1
|
Park SH. Role of Phytochemicals in Treatment of Aging and Cancer: Focus on Mechanism of FOXO3 Activation. Antioxidants (Basel) 2024; 13:1099. [PMID: 39334758 PMCID: PMC11428386 DOI: 10.3390/antiox13091099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
There have been many studies reporting that the regular consumption of fruits and vegetables is associated with reduced risks of cancer and age-related chronic diseases. Recent studies have demonstrated that reducing reactive oxygen species and inflammation by phytochemicals derived from natural sources can extend lifespans in a range of model organisms. Phytochemicals derived from fruits and vegetables have been known to display both preventative and suppressive activities against various types of cancer via in vitro and in vivo research by interfering with cellular processes critical for tumor development. The current challenge lies in creating tailored supplements containing specific phytochemicals for individual needs. Achieving this goal requires a deeper understanding of the molecular mechanisms through which phytochemicals affect human health. In this review, we examine recently (from 2010 to 2024) reported plant extracts and phytochemicals with established anti-aging and anti-cancer effects via the activation of FOXO3 transcriptional factor. Additionally, we provide an overview of the cellular and molecular mechanisms by which these molecules exert their anti-aging and anti-cancer effects in specific model systems. Lastly, we discuss the limitations of the current research approach and outline for potential future directions in this field.
Collapse
Affiliation(s)
- See-Hyoung Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| |
Collapse
|
2
|
Promtang S, Sanguanphun T, Chalorak P, Pe LS, Niamnont N, Sobhon P, Meemon K. 2-Butoxytetrahydrofuran, Isolated from Holothuria scabra, Attenuates Aggregative and Oxidative Properties of α-Synuclein and Alleviates Its Toxicity in a Transgenic Caenorhabditis elegans Model of Parkinson's Disease. ACS Chem Neurosci 2024; 15:2182-2197. [PMID: 38726817 PMCID: PMC11157484 DOI: 10.1021/acschemneuro.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 06/06/2024] Open
Abstract
Aggregative α-synuclein and incurring oxidative stress are pivotal cascading events, leading to dopaminergic (DAergic) neuronal loss and contributing to clinical manifestations of Parkinson's disease (PD). Our previous study demonstrated that 2-butoxytetrahydrofuran (2-BTHF), isolated from Holothuria scabra (H. scabra), could inhibit amyloid-β aggregation and its ensuing toxicity, which leads to Alzheimer's disease. In the present study, we found that 2-BTHF also attenuated the aggregative and oxidative activities of α-synuclein and lessened its toxicity in a transgenic Caenorhabditis elegans (C. elegans) PD model. Such worms treated with 100 μM of 2-BTHF showed substantial reductions in α-synuclein accumulation and DAergic neurodegeneration. Mechanistically, 2-BTHF, at this concentration, significantly decreased aggregation of monomeric α-synuclein and restored locomotion and dopamine-dependent behaviors. Molecular docking exhibited potential bindings of 2-BTHF to HSF-1 and DAF-16 transcription factors. Additionally, 2-BTHF significantly increased the mRNA transcripts of genes encoding proteins involved in proteostasis, including the molecular chaperones hsp-16.2 and hsp-16.49, the ubiquitination/SUMOylation-related ubc-9 gene, and the autophagy-related genes atg-7 and lgg-1. Transcriptomic profiling revealed an additional mechanism of 2-BTHF in α-synuclein-expressing worms, which showed upregulation of PPAR signaling cascades that mediated fatty acid metabolism. 2-BTHF significantly restored lipid deposition, upregulated the fat-7 gene, and enhanced gcs-1-mediated glutathione synthesis in the C. elegans PD model. Taken together, this study demonstrated that 2-BTHF could abrogate aggregative and oxidative properties of α-synuclein and attenuate its toxicity, thus providing a possible therapeutic application for the treatment of α-synuclein-induced PD.
