest biomarker and promote the arrest probably via the insulin signaling pathway.
Collapse
Affiliation(s)
- Guangjie Xie
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Fudan University, Shanghai, China
| | - Zhiyong Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Frézal L, Saglio M, Zhang G, Noble L, Richaud A, Félix MA. Genome-wide association and environmental suppression of the mortal germline phenotype of wild C. elegans. EMBO Rep 2023; 24:e58116. [PMID: 37983674 DOI: 10.15252/embr.202358116] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023] Open
Abstract
The animal germline lineage needs to be maintained along generations. However, some Caenorhabditis elegans wild isolates display a mortal germline phenotype, leading to sterility after several generations at 25°C. Using a genome-wide association approach, we detect a significant peak on chromosome III around 5 Mb, confirmed by introgressions. Thus, a seemingly deleterious genotype is maintained at intermediate frequency in the species. Environmental rescue is a likely explanation, and indeed associated bacteria and microsporidia suppress the phenotype of wild isolates as well as mutants in small RNA inheritance (nrde-2) and histone modifications (set-2). Escherichia coli strains of the K-12 lineage suppress the phenotype compared to B strains. By shifting a wild strain from E. coli K-12 to E. coli B, we find that memory of the suppressing condition is maintained over several generations. Thus, the mortal germline phenotype of wild C. elegans is in part revealed by laboratory conditions and may represent variation in epigenetic inheritance and environmental interactions. This study also points to the importance of non-genetic memory in the face of environmental variation.
Collapse
Affiliation(s)
- Lise Frézal
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Marie Saglio
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Gaotian Zhang
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Luke Noble
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Aurélien Richaud
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| |
Collapse
|
3
|
Stuhr NL, Curran SP. Different methods of killing bacteria diets differentially influence Caenorhabditis elegans physiology. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000902. [PMID: 37746065 PMCID: PMC10514698 DOI: 10.17912/micropub.biology.000902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023]
Abstract
Across species, diet plays a critical role in most, if not all life history traits. Caenorhabditis elegans is an important and facile organism for research across modalities, but the use of live bacteria as sources of nutrition can exert pleiotropic outcomes that stem from the action of host-pathogen defenses. Recently, a powerful new approach to readily generate dead and metabolically inactive Escherichia coli was developed that enabled reproducible measures of health across the lifespan. Here we further characterize additional comparisons of developmental and physiological parameters of animals fed either bacteria killed by treatment with ultraviolet (UV) light and bactericidal antibiotics or low-dose paraformaldehyde (PFA). Unlike bacteria killed by UV/Antibiotic treatment, PFA-killed diets resulted in a 25% reduction in body size just prior to adulthood and an overall reduction in stored intracellular lipids. Moreover, a small but reproducible number of animals fed PFA-killed bacteria display age-dependent depletion of somatic lipids, which does not normally occur on live bacteria or bacteria killed by UV/antibiotics. Lastly, animals fed PFA-treated, but not UV-antibiotic treated bacteria display a 10% increase in crawling speed. Taken together, these new data more thoroughly define the physiological impact two methodologies to prepare C. elegans diets that should be considered during experimental design.
Collapse
Affiliation(s)
- Nicole L. Stuhr
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States
| | - Sean P. Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States
| |
Collapse
|
4
|
Feng X, Wang X, Zhou L, Pang S, Tang H. The impact of glucose on mitochondria and life span is determined by the integrity of proline catabolism in Caenorhabditis elegans. J Biol Chem 2023; 299:102881. [PMID: 36626986 PMCID: PMC9932108 DOI: 10.1016/j.jbc.2023.102881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023] Open
Abstract
Mutations in genes involved in mitochondrial proline catabolism lead to the rare genetic disorder hyperprolinemia in humans. We have previously reported that mutations of proline catabolic genes in Caenorhabditis elegans impair mitochondrial homeostasis and shorten life span, and that these effects surprisingly occur in a diet type-dependent manner. Therefore, we speculated that a specific dietary component may mitigate the adverse effects of defective proline catabolism. Here, we discovered that high dietary glucose, which is generally detrimental to health, actually improves mitochondrial homeostasis and life span in C. elegans with faulty proline catabolism. Mechanistically, defective proline catabolism results in a shift of glucose catabolism toward the pentose phosphate pathway, which is crucial for cellular redox balance. This shift helps to maintain mitochondrial reactive oxygen species homeostasis and to extend life span, as suppression of the pentose phosphate pathway enzyme GSPD-1 prevents the favorable effects of high glucose. In addition, we demonstrate that this crosstalk between proline and glucose catabolism is mediated by the transcription factor DAF-16. Altogether, these findings suggest that a glucose-rich diet may be advantageous in certain situations and might represent a potentially viable treatment strategy for disorders involving impaired proline catabolism.
