1
|
Han X, Ashraf M, Tipparaju SM, Xuan W. Muscle-Brain crosstalk in cognitive impairment. Front Aging Neurosci 2023; 15:1221653. [PMID: 37577356 PMCID: PMC10413125 DOI: 10.3389/fnagi.2023.1221653] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/07/2023] [Indexed: 08/15/2023] Open
Abstract
Sarcopenia is an age-related, involuntary loss of skeletal muscle mass and strength. Alzheimer's disease (AD) is the most common cause of dementia in elderly adults. To date, no effective cures for sarcopenia and AD are available. Physical and cognitive impairments are two major causes of disability in the elderly population, which severely decrease their quality of life and increase their economic burden. Clinically, sarcopenia is strongly associated with AD. However, the underlying factors for this association remain unknown. Mechanistic studies on muscle-brain crosstalk during cognitive impairment might shed light on new insights and novel therapeutic approaches for combating cognitive decline and AD. In this review, we summarize the latest studies emphasizing the association between sarcopenia and cognitive impairment. The underlying mechanisms involved in muscle-brain crosstalk and the potential implications of such crosstalk are discussed. Finally, future directions for drug development to improve age-related cognitive impairment and AD-related cognitive dysfunction are also explored.
Collapse
Affiliation(s)
| | | | | | - Wanling Xuan
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| |
Collapse
|
2
|
Liu C, Wong PY, Chow SKH, Cheung WH, Wong RMY. Does the regulation of skeletal muscle influence cognitive function? A scoping review of pre-clinical evidence. J Orthop Translat 2023; 38:76-83. [DOI: 10.1016/j.jot.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/25/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
|
3
|
Collao N, Farup J, De Lisio M. Role of Metabolic Stress and Exercise in Regulating Fibro/Adipogenic Progenitors. Front Cell Dev Biol 2020; 8:9. [PMID: 32047748 PMCID: PMC6997132 DOI: 10.3389/fcell.2020.00009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Obesity is a major public health concern and is associated with decreased muscle quality (i.e., strength, metabolism). Muscle from obese adults is characterized by increases in fatty, fibrotic tissue that decreases the force producing capacity of muscle and impairs glucose disposal. Fibro/adipogenic progenitors (FAPs) are muscle resident, multipotent stromal cells that are responsible for muscle fibro/fatty tissue accumulation. Additionally, they are indirectly involved in muscle adaptation through their promotion of myogenic (muscle-forming) satellite cell proliferation and differentiation. In conditions similar to obesity that are characterized by chronic muscle degeneration, FAP dysfunction has been shown to be responsible for increased fibro/fatty tissue accumulation in skeletal muscle, and impaired satellite cell function. The role of metabolic stress in regulating FAP differentiation and paracrine function in skeletal muscle is just beginning to be unraveled. Thus, the present review aims to summarize the recent literature on the role of metabolic stress in regulating FAP differentiation and paracrine function in skeletal muscle, and the mechanisms responsible for these effects. Furthermore, we will review the role of physical activity in reversing or ameliorating the detrimental effects of obesity on FAP function.
Collapse
Affiliation(s)
- Nicolas Collao
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Michael De Lisio
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
4
|
Munroe M, Dvoretskiy S, Lopez A, Leong J, Dyle MC, Kong H, Adams CM, Boppart MD. Pericyte transplantation improves skeletal muscle recovery following hindlimb immobilization. FASEB J 2019; 33:7694-7706. [PMID: 31021652 PMCID: PMC6529341 DOI: 10.1096/fj.201802580r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
Conditions of extended bed rest and limb immobilization can initiate rapid and significant loss of skeletal muscle mass and function. Physical rehabilitation is standard practice following a period of disuse, yet mobility may be severely compromised, and recovery is commonly delayed or incomplete in special populations. Thus, a novel approach toward recovery of muscle mass is highly desired. Pericytes [neuron-glial antigen 2 (NG2)+CD31-CD45- (Lineage- [Lin-]) and CD146+Lin-] demonstrate capacity to facilitate muscle repair, yet the ability to enhance myofiber growth following disuse is unknown. In the current study, 3-4-mo-old mice were unilaterally immobilized for 14 d (IM) or immobilized for 14 d followed by 14 d of remobilization (RE). Flow cytometry and targeted gene expression analyses were completed to assess pericyte quantity and function following IM and RE. In addition, a transplantation study was conducted to assess the impact of pericytes on recovery. Results from targeted analyses suggest minimal impact of disuse on pericyte gene expression, yet NG2+Lin- pericyte quantity is reduced following IM (P < 0.05). Remarkably, pericyte transplantation recovered losses in myofiber cross-sectional area and the capillary-to-fiber ratio following RE, whereas deficits remained with vehicle alone (P = 0.01). These findings provide the first evidence that pericytes effectively rehabilitate skeletal muscle mass following disuse atrophy.-Munroe, M., Dvoretskiy, S., Lopez, A., Leong, J., Dyle, M. C., Kong, H., Adams, C. M., Boppart, M. D. Pericyte transplantation improves skeletal muscle recovery following hindlimb immobilization.
Collapse
Affiliation(s)
- Michael Munroe
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Svyatoslav Dvoretskiy
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Amber Lopez
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jiayu Leong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Michael C. Dyle
- Departments of Internal Medicine and University of Iowa, Iowa City, Iowa, USA
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois–Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher M. Adams
- Departments of Internal Medicine and University of Iowa, Iowa City, Iowa, USA
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Marni D. Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois–Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
5
|
Dunn A, Talovic M, Patel K, Patel A, Marcinczyk M, Garg K. Biomaterial and stem cell-based strategies for skeletal muscle regeneration. J Orthop Res 2019; 37:1246-1262. [PMID: 30604468 DOI: 10.1002/jor.24212] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/13/2018] [Indexed: 02/04/2023]
Abstract
Adult skeletal muscle can regenerate effectively after mild physical or chemical insult. Muscle trauma or disease can overwhelm this innate capacity for regeneration and result in heightened inflammation and fibrotic tissue deposition resulting in loss of structure and function. Recent studies have focused on biomaterial and stem cell-based therapies to promote skeletal muscle regeneration following injury and disease. Many stem cell populations besides satellite cells are implicated in muscle regeneration. These stem cells include but are not limited to mesenchymal stem cells, adipose-derived stem cells, hematopoietic stem cells, pericytes, fibroadipogenic progenitors, side population cells, and CD133+ stem cells. However, several challenges associated with their isolation, availability, delivery, survival, engraftment, and differentiation have been reported in recent studies. While acellular scaffolds offer a relatively safe and potentially off-the-shelf solution to cell-based therapies, they are often unable to stimulate host cell migration and activity to a level that would result in clinically meaningful regeneration of traumatized muscle. Combining stem cells and biomaterials may offer a viable therapeutic strategy that may overcome the limitations associated with these therapies when they are used in isolation. In this article, we review the stem cell populations that can stimulate muscle regeneration in vitro and in vivo. We also discuss the regenerative potential of combination therapies that utilize both stem cell and biomaterials for the treatment of skeletal muscle injury and disease. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1246-1262, 2019.
Collapse
Affiliation(s)
- Andrew Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Krishna Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Anjali Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Madison Marcinczyk
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| |
Collapse
|