Collapse
Affiliation(s)
- Sukrit Promtang
- Molecular
Medicine Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Tanatcha Sanguanphun
- Department
of Anatomy, Faculty of Science, Mahidol
University, Ratchathewi, Bangkok 10400, Thailand
| | - Pawanrat Chalorak
- Department
of Radiological Technology and Medical Physics, Faculty of Allied
Health Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Laurence S. Pe
- Research
Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Nakorn Niamnont
- Department
of Chemistry, Faculty of Science, King Mongkut’s
University of Technology Thonburi, Bang Mod, Bangkok 10140, Thailand
| | - Prasert Sobhon
- Department
of Anatomy, Faculty of Science, Mahidol
University, Ratchathewi, Bangkok 10400, Thailand
| | - Krai Meemon
- Department
of Anatomy, Faculty of Science, Mahidol
University, Ratchathewi, Bangkok 10400, Thailand
- Center for
Neuroscience, Faculty of Science, Mahidol
University, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
3
|
de Araújo LCA, Leite NR, da Rocha PDS, Baldivia DDS, Agarrayua DA, Ávila DS, da Silva DB, Carollo CA, Campos JF, Souza KDP, dos Santos EL. Campomanesia adamantium O Berg. fruit, native to Brazil, can protect against oxidative stress and promote longevity. PLoS One 2023; 18:e0294316. [PMID: 37972127 PMCID: PMC10653513 DOI: 10.1371/journal.pone.0294316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
Campomanesia adamantium O. Berg. is a fruit tree species native to the Brazilian Cerrado biome whose fruits are consumed raw by the population. The present study determined the chemical composition of the C. adamantium fruit pulp (FPCA) and investigated its in vitro antioxidant potential and its biological effects in a Caenorhabditis elegans model. The chemical profile obtained by LC-DAD-MS identified 27 compounds, including phenolic compounds, flavonoids, and organic carboxylic acids, in addition to antioxidant lipophilic pigments and ascorbic acid. The in vitro antioxidant activity was analysed by the radical scavenging method. In vivo, FPCA showed no acute reproductive or locomotor toxicity. It promoted protection against thermal and oxidative stress and increased the lifespan of C. elegans. It also upregulated the antioxidant enzymes superoxide dismutase and glutathione S-transferase and activated the transcription factor DAF-16. These results provide unprecedented in vitro and in vivo evidence for the potential functional use of FPCA in the prevention of oxidative stress and promotion of longevity.
Collapse
Affiliation(s)
- Laura Costa Alves de Araújo
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Natasha Rios Leite
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Paola dos Santos da Rocha
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Debora da Silva Baldivia
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Danielle Araujo Agarrayua
- Research Group in Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, Rio Grande do Sul, Brazil
| | - Daiana Silva Ávila
- Research Group in Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, Rio Grande do Sul, Brazil
| | - Denise Brentan da Silva
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Carlos Alexandre Carollo
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Jaqueline Ferreira Campos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Edson Lucas dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| |
Collapse
|
4
|
Wang Q, Wang G, Liu C, Sun Z, Li R, Gao J, Li M, Sun L. The Structural Characteristics and Bioactivity Stability of Cucumaria frondosa Intestines and Ovum Hydrolysates Obtained by Different Proteases. Mar Drugs 2023; 21:395. [PMID: 37504926 PMCID: PMC10381244 DOI: 10.3390/md21070395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