Collapse
Affiliation(s)
- Xi Feng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xinyu Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lei Zhou
- School of Life Sciences, Chongqing University, Chongqing, China,State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Shanshan Pang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Haiqing Tang
- School of Life Sciences, Chongqing University, Chongqing, China.
| |
Collapse
|
5
|
Lactobacillus pentosus MJM60383 Inhibits Lipid Accumulation in Caenorhabditis elegans Induced by Enterobacter cloacae and Glucose. Int J Mol Sci 2022; 24:ijms24010280. [PMID: 36613723 PMCID: PMC9820548 DOI: 10.3390/ijms24010280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Gut microbiota are known to play an important role in obesity. Enterobacter cloacae, a Gram-negative bacterium, has been considered a pathogenic bacterium related to obesity in the gut. In this study, we established an obesity model of C. elegans by feeding E. cloacae combined with a high glucose diet (HGD), which significantly induced lipid accumulation. An anti-lipid mechanism study revealed that the fatty acid composition and the expression level of fat metabolism-related genes were altered by feeding E. cloacae to C. elegans under HGD conditions. Lactic acid bacteria that showed antagonistic activity against E. cloacae were used to screen anti-obesity candidates in this model. Among them, L. pentosus MJM60383 (MJM60383) showed good antagonistic activity. C. eleans fed with MJM60383 significantly reduced lipid accumulation and triglyceride content. The ratio of C18:1Δ9/C18:0 was also changed in C. elegans by feeding MJM60383. In addition, the expression level of genes related to fatty acid synthesis was significantly decreased and the genes related to fatty acid β-oxidation were up-regulated by feeding MJM60383. Moreover, MJM60383 also exhibited a high adhesive ability to Caco-2 cells and colonized the gut of C. elegans. Thus, L. pentosus MJM60383 can be a promising candidate for anti-obesity probiotics. To the best of our knowledge, this is the first report that uses E. cloacae combined with a high-glucose diet to study the interactions between individual pathogens and probiotics in C. elegans.
Collapse
|
6
|
Cai H, Wu P, Vandemeulebroucke L, Dhondt I, Rasulova M, Vierstraete A, Braeckman BP. Axenic Culture of Caenorhabditis elegans Alters Lysosomal/Proteasomal Balance and Increases Neuropeptide Expression. Int J Mol Sci 2022; 23:11517. [PMID: 36232823 PMCID: PMC9570027 DOI: 10.3390/ijms231911517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Axenically cultured C. elegans show many characteristic traits of worms subjected to dietary restriction, such as slowed development, reduced fertility, and increased stress resistance. Hence, the term axenic dietary restriction (ADR) is often applied. ADR dramatically extends the worm lifespan compared to other DR regimens such as bacterial dilution. However, the underlying molecular mechanisms still remain unclear. The primary goal of this study is to comprehensively investigate transcriptional alterations that occur when worms are subjected to ADR and to estimate the molecular and physiological changes that may underlie ADR-induced longevity. One of the most enriched clusters of up-regulated genes under ADR conditions is linked to lysosomal activity, while proteasomal genes are significantly down-regulated. The up-regulation of genes specifically involved in amino acid metabolism is likely a response to the high peptide levels found in axenic culture medium. Genes related to the integrity and function of muscles and the extracellular matrix are also up-regulated. Consistent down-regulation of genes involved in DNA replication and repair may reflect the reduced fertility phenotype of ADR worms. Neuropeptide genes are found to be largely up-regulated, suggesting a possible involvement of neuroendocrinal signaling in ADR-induced longevity. In conclusion, axenically cultured worms seem to rely on increased amino acid catabolism, relocate protein breakdown from the cytosol to the lysosomes, and do not invest in DNA maintenance but rather retain muscle integrity and the extracellular matrix. All these changes may be coordinated by peptidergic signaling.
Collapse
Affiliation(s)
- Huaihan Cai
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
- Overseas Pharmaceuticals, Ltd., Room 201, Building C1, No. 11 Kaiyuan Avenue, Huangpu District, Guangzhou 510530, China
| | - Ping Wu
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Lieselot Vandemeulebroucke
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Ineke Dhondt
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Madina Rasulova
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Andy Vierstraete
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Bart P. Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
7
|
Villa O, Stuhr NL, Yen CA, Crimmins EM, Arpawong TE, Curran SP. Genetic variation in ALDH4A1 is associated with muscle health over the lifespan and across species. eLife 2022; 11:74308. [PMID: 35470798 PMCID: PMC9106327 DOI: 10.7554/elife.74308] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
The influence of genetic variation on the aging process, including the incidence and severity of age-related diseases, is complex. Here, we define the evolutionarily conserved mitochondrial enzyme ALH-6/ALDH4A1 as a predictive biomarker for age-related changes in muscle health by combining Caenorhabditis elegans genetics and a gene-wide association scanning (GeneWAS) from older human participants of the US Health and Retirement Study (HRS). In a screen for mutations that activate oxidative stress responses, specifically in the muscle of C. elegans, we identified 96 independent genetic mutants harboring loss-of-function alleles of alh-6, exclusively. Each of these genetic mutations mapped to the ALH-6 polypeptide and led to the age-dependent loss of muscle health. Intriguingly, genetic variants in ALDH4A1 show associations with age-related muscle-related function in humans. Taken together, our work uncovers mitochondrial alh-6/ALDH4A1 as a critical component to impact normal muscle aging across species and a predictive biomarker for muscle health over the lifespan. Ageing is inevitable, but what makes one person ‘age well’ and another decline more quickly remains largely unknown. While many aspects of ageing are clearly linked to genetics, the specific genes involved often remain unidentified. Sarcopenia is an age-related condition affecting the muscles. It involves a gradual loss of muscle mass that becomes faster with age, and is associated with loss of mobility, decreased quality of life, and increased risk of death. Around half of all people aged 80 and over suffer from sarcopenia. Several