The study aimed to investigate the effects of alcalase, papain, flavourzyme, and neutrase on the structural characteristics and bioactivity stability of Cucumaria frondosa intestines and ovum hydrolysates (CFHs). The findings revealed that flavourzyme exhibited the highest hydrolysis rate (51.88% ± 1.87%). At pH 2.0, the solubility of hydrolysate was the lowest across all treatments, while the solubility at other pH levels was over 60%. The primary structures of hydrolysates of different proteases were similar, whereas the surface hydrophobicity of hydrolysates was influenced by the types of proteases used. The hydrolysates produced by different proteases were also analyzed for their absorption peaks and antioxidant activity. The hydrolysates of flavourzyme had β-fold absorption peaks (1637 cm-1), while the neutrase and papain hydrolysates had N-H bending vibrations. The tertiary structure of CFHs was unfolded by different proteases, exposing the aromatic amino acids and red-shifting of the λ-peak of the hydrolysate. The alcalase hydrolysates showed better antioxidant activity in vitro and better surface hydrophobicity than the other hydrolysates. The flavourzyme hydrolysates displayed excellent antioxidant stability and pancreatic lipase inhibitory activity during gastrointestinal digestion, indicating their potential use as antioxidants in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Qiuting Wang
- College of Life Science, Yantai University, Yantai 264005, China
| | - Gongming Wang
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Chuyi Liu
- Marine Biomedical Research Institute of Qingdao, Qingdao 266073, China
| | - Zuli Sun
- College of Health, Yantai Nanshan University, Yantai 265713, China
| | - Ruimin Li
- College of Life Science, Yantai University, Yantai 264005, China
| | - Jiarun Gao
- College of Life Science, Yantai University, Yantai 264005, China
| | - Mingbo Li
- College of Life Science, Yantai University, Yantai 264005, China
| | - Leilei Sun
- College of Life Science, Yantai University, Yantai 264005, China
| |
Collapse
|
5
|
Li Q, Xiao M, Li N, Cai W, Zhao C, Liu B, Zeng F. Application of
Caenorhabditis elegans
in the evaluation of food nutrition: A review. EFOOD 2023. [DOI: 10.1002/efd2.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Affiliation(s)
- Quancen Li
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Meifang Xiao
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Na Li
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Wenwen Cai
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Chao Zhao
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing Fujian Agriculture and Forestry University Fuzhou China
| | - Bin Liu
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing Fujian Agriculture and Forestry University Fuzhou China
- National Engineering Research Center of JUNCAO Technology Fujian Agriculture and Forestry University Fuzhou China
| | - Feng Zeng
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
6
|
Gustini N, Wulandari DA, Rachman F, Septiana E, Rahmawati SI, Syahputra G, Sari M, Putra MY. Antioxidant and Anticancer Activities of Sand Sea Cucumber (Holothuria scabra) Extracts using Wet Rendering Extraction Method. JURNAL KIMIA SAINS DAN APLIKASI 2023. [DOI: 10.14710/jksa.26.1.1-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
Abstract
Antioxidant and anticancer activities of sand sea cucumber Holothuria scabra (dried and fresh) extracts were studied. The highest extraction yield of sea cucumber H. scabra (3.9%) was obtained using dried H. scabra at 60oC. The highest antioxidant activity was found in fresh H. scabra extract at 60°C with an IC50 value of 629.89 ± 0.15 µg/mL using the ABTS method, and the highest antioxidant activity by DPPH method was found in dried H. scabra extract at 70°C with an IC50 value of 32017.18 ± 0.82 µg/mL. The best antioxidant activity based on FRAP and TBARS methods was found in fresh H. scabra extracts at 80°C, respectively. The highest total phenol and flavonoid contained in dried H. scabra extract were 317.54 ± 8.91 mg GAE/100 g sample and 247.56 ± 11.70 mg QE/100 g sample. H. scabra extracts inhibited more than 50% of the growth of the MDA-MB-231 cell line at concentrations of 25 and 50 μg/mL except for dried H. scabra extracts at 80°C. Similarly, the extracts showed the highest cytotoxic effect up to 100% at the highest concentration (100 μg/mL) except for dried H. scabra extracts at 70°C and 80°C.
Collapse
|
7
|
Kleawyothatis W, Jattujan P, Chumphoochai K, Chalorak P, Sobhon P, Meemon K. Holothuria scabra extracts confer neuroprotective effect in C. elegans model of Alzheimer's disease by attenuating amyloid-β aggregation and toxicity. J Tradit Complement Med 2023; 13:93-104. [PMID: 36685078 PMCID: PMC9845652 DOI: 10.1016/j.jtcme.2022.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 10/08/2022] [Accepted: 10/31/2022] [Indexed: 11/15/2022] Open
Abstract
Background and aim Alzheimer's disease (AD) is the most common aged-related neurodegenerative disorder that is associated with the toxic amyloid-β (Aβ) aggregation in the brain. While the efficacies of available drugs against AD are still limited, natural products have been shown to possess neuroprotective potential for prevention and therapy of AD. This study aimed to investigate the neuroprotective effects of H. scabra extracts against Aβ aggregation and proteotoxicity in C. elegans model of Alzheimer's diseases. Experimental procedure Whole bodies (WB) and body wall (BW) of H. scabra were extracted and fractionated into ethyl acetate (WBEA, BWEA), butanol (WBBU, BWBU), and ethanol (BWET). Then C. elegans AD models were treated with these fractions and investigated for Aβ aggregation and polymerization, biochemical and behavioral changes, and level of oxidative stress, as well as lifespan extension. Results and conclusion C. elegans AD model treated with H. scabra extracts, especially triterpene glycoside-rich ethyl acetate and butanol fractions, exhibited significant reduction of Aβ deposition. These H. scabra extracts also attenuated the paralysis behavior and improved the neurological defects in chemotaxis caused by Aβ aggregation. Immunoblot analysis revealed decreased level of Aβ oligomeric forms and the increased level of Aβ monomers after treatments with H. scabra extracts. In addition, H. scabra extracts reduced reactive oxygen species and increased the mean lifespan of the treated AD worms. In conclusion, this study demonstrated strong evidence of anti-Alzheimer effects by H. scabra extracts, implying that these extracts can potentially be applied as natural preventive and therapeutic agents for AD. Taxonomy classification by EVISE Alzheimer's disease, Neurodegenerative disorder, Traditional medicine, Experimental model systems, Molecular biology.
Collapse
Affiliation(s)
- Warannida Kleawyothatis
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Prapaporn Jattujan
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kawita Chumphoochai
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Pawanrat Chalorak
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
- Department of Radiological Technology and Medical Physics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| |
Collapse
|
8
|
Sanguanphun T, Sornkaew N, Malaiwong N, Chalorak P, Jattujan P, Niamnont N, Sobhon P, Meemon K. Neuroprotective effects of a medium chain fatty acid, decanoic acid, isolated from H. leucospilota against Parkinsonism in C. elegans PD model. Front Pharmacol 2022; 13:1004568. [PMID: 36582526 PMCID: PMC9792845 DOI: 10.3389/fphar.2022.1004568] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Sea cucumbers are marine organism that have long been used for food and traditional medicine in Asian countries. Recently, we have shown that ethyl acetate fraction (HLEA) of the crude extract of the black sea cucumber, Holothuria leucospilota, could alleviate Parkinsonism in Caenorhabditis elegans PD models. In this study, we found that the effective neuroprotective activity is attributed to HLEA-P1 compound chemically isolated and identified in H. leucospilota ethyl acetate. We reported here that HLEA-P1 could attenuate DAergic neurodegeneration, improve DAergic-dependent behaviors, reduce oxidative stress in 6-OHDA-induced C. elegans. In addition, HLEA-P1 reduced α-synuclein aggregation, improved behavior deficit and recovered lipid deposition in transgenic C. elegans overexpressing α-synuclein. We also found that HLEA-P1 activates nuclear localization of DAF-16 transcription factor of insulin/IGF-1 signaling (IIS) pathway. Treatment with 25 μg/ml of HLEA-P1 upregulated transcriptional activity of DAF-16 target genes including anti-oxidant genes (such as sod-3) and small heat shock proteins (such as hsp16.1, hsp16.2, and hsp12.6) in 6-OHDA-induced worms. In α-synuclein-overexpressed C. elegans strain, treatment with 5 μg/ml of HLEA-P1 significantly activated mRNA expression of sod-3 and hsp16.2. Chemical analysis demonstrated that HLEA-P1 compound is decanoic acid/capric acid. Taken together, our findings revealed that decanoic acid isolated from H. leucospilota exerts anti-Parkinson effect in C. elegans PD models by partly modulating IIS/DAF-16 pathway.