lifestyle factors, especially poor diet and lack of exercise, are associated with the condition, but genetics is also involved: the condition accelerates more quickly in some people than others, and even fit, physically active individuals can be affected. To study the genetics of conditions like sarcopenia, researchers often use animals like flies or worms, which have short generation times but share genetic similarities with humans. For example, the worm Caenorhabditis elegans has equivalents of several human muscle genes, including the gene alh-6. In worms, alh-6 is important for maintaining energy supply to the muscles, and mutating it not only leads to muscle damage but also to premature ageing. Given this insight, Villa, Stuhr, Yen et al. wanted to determine if variation in the human version of alh-6, ALDH4A1, also contributes to individual differences in muscle ageing and decline in humans. Evaluating variation in this gene required a large amount of genetic data from older adults. These were taken from a continuous study that follows >35,000 older adults. Importantly, the study collects not only information on gene sequences but also measures of muscle health and performance over time for each individual. Analysis of these genetic data revealed specific small variations in the DNA of ALDH4A1, all of which associated with reduced muscle health. Follow-up experiments in worms used genetic engineering techniques to test how variation in the worm alh-6 gene could influence age-related health. The resulting mutant worms developed muscle problems much earlier than their normal counterparts, supporting the role of alh-6/ALDH4A1 in determining muscle health across the lifespan of both worms and humans. These results have identified a key influencer of muscle health during ageing in worms, and emphasize the importance of validating effects of genetic variation among humans during this process. Villa, Stuhr, Yen et al. hope that this study will help researchers find more genetic ‘markers’ of muscle health, and ultimately allow us to predict an individual’s risk of sarcopenia based on their genetic make-up.
Collapse
Affiliation(s)
- Osvaldo Villa
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, United States
| | - Nicole L Stuhr
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, United States.,Dornsife College of Letters, Arts, and Science, Department of Molecular and Computational Biology, University of Southern California, Los Angeles, United States
| | - Chia-An Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, United States.,Dornsife College of Letters, Arts, and Science, Department of Molecular and Computational Biology, University of Southern California, Los Angeles, United States
| | - Eileen M Crimmins
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, United States
| | - Thalida Em Arpawong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, United States
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, United States.,Dornsife College of Letters, Arts, and Science, Department of Molecular and Computational Biology, University of Southern California, Los Angeles, United States.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, United States
| |
Collapse
|
8
|
Duangjan C, Curran SP. Oolonghomobisflavans from Camellia sinensis increase Caenorhabditis elegans lifespan and healthspan. GeroScience 2022; 44:533-545. [PMID: 34637108 PMCID: PMC8811050 DOI: 10.1007/s11357-021-00462-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
Tea polyphenols are widely considered as excellent antioxidant agents which can contribute to human health and longevity. However, the identification of the active biomolecules in complex tea extracts that promote health and longevity are not fully known. Here we used the nematode Caenorhabditis elegans to analyze the health benefits and longevity effects of Camellia sinensis oolong tea extracts (QFT, NFT, and CFT) and oolonghomobisflavan A and oolonghomobisflavan B, which are present in oolong tea extracts. Our results showed that oolong tea extracts and oolonghomobisflavans prolong lifespan and improved healthspan by curtailing the age-related decline in muscle activity and the accumulation of age pigment (lipofuscin). We found that the lifespan and healthspan promoting effects of oolong tea extracts and oolonghomobisflavans were positively correlated with the stress resistance via DAF-16/FOXO transcription factor. Furthermore, oolong tea extracts and oolonghomobisflavans displayed protective effects against Aβ- and polyQ-induced neuro/proteotoxicity. Overall, our study provides new evidence to support the health benefits of oolong tea and importantly identify oolonghomobisflavans as potent bioactive molecules that promote health when supplemented with a normal diet. As such, oolonghomobisflavans represent a valuable new class of compounds that promote healthy aging.
Collapse
Affiliation(s)
- Chatrawee Duangjan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, USA
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, USA.
- Molecular and Computational Biology, Dornsife College of Letters, Arts, and Science, University of Southern California, Los Angeles, USA.
| |
Collapse
|
9
|
Nair T, Chakraborty R, Singh P, Rahman SS, Bhaskar AK, Sengupta S, Mukhopadhyay A. Adaptive capacity to dietary Vitamin B12 levels is maintained by a gene-diet interaction that ensures optimal life span. Aging Cell 2022; 21:e13518. [PMID: 35032420 PMCID: PMC8761004 DOI: 10.1111/acel.13518] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/16/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022] Open
Abstract
Diet regulates complex life-history traits such as longevity. For optimal lifespan, organisms employ intricate adaptive mechanisms whose molecular underpinnings are less known. We show that Caenorhabditis elegans FLR-4 kinase prevents lifespan differentials on the bacterial diet having higher Vitamin B12 levels. The flr-4 mutants are more responsive to the higher B12 levels of Escherichia coli HT115 diet, and consequently, have enhanced flux through the one-carbon cycle. Mechanistically, a higher level of B12 transcriptionally downregulates the phosphoethanolamine methyltransferase pmt-2 gene, which modulates phosphatidylcholine (PC) levels. Pmt-2 downregulation activates cytoprotective gene expression through the p38-MAPK pathway, leading to increased lifespan only in the mutant. Evidently, preventing bacterial B12 uptake or inhibiting one-carbon metabolism reverses all the above phenotypes. Conversely, supplementation of B12 to E. coli OP50 or genetically reducing PC levels in the OP50-fed mutant extends lifespan. Together, we reveal how worms maintain adaptive capacity to diets having varying micronutrient content to ensure a normal lifespan.
Collapse
Affiliation(s)
- Tripti Nair
- Molecular Aging LaboratoryNational Institute of ImmunologyNew DelhiIndia
| | - Rahul Chakraborty
- CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Praveen Singh
- CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | | | - Akash Kumar Bhaskar
- CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | | | - Arnab Mukhopadhyay
- Molecular Aging LaboratoryNational Institute of ImmunologyNew DelhiIndia
| |
Collapse
|
10
|
Curran SP, Lithgow GJ, Verdin E, P C. University of Southern California and buck institute nathan shock center: multidimensional models of aging. GeroScience 2021; 43:2119-2127. [PMID: 34269983 PMCID: PMC8599784 DOI: 10.1007/s11357-021-00416-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022] Open
Abstract
The USC-Buck Nathan Shock Center of Excellence in the Biology of Aging is a new and fully integrated multi-institutional center focused on training the next generation of geroscientists and providing access to cutting-edge geroscience technologies to investigators across the nation. The USC-Buck NSC is devoted to forging a deeper understanding of how and why aging processes cause disease in order to advance the translation of basic research on aging into effective preventions and therapies. Including more than 61 NIA-supported investigators, six NIA-funded research centers, four NIA T32s, and several additional aging research centers of excellence, the USC-Buck NSC constitutes one of the largest collections of leaders in geroscience research within the USA; the unique nature of the USC-Buck NSC research infrastructure ensures an integrated organization that is representative of the wide breadth of topics encompassed by the biology of aging field. By leveraging the 25-year-long relationship, current collaborations and joint administrational activities of the University of Southern California and the Buck Institute for Aging Research, the USC-Buck NSC aims to enhance and expand promising research in the biology of aging at both at the and to make a positive impact across California, the nation and throughout the world. Specialized cores provide services to all Shock Center members, as well as provide support for services to the community at large.
Collapse
Affiliation(s)
- Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, USA.
| | | | - Eric Verdin
- Buck Institute for Research On Aging, Novato, CA, USA
- UCSF Department of Medicine, San Francisco, CA, USA
| | - Cohen P
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, USA
| |
Collapse
|
11
|
Roy S, Sleiman MB, Jha P, Ingels JF, Chapman CJ, McCarty MS, Ziebarth JD, Hook M, Sun A, Zhao W, Huang J, Neuner SM, Wilmott LA, Shapaker TM, Centeno AG, Ashbrook DG, Mulligan MK, Kaczorowski CC, Makowski L, Cui Y, Read RW, Miller RA, Mozhui K, Williams EG, Sen S, Lu L, Auwerx J, Williams RW. Gene-by-environment modulation of lifespan and weight gain in the murine BXD family. Nat Metab 2021; 3:1217-1227. [PMID: 34552269 PMCID: PMC8478125 DOI: 10.1038/s42255-021-00449-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/06/2021] [Indexed: 02/07/2023]
Abstract
How lifespan and body weight vary as a function of diet and genetic differences is not well understood. Here we quantify the impact of differences in diet on lifespan in a genetically diverse family of female mice, split into matched isogenic cohorts fed a low-fat chow diet (CD, n = 663) or a high-fat diet (HFD, n = 685). We further generate key metabolic data in a parallel cohort euthanized at four time points. HFD feeding shortens lifespan by 12%: equivalent to a decade in humans. Initial body weight and early weight gains account for longevity differences of roughly 4-6 days per gram. At 500 days, animals on a HFD typically gain four times as much weight as control, but variation in weight gain does not correlate with lifespan. Classic serum metabolites, often regarded as health biomarkers, are not necessarily strong predictors of longevity. Our data indicate that responses to a HFD are substantially modulated by gene-by-environment interactions, highlighting the importance of genetic variation in making accurate individualized dietary recommendations.
Collapse
Affiliation(s)
- Suheeta Roy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pooja Jha
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jesse F Ingels
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Casey J Chapman
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Melinda S McCarty
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Jesse D Ziebarth
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Michael Hook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Anna Sun
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Wenyuan Zhao
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Jinsong Huang
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Sarah M Neuner
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Lynda A Wilmott
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Thomas M Shapaker
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Arthur G Centeno
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - David G Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | | | - Liza Makowski
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yan Cui
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Robert W Read
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan Geriatrics Center, Ann Arbor, MI, USA
| | - Khyobeni Mozhui
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Evan G Williams
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Saunak Sen
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA.