Collapse
Affiliation(s)
- Tanatcha Sanguanphun
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nilubon Sornkaew
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Nawaphat Malaiwong
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pawanrat Chalorak
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand,Department of Radiological Technology and Medical Physics, Chulalongkorn University, Bangkok, Thailand
| | - Prapaporn Jattujan
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand,Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nakorn Niamnont
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand,Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand,*Correspondence: Krai Meemon,
| |
Collapse
|
9
|
Jattujan P, Srisirirung S, Watcharaporn W, Chumphoochai K, Kraokaew P, Sanguanphun T, Prasertsuksri P, Thongdechsri S, Sobhon P, Meemon K. 2-Butoxytetrahydrofuran and Palmitic Acid from Holothuria scabra Enhance C. elegans Lifespan and Healthspan via DAF-16/FOXO and SKN-1/NRF2 Signaling Pathways. Pharmaceuticals (Basel) 2022; 15:1374. [PMID: 36355546 PMCID: PMC9699485 DOI: 10.3390/ph15111374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 09/29/2023] Open
Abstract
Extracts from a sea cucumber, Holothuria scabra, have been shown to exhibit various pharmacological properties including anti-oxidation, anti-aging, anti-cancer, and anti-neurodegeneration. Furthermore, certain purified compounds from H. scabra displayed neuroprotective effects against Parkinson's and Alzheimer's diseases. Therefore, in the present study, we further examined the anti-aging activity of purified H. scabra compounds in a Caenorhabditis elegans model. Five compounds were isolated from ethyl acetate and butanol fractions of the body wall of H. scabra and characterized as diterpene glycosides (holothuria A and B), palmitic acid, bis (2-ethylhexyl) phthalate (DEHP), and 2-butoxytetrahydrofuran (2-BTHF). Longevity assays revealed that 2-BTHF and palmitic acid could significantly extend lifespan of wild type C. elegans. Moreover, 2-BTHF and palmitic acid were able to enhance resistance to paraquat-induced oxidative stress and thermal stress. By testing the compounds' effects on longevity pathways, it was shown that 2-BTHF and palmitic acid could not extend lifespans of daf-16, age-1, sir-2.1, jnk-1, and skn-1 mutant worms, indicating that these compounds exerted their actions through these genes in extending the lifespan of C. elegans. These compounds induced DAF-16::GFP nuclear translocation and upregulated the expressions of daf-16, hsp-16.2, sod-3 mRNA and SOD-3::GFP. Moreover, they also elevated protein and mRNA expressions of GST-4, which is a downstream target of the SKN-1 transcription factor. Taken together, the study demonstrated the anti-aging activities of 2-BTHF and palmitic acid from H. scabra were mediated via DAF-16/FOXO insulin/IGF and SKN-1/NRF2 signaling pathways.
Collapse
Affiliation(s)
- Prapaporn Jattujan
- Chulabhorn International College of Medicine, Rangsit Campus, Thammasat University, Pathum Thani 12120, Thailand
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sirin Srisirirung
- Chulabhorn International College of Medicine, Rangsit Campus, Thammasat University, Pathum Thani 12120, Thailand
| | - Warisra Watcharaporn
- Chulabhorn International College of Medicine, Rangsit Campus, Thammasat University, Pathum Thani 12120, Thailand
| | - Kawita Chumphoochai
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Pichnaree Kraokaew
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Tanatcha Sanguanphun
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | | | - Salinthip Thongdechsri
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
10
|
De novo genome assembly and annotation of Holothuria scabra (Jaeger, 1833) from nanopore sequencing reads. Genes Genomics 2022; 44:1487-1498. [DOI: 10.1007/s13258-022-01322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/29/2022] [Indexed: 11/04/2022]
|
11
|
Wang X, Li X, Li L, Yang X, Wang J, Liu X, Chen J, Liu S, Zhang N, Li J, Wang H. Hawthorn fruit extract ameliorates H 2O 2-induced oxidative damage in neuronal PC12 cells and prolongs the lifespan of Caenorhabditis elegans via the IIS signaling pathway. Food Funct 2022; 13:10680-10694. [PMID: 36172739 DOI: 10.1039/d2fo01657e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hawthorn (Crataegus pinnatifida) fruit has a long history of use as traditional Chinese medicine and is shown to have many health benefits including antioxidant and anti-aging. In this study, the anti-aging mechanism of hawthorn fruit extract (HFE) is predicted by network pharmacology and further verified in H2O2-induced PC12 cells and Caenorhabditis elegans. Network pharmacology predicted that the antiaging mechanism of HFE is mainly involved in phosphoinositide 3-kinase (PI3K)/AKT and the insulin/insulin-like growth factor-1 (IIS) signaling pathway. HFE significantly improved cell viability, increased superoxide dismutase, catalase, and glutathione peroxidase activity, decreased lactate dehydrogenase release, the level of reactive oxygen species (ROS), and malondialdehyde content in H2O2-induced PC12 cells (p < 0.05). HFE significantly increased the mean lifespan of C. elegans by 28.43% (100 μg mL-1) and enhanced the stress resistance to H2O2, paraquat, juglone, ultraviolet radiation, and heat shock. HFE also suppressed the accumulation of aging pigments, improved the body bending ability, increased antioxidant enzyme activities, and reduced the contents of ROS and malondialdehyde. In addition, relevant gene expression, lifespan experiments with mutant strains, and molecular docking studies supported the results that HFE might extend lifespan through the IIS signal pathway.