| |
Collapse
|
12
|
Tangrodchanapong T, Sornkaew N, Yurasakpong L, Niamnont N, Nantasenamat C, Sobhon P, Meemon K. Beneficial Effects of Cyclic Ether 2-Butoxytetrahydrofuran from Sea Cucumber Holothuria scabra against Aβ Aggregate Toxicity in Transgenic Caenorhabditis elegans and Potential Chemical Interaction. Molecules 2021; 26:molecules26082195. [PMID: 33920352 PMCID: PMC8070609 DOI: 10.3390/molecules26082195] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
The pathological finding of amyloid-β (Aβ) aggregates is thought to be a leading cause of untreated Alzheimer’s disease (AD). In this study, we isolated 2-butoxytetrahydrofuran (2-BTHF), a small cyclic ether, from Holothuria scabra and demonstrated its therapeutic potential against AD through the attenuation of Aβ aggregation in a transgenic Caenorhabditis elegans model. Our results revealed that amongst the five H. scabra isolated compounds, 2-BTHF was shown to be the most effective in suppressing worm paralysis caused by Aβ toxicity and in expressing strong neuroprotection in CL4176 and CL2355 strains, respectively. An immunoblot analysis showed that CL4176 and CL2006 treated with 2-BTHF showed no effect on the level of Aβ monomers but significantly reduced the toxic oligomeric form and the amount of 1,4-bis(3-carboxy-hydroxy-phenylethenyl)-benzene (X-34)-positive fibril deposits. This concurrently occurred with a reduction of reactive oxygen species (ROS) in the treated CL4176 worms. Mechanistically, heat shock factor 1 (HSF-1) (at residues histidine 63 (HIS63) and glutamine 72 (GLN72)) was shown to be 2-BTHF’s potential target that might contribute to an increased expression of autophagy-related genes required for the breakdown of the Aβ aggregate, thus attenuating its toxicity. In conclusion, 2-BTHF from H. scabra could protect C. elegans from Aβ toxicity by suppressing its aggregation via an HSF-1-regulated autophagic pathway and has been implicated as a potential drug for AD.
Collapse
Affiliation(s)
- Taweesak Tangrodchanapong
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.T.); (L.Y.); (P.S.)
| | - Nilubon Sornkaew
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand; (N.S.); (N.N.)
| | - Laphatrada Yurasakpong
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.T.); (L.Y.); (P.S.)
| | - Nakorn Niamnont
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand; (N.S.); (N.N.)
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand;
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.T.); (L.Y.); (P.S.)
| | - Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.T.); (L.Y.); (P.S.)
- Correspondence: or ; Tel.: +66-22-015-407
| |
Collapse
|
13
|
Hammerquist AM, Escorcia W, Curran SP. Maf1 regulates intracellular lipid homeostasis in response to DNA damage response activation. Mol Biol Cell 2021; 32:1086-1093. [PMID: 33788576 PMCID: PMC8351542 DOI: 10.1091/mbc.e20-06-0378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Surveillance of DNA damage and maintenance of lipid metabolism are critical factors for general cellular homeostasis. We discovered that in response to DNA damage–inducing UV light exposure, intact Caenorhabditis elegans accumulate intracellular lipids in a dose-dependent manner. The increase in intracellular lipids in response to exposure to UV light utilizes mafr-1, a negative regulator of RNA polymerase III and the apical kinases atm-1 and atl-1 of the DNA damage response (DDR) pathway. In the absence of exposure to UV light, the genetic ablation of mafr-1 results in the activation of the DDR, including increased intracellular lipid accumulation, phosphorylation of ATM/ATR target proteins, and expression of the Bcl-2 homology region genes, egl-1 and ced-13. Taken together, our results reveal mafr-1 as a component the DDR pathway response to regulating lipid homeostasis following exposure to UV genotoxic stress.
Collapse
Affiliation(s)
- Amy M Hammerquist
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089.,Molecular and Computational Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089
| | - Wilber Escorcia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089.,Department of Biology, Xavier University, Cincinnati, OH 45207
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089.,Molecular and Computational Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
14
|
Roles for the RNA polymerase III regulator MAFR-1 in regulating sperm quality in Caenorhabditis elegans. Sci Rep 2020; 10:19367. [PMID: 33168938 PMCID: PMC7652826 DOI: 10.1038/s41598-020-76423-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/27/2020] [Indexed: 11/08/2022] Open
Abstract
The negative regulator of RNA polymerase (pol) III mafr-1 has been shown to affect RNA pol III transcript abundance, lipid biosynthesis and storage, progeny output, and lifespan. We deleted mafr-1 from the Caenorhabditis elegans genome and found that animals lacking mafr-1 replicated many phenotypes from previous RNAi-based studies and discovered a new sperm-specific role. Utilizing a yeast two-hybrid assay, we discovered several novel interactors of MAFR-1 that are expressed in a sperm- and germline-enriched manner. In support of a role for MAFR-1 in the male germline, we found mafr-1 null males have smaller spermatids that are less capable in competition for fertilization; a phenotype that was dependent on RNA pol III activity. Restoration of MAFR-1 expression specifically in the germline rescued the spermatid-related phenotypes, suggesting a cell autonomous role for MAFR-1 in nematode male fertility. Based on the high degree of conservation of Maf1 activity across species, our study may inform similar roles for Maf1 and RNA pol III in mammalian male fertility.
Collapse
|
15
|
Stuhr NL, Curran SP. Bacterial diets differentially alter lifespan and healthspan trajectories in C. elegans. Commun Biol 2020; 3:653. [PMID: 33159120 PMCID: PMC7648844 DOI: 10.1038/s42003-020-01379-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/14/2020] [Indexed: 01/21/2023] Open
Abstract
Diet is one of the more variable aspects in life due to the variety of options that organisms are exposed to in their natural habitats. In the laboratory, C. elegans are raised on bacterial monocultures, traditionally the E. coli B strain OP50, and spontaneously occurring microbial contaminants are removed to limit experimental variability because diet-including the presence of contaminants-can exert a potent influence over animal physiology. In order to diversify the menu available to culture C. elegans in the lab, we have isolated and cultured three such microbes: Methylobacterium, Xanthomonas, and Sphingomonas. The nutritional composition of these bacterial foods is unique, and when fed to C. elegans, can differentially alter multiple life history traits including development, reproduction, and metabolism. In light of the influence each food source has on specific physiological attributes, we comprehensively assessed the impact of these bacteria on animal health and devised a blueprint for utilizing different food combinations over the lifespan, in order to promote longevity. The expansion of the bacterial food options to use in the laboratory will provide a critical tool to better understand the complexities of bacterial diets and subsequent changes in physiology and gene expression.
Collapse
Affiliation(s)
- Nicole L Stuhr
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089, USA
- Dornsife College of Letters, Arts, and Science, Department of Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089, USA.
- Dornsife College of Letters, Arts, and Science, Department of Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA.
- Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Ave, Los Angeles, CA, 90033, USA.
| |
Collapse
|
16
|
Effects of Phosphoethanolamine Supplementation on Mitochondrial Activity and Lipogenesis in a Caffeine Ingestion Caenorhabditis elegans Model. Nutrients 2020; 12:nu12113348. [PMID: 33143181 PMCID: PMC7694071 DOI: 10.3390/nu12113348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Caffeine intake is strongly linked to lipid metabolism. We previously reported the age-dependent physiological effects of caffeine intake in a Caenorhabditis elegans model. Since nutritional status can actively influence metabolism and overall health, in this study, we evaluated the effect of caffeine intake on lipid metabolism in adult-stage C. elegans. We found that, in C. elegans, fat storage and the level of phosphoethanolamine (PE) were significantly reduced with caffeine intake. In addition, mitochondrial activity decreased and mitochondrial morphology was disrupted, and the expression of oxidative stress response genes, hsp-6, gst-4, and daf-16, was induced by caffeine intake. Furthermore, the level of an energy metabolism sensor, phospho-AMP-activated protein kinase, was increased, whereas the expression of the sterol regulatory element binding protein gene and its target stearoyl-CoA desaturase genes, fat-5, -6, and -7, was decreased with caffeine intake. These findings suggest that caffeine intake causes mitochondrial dysfunction and reduces lipogenesis. Interestingly, these changes induced by caffeine intake were partially alleviated by PE supplementation, suggesting that the reduction in mitochondrial activity and lipogenesis is in part because of the low PE level, and proper dietary supplementation can improve organelle integrity.
Collapse
|
17
|
Wong SQ, Kumar AV, Mills J, Lapierre LR. C. elegans to model autophagy-related human disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:325-373. [PMID: 32620247 DOI: 10.1016/bs.pmbts.2020.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is a highly conserved degradation process that clears damaged intracellular macromolecules and organelles in order to maintain cellular health. Dysfunctional autophagy is fundamentally linked to the development of various human disorders and pathologies. The use of the nematode Caenorhabditis elegans as a model system to study autophagy has improved our understanding of its regulation and function in organismal physiology. Here, we review the genetic, functional, and regulatory conservation of the autophagy pathway in C. elegans and we describe tools to quantify and study the autophagy process in this incredibly useful model organism. We further discuss how these nematodes have been modified to model autophagy-related human diseases and underscore the important insights obtained from such models. Altogether, we highlight the strengths of C. elegans as an exceptional tool to understand the genetic and molecular foundations underlying autophagy-related human diseases.
Collapse
Affiliation(s)
- Shi Quan Wong
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Anita V Kumar
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Joslyn Mills
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Louis R Lapierre
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
18
|
Rohn I, Raschke S, Aschner M, Tuck S, Kuehnelt D, Kipp A, Schwerdtle T, Bornhorst J. Treatment of Caenorhabditis elegans with Small Selenium Species Enhances Antioxidant Defense Systems. Mol Nutr Food Res 2019; 63:e1801304. [PMID: 30815971 PMCID: PMC6499701 DOI: 10.1002/mnfr.201801304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/28/2019] [Indexed: 01/10/2023]
Abstract
SCOPE Small selenium (Se) species play a key role in Se metabolism and act as dietary sources of the essential trace element. However, they are redox-active and trigger pro- and antioxidant responses. As health outcomes are strongly species-dependent, species-specific characteristics of Se compounds are tested in vivo. METHODS AND RESULTS In the model organism Caenorhabditis elegans (C. elegans), immediate and sustained effects of selenite, selenomethionine (SeMet), and Se-methylselenocysteine (MeSeCys) are studied regarding their bioavailability, incorporation into proteins, as well as modulation of the cellular redox status. While all tested Se compounds are bioavailable, only SeMet persistently accumulates and is non-specifically incorporated into proteins. However, the protection toward chemically-induced formation of reactive species is independent of the applied Se compound. Increased thioredoxin reductase (TXNRD) activity and changes in mRNA expression levels of antioxidant proteins indicate the activation of cellular defense mechanisms. However, in txnrd-1 deletion mutants, no protective effects of the Se species are observed anymore, which is also reflected by differential gene expression data. CONCLUSION Se species protect against chemically-induced reactive species formation. The identified immediate and sustained systemic effects of Se species give rise to speculations on possible benefits facing subsequent periods of inadequate Se intake.