Collapse
Affiliation(s)
- Xinxin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Xin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Luyi Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Xu Yang
- National center of supervision and inspection for processed food quality, Tianjin institute for food safety inspection technology, Tianjin 300457, China
| | - Jilite Wang
- Department of Agriculture, Hetao College, Inner MongoliaBayannur, China
| | - Xiaozhi Liu
- Department of neurosurgery, the Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Jingnan Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Suwen Liu
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Nan Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Jing Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| |
Collapse
|
12
|
Chen H, Li R, Zhao F, Luan L, Han T, Li Z. Betulinic acid increases lifespan and stress resistance via insulin/IGF-1 signaling pathway in Caenorhabditis elegans. Front Nutr 2022; 9:960239. [PMID: 35967806 PMCID: PMC9372536 DOI: 10.3389/fnut.2022.960239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/13/2022] [Indexed: 01/14/2023] Open
Abstract
Numerous studies reported that betulinic acid (BA), a natural product extracted from birch bark, exhibited various beneficial effects in vitro. However, its pharmacological activities in aging are rarely understood. In this study, Caenorhabditis elegans was deployed as a whole animal model to investigate the impacts of BA on lifespan and stress resistance. Wild-type C. elegans were fed in the presence or absence of BA and tested for a series of phenotypes, including longevity, mobility, reproductive capacity, pharyngeal pumping, heat stress, and oxidative stress. BA at the optimal dose (50 μg/mL) extended the lifespan, improved the healthspan, and significantly evoked the increased oxidative stress resistance in C. elegans. Incorporating the genetic analysis with different types of longevity mutants, DAF-16, the downstream effector of the Insulin/IGF-1 receptor signaling, was revealed to mediate the protective effects of BA on lifespan and antioxidant activity. Together, these data showcased the potential of BA in promoting healthy aging, which shall facilitate its further development in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Haiyan Chen
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- College of Life Sciences, Changchun Sci-Tech University, Changchun, China
| | - Rongji Li
- College of Food Science and Engineering, Jilin Agriculture University, Changchun, China
| | - Feng Zhao
- College of Food Science and Engineering, Jilin Agriculture University, Changchun, China
| | - Li Luan
- College of Food Science and Engineering, Jilin Agriculture University, Changchun, China
| | - Tiantian Han
- College of Life Sciences, Changchun Sci-Tech University, Changchun, China
| | - Zhong Li
- College of Life Sciences, Changchun Sci-Tech University, Changchun, China
| |
Collapse
|
13
|
McIntyre RL, Liu YJ, Hu M, Morris BJ, Willcox BJ, Donlon TA, Houtkooper RH, Janssens GE. Pharmaceutical and nutraceutical activation of FOXO3 for healthy longevity. Ageing Res Rev 2022; 78:101621. [PMID: 35421606 DOI: 10.1016/j.arr.2022.101621] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Life expectancy has increased substantially over the last 150 years. Yet this means that now most people also spend a greater length of time suffering from various age-associated diseases. As such, delaying age-related functional decline and extending healthspan, the period of active older years free from disease and disability, is an overarching objective of current aging research. Geroprotectors, compounds that target pathways that causally influence aging, are increasingly recognized as a means to extend healthspan in the aging population. Meanwhile, FOXO3 has emerged as a geroprotective gene intricately involved in aging and healthspan. FOXO3 genetic variants are linked to human longevity, reduced disease risks, and even self-reported health. Therefore, identification of FOXO3-activating compounds represents one of the most direct candidate approaches to extending healthspan in aging humans. In this work, we review compounds that activate FOXO3, or influence healthspan or lifespan in a FOXO3-dependent manner. These compounds can be classified as pharmaceuticals, including PI3K/AKT inhibitors and AMPK activators, antidepressants and antipsychotics, muscle relaxants, and HDAC inhibitors, or as nutraceuticals, including primary metabolites involved in cell growth and sustenance, and secondary metabolites including extracts, polyphenols, terpenoids, and other purified natural compounds. The compounds documented here provide a basis and resource for further research and development, with the ultimate goal of promoting healthy longevity in humans.
Collapse
Affiliation(s)
- Rebecca L McIntyre
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Yasmine J Liu
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Man Hu
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Brian J Morris
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia; Department of Research, Kuakini Medical Center, Honolulu, HI, USA; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Bradley J Willcox
- Department of Research, Kuakini Medical Center, Honolulu, HI, USA; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Timothy A Donlon
- Department of Research, Kuakini Medical Center, Honolulu, HI, USA; Department of Cell and Molecular Biology and Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Pina-Pérez MC, Úbeda-Manzanaro M, Beyrer M, Martínez A, Rodrigo D. In vivo Assessment of Cold Atmospheric Pressure Plasma Technology on the Bioactivity of Spirulina. Front Microbiol 2022; 12:781871. [PMID: 35140692 PMCID: PMC8819064 DOI: 10.3389/fmicb.2021.781871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
The present study challenges the in vivo assessment of cold atmospheric pressure plasma (CAPP) technology on the bioactive activity (antioxidant/antiaging and antimicrobial potential) of Spirulina powder, using Caenorhabditis elegans as an animal model. Surface microdischarge cold atmospheric pressure plasma (SMD-CAPP) treatment was 3.3 W discharge power for 7 min. C. elegans lifespan and egg laying were used as indicators of antioxidant/antiaging potential of Spirulina (1 mg/mL), when grown with Spirulina CP-treated [E_SCP] and untreated [E_S], compared with a control [E_0] (non-supplemented with Spirulina). According to our results, under both Spirulina supplemented media [E_SCP and E_S] and for the first 17 days, nematodes experienced an increase in lifespan but without significant differences (p > 0.05) between control and Spirulina CP-treated. Regarding the in vivo assay of the antimicrobial potential of Spirulina against Salmonella enterica serovar Typhimurium (infected worms), no significant differences (p > 0.05) were found between the three exposure scenarios (control [S_0]; Spirulina supplemented media [S_S]; CP-treated Spirulina supplemented media [S_SCP]). According to present results, CAPP-treatment do not influence negatively the lifespan of C. elegans but a reduction in the Spirulina antiaging potential was found. No in vivo modifications in antimicrobial activity seem to be linked to CAPP-processed Spirulina.
Collapse
Affiliation(s)
- María Consuelo Pina-Pérez
- Departamento de Microbiología y Ecología, Universitat de València, Burjassot, Valencia, Spain
- Food Engineering Laboratory, Institute of Life Technologies, University of Applied Sciences and Arts Western-Switzerland (HES-SO) Valais-Wallis, Sion, Switzerland
| | - María Úbeda-Manzanaro
- Departamento Conservación y Calidad, Instituto de Agroquímica y Tecnología de Alimentos IATA - Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Michael Beyrer
- Food Engineering Laboratory, Institute of Life Technologies, University of Applied Sciences and Arts Western-Switzerland (HES-SO) Valais-Wallis, Sion, Switzerland
| | - Antonio Martínez
- Departamento Conservación y Calidad, Instituto de Agroquímica y Tecnología de Alimentos IATA - Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Dolores Rodrigo
- Departamento Conservación y Calidad, Instituto de Agroquímica y Tecnología de Alimentos IATA - Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
- *Correspondence: Dolores Rodrigo,
| |
Collapse
|
15
|
Hamel JF, Eeckhaut I, Conand C, Sun J, Caulier G, Mercier A. Global knowledge on the commercial sea cucumber Holothuria scabra. ADVANCES IN MARINE BIOLOGY 2022; 91:1-286. [PMID: 35777924 DOI: 10.1016/bs.amb.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Holothuria scabra is one of the most intensively studied holothuroids, or sea cucumbers (Echinodermata: Holothuroidea), having been discussed in the literature since the early 19th century. The species is important for several reasons: (1) it is widely distributed and historically abundant in several shallow soft-bottom habitats throughout the Indo-Pacific, (2) it has a high commercial value on the Asian markets, where it is mainly sold as a dried product (beche-de-mer) and (3) it is the only tropical holothuroid species that can currently be mass-produced in hatcheries. Over 20 years have elapsed since the last comprehensive review on H. scabra published in 2001. Research on H. scabra has continued to accumulate, fuelled by intense commercial exploitation, and further declines in wild stocks over the entire distribution range. This review compiles data from over 950 publications pertaining to the biology, ecology, physiology, biochemical composition, aquaculture, fishery, processing and trade of H. scabra, presenting the most complete synthesis to date, including scientific papers and material published by local institutions and/or in foreign languages. The main goal of this project was to summarize and critically discuss the abundant literature on this species, making it more readily accessible to all stakeholders aiming to conduct fundamental and applied research on H. scabra, or wishing to develop aquaculture, stock enhancement and management programs across its geographic range.
Collapse
Affiliation(s)
- Jean-François Hamel
- Society for the Exploration and Valuing of the Environment (SEVE), St. Philips, Newfoundland & Labrador, Canada.
| | - Igor Eeckhaut
- Biology of Marine Organisms and Biomimetics unit, University of Mons, Mons, Belgium
| | - Chantal Conand
- Département origines et évolution, Muséum National Histoire Naturelle, Paris, France
| | - Jiamin Sun
- Department of Ocean Sciences, Memorial University, St. John's, Newfoundland & Labrador, Canada
| | - Guillaume Caulier
- Biology of Marine Organisms and Biomimetics unit, University of Mons, Mons, Belgium
| | - Annie Mercier
- Department of Ocean Sciences, Memorial University, St. John's, Newfoundland & Labrador, Canada.
| |
Collapse
|
16
|
Zhao J, Yu J, Zhi Q, Yuan T, Lei X, Zeng K, Ming J. Anti-aging effects of the fermented anthocyanin extracts of purple sweet potato on Caenorhabditis elegans. Food Funct 2021; 12:12647-12658. [PMID: 34821891 DOI: 10.1039/d1fo02671b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Anthocyanins have anti-inflammatory, anticarcinogenic and antioxidant properties and anti-aging effects as well as potential application as pigments. The metabolism of anthocyanins in fermented food has attracted increasing attention. However, the effect of lactic acid bacteria (LAB) fermentation on its anti-aging activity remains mostly unknown. The current study aimed to investigate the compositions, antioxidant activities and anti-aging effect of fermented purple sweet potato anthocyanins (FSPA) on aging Caenorhabditis elegans compared to raw purple sweet potato anthocyanins (PSPA). Results showed that anthocyanins were degraded into more bioavailable phenolic acids by Weissella confusa fermentation. PSPA and FSPA can extend the lifespan of C. elegans by 26.7% and 37.5%, respectively, through improving the activity of antioxidant enzymes as well as decreasing MDA content, ROS levels and lipofuscin accumulation. Pretreatment of the worms with PSPA and FSPA induced their potential to resist to thermal tolerance and oxidative stress, and FSPA exerted a higher anti-stress effect than PSPA. Moreover, FSPA