Collapse
Affiliation(s)
- Isabelle Rohn
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
| | - Stefanie Raschke
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
| | | | - Simon Tuck
- Umeå Centre for Molecular Medicine, Umeå University, 90187, Umeå, Sweden
| | - Doris Kuehnelt
- Institute of Chemistry, Analytical Chemistry, NAWI Graz, University of Graz, 8010, Graz, Austria
| | - Anna Kipp
- Institute of Nutrition, Friedrich Schiller University Jena, 07743, Jena, Germany
- TraceAge - DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany
| | - Tanja Schwerdtle
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
- TraceAge - DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany
| | - Julia Bornhorst
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
- TraceAge - DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119, Wuppertal, Germany
| |
Collapse
|
19
|
Bornhorst J, Nustede EJ, Fudickar S. Mass Surveilance of C. elegans-Smartphone-Based DIY Microscope and Machine-Learning-Based Approach for Worm Detection. SENSORS 2019; 19:s19061468. [PMID: 30917520 PMCID: PMC6471353 DOI: 10.3390/s19061468] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/17/2019] [Accepted: 03/20/2019] [Indexed: 11/16/2022]
Abstract
The nematode Caenorhabditis elegans (C. elegans) is often used as an alternative animal model due to several advantages such as morphological changes that can be seen directly under a microscope. Limitations of the model include the usage of expensive and cumbersome microscopes, and restrictions of the comprehensive use of C. elegans for toxicological trials. With the general applicability of the detection of C. elegans from microscope images via machine learning, as well as of smartphone-based microscopes, this article investigates the suitability of smartphone-based microscopy to detect C. elegans in a complete Petri dish. Thereby, the article introduces a smartphone-based microscope (including optics, lighting, and housing) for monitoring C. elegans and the corresponding classification via a trained Histogram of Oriented Gradients (HOG) feature-based Support Vector Machine for the automatic detection of C. elegans. Evaluation showed classification sensitivity of 0.90 and specificity of 0.85, and thereby confirms the general practicability of the chosen approach.
Collapse
Affiliation(s)
- Julia Bornhorst
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany.
| | - Eike Jannik Nustede
- Assistance Systems and Medical Device Technology, Department of Health Services Research, Faculty of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Ammerlaender Heerstr. 114-118, 26129 Oldenburg, Germany.
| | - Sebastian Fudickar
- Assistance Systems and Medical Device Technology, Department of Health Services Research, Faculty of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Ammerlaender Heerstr. 114-118, 26129 Oldenburg, Germany.
| |
Collapse
|
20
|
Revtovich AV, Lee R, Kirienko NV. Interplay between mitochondria and diet mediates pathogen and stress resistance in Caenorhabditis elegans. PLoS Genet 2019; 15:e1008011. [PMID: 30865620 PMCID: PMC6415812 DOI: 10.1371/journal.pgen.1008011] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 02/09/2019] [Indexed: 12/22/2022] Open
Abstract
Diet is a crucial determinant of organismal biology; interactions between the host, its diet, and its microbiota are critical to determining the health of an organism. A variety of genetic and biochemical means were used to assay stress sensitivity in C. elegans reared on two standard laboratory diets: E. coli OP50, the most commonly used food for C. elegans, or E. coli HT115, which is typically used for RNAi-mediated gene knockdown. We demonstrated that the relatively subtle shift to a diet of E. coli HT115 had a dramatic impact on C. elegans's survival after exposure to pathogenic or abiotic stresses. Interestingly, this was independent of canonical host defense pathways. Instead the change arises from improvements in mitochondrial health, likely due to alleviation of a vitamin B12 deficiency exhibited by worms reared on an E. coli OP50 diet. Increasing B12 availability, by feeding on E. coli HT115, supplementing E. coli OP50 with exogenous vitamin B12, or overexpression of the B12 transporter, improved mitochondrial homeostasis and increased resistance. Loss of the methylmalonyl-CoA mutase gene mmcm-1/MUT, which requires vitamin B12 as a cofactor, abolished these improvements, establishing a genetic basis for the E. coli OP50-incurred sensitivity. Our study forges a mechanistic link between a dietary deficiency (nutrition/microbiota) and a physiological consequence (host sensitivity), using the host-microbiota-diet framework.
Collapse
Affiliation(s)
- Alexey V. Revtovich
- Department of BioSciences, Rice University, Houston TX, United States of America
| | - Ryan Lee
- Department of BioSciences, Rice University, Houston TX, United States of America
| | - Natalia V. Kirienko
- Department of BioSciences, Rice University, Houston TX, United States of America
- * E-mail:
| |
Collapse
|
21
|
A novel gene-diet pair modulates C. elegans aging. PLoS Genet 2018; 14:e1007608. [PMID: 30125273 PMCID: PMC6117094 DOI: 10.1371/journal.pgen.1007608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 08/30/2018] [Accepted: 08/02/2018] [Indexed: 12/26/2022] Open
Abstract
Diet profoundly affects metabolism and incidences of age-related diseases. Animals adapt their physiology to different food-types, modulating complex life-history traits like aging. The molecular mechanisms linking adaptive capacity to diet with aging are less known. We identify FLR-4 kinase as a novel modulator of aging in C. elegans, depending on bacterial diet. FLR-4 functions to prevent differential activation of the p38MAPK pathway in response to diverse food-types, thereby maintaining normal life span. In a kinase-dead flr-4 mutant, E. coli HT115 (K12 strain), but not the standard diet OP50 (B strain), is able to activate p38MAPK, elevate expression of cytoprotective genes through the nuclear hormone receptor NHR-8 and enhance life span. Interestingly, flr-4 and dietary restriction utilize similar pathways for longevity assurance, suggesting cross-talks between cellular modules that respond to diet quality and quantity. Together, our study discovers a new C. elegans gene-diet pair that controls the plasticity of aging. For animals living in the wild, being able to utilize a wide range of diet is evolutionarily advantageous as they can survive even when their optimal diet is depleted. Since diet is known to influence the rate of aging, animals seem to have evolved intricate mechanisms to maintain homeostasis and normal life span, but the molecular mechanisms are less understood. Using a small nematode, C. elegans as a model, we show that the adaptive capacity to different diet is maintained by a kinase gene. When this gene is mutated, worms start living longer on one strain of bacterial diet but not on the other. We identify the molecular cascade required for this food-type-dependent longevity. We show that this cascade of events significantly overlaps with the pathway that determine food quantity-dependent life span enhancement. Our study thus elucidates a part of the molecular monitoring system that regulates longevity dependent on the available quality and quantity of diet.
Collapse
|
22
|
Smith RL, Soeters MR, Wüst RCI, Houtkooper RH. Metabolic Flexibility as an Adaptation to Energy Resources and Requirements in Health and Disease. Endocr Rev 2018; 39:489-517. [PMID: 29697773 PMCID: PMC6093334 DOI: 10.1210/er.2017-00211] [Citation(s) in RCA: 346] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
The ability to efficiently adapt metabolism by substrate sensing, trafficking, storage, and utilization, dependent on availability and requirement, is known as metabolic flexibility. In this review, we discuss the breadth and depth of metabolic flexibility and its impact on health and disease. Metabolic flexibility is essential to maintain energy homeostasis in times of either caloric excess or caloric restriction, and in times of either low or high energy demand, such as during exercise. The liver, adipose tissue, and muscle govern systemic metabolic flexibility and manage nutrient sensing, uptake, transport, storage, and expenditure by communication via endocrine cues. At a molecular level, metabolic flexibility relies on the configuration of metabolic pathways, which are regulated by key metabolic enzymes and transcription factors, many of which interact closely with the mitochondria. Disrupted metabolic flexibility, or metabolic inflexibility, however, is associated with many pathological conditions including metabolic syndrome, type 2 diabetes mellitus, and cancer. Multiple factors such as dietary composition and feeding frequency, exercise training, and use of pharmacological compounds, influence metabolic flexibility and will be discussed here. Last, we outline important advances in metabolic flexibility research and discuss medical horizons and translational aspects.
Collapse
Affiliation(s)
- Reuben L Smith
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Gastroenterology and Metabolism, Academic Medical Center, AZ Amsterdam, Netherlands
| | - Maarten R Soeters
- Amsterdam Gastroenterology and Metabolism, Academic Medical Center, AZ Amsterdam, Netherlands.,Department of Endocrinology and Metabolism, Internal Medicine, Academic Medical Center, AZ Amsterdam, Netherlands
| | - Rob C I Wüst
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Movement Sciences, Academic Medical Center, AZ Amsterdam, Netherlands
| | - Riekelt H Houtkooper
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Gastroenterology and Metabolism, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Academic Medical Center, AZ Amsterdam, Netherlands
| |
Collapse
|
23
|
Schwarzer M, Strigini M, Leulier F. Gut Microbiota and Host Juvenile Growth. Calcif Tissue Int 2018; 102:387-405. [PMID: 29214457 DOI: 10.1007/s00223-017-0368-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/18/2017] [Indexed: 02/07/2023]
Abstract
Good genes, good food, good friends. That is what parents hope will sustain and nurture the harmonious growth of their children. The impact of the genetic background and nutrition on postnatal growth has been in the spot light for long, but the good friends have come to the scene only recently. Among the good friends perhaps the most crucial ones are those that we are carrying within ourselves. They comprise the trillions of microbes that collectively constitute each individual's intestinal microbiota. Indeed, recent epidemiological and field studies in humans, supported by extensive experimental data on animal models, demonstrate a clear role of the intestinal microbiota on their host's juvenile growth, especially under suboptimal nutrient conditions. Genuinely integrative approaches applicable to invertebrate and vertebrate systems combine tools from genetics, developmental biology, microbiology, nutrition, and physiology to reveal how gut microbiota affects growth both positively and negatively, in healthy and pathological conditions. It appears that certain natural or engineered gut microbiota communities can positively impact insulin/IGF-1 and steroid hormone signaling, thus contributing to the host juvenile development and maturation.
Collapse
Affiliation(s)
- Martin Schwarzer
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, 69364, Lyon Cedex 07, France.
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czech Republic.
| | - Maura Strigini
- INSERM, U1059, Sainbiose, Université de Lyon, Université Jean Monnet, Faculté de Médecine, Campus Santé Innovation, 42023, Saint-Étienne, France.
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, 69364, Lyon Cedex 07, France
| |
Collapse
|
24
|
Shapira M. Host–microbiota interactions in Caenorhabditis elegans and their significance. Curr Opin Microbiol 2017. [DOI: 10.1016/j.mib.2017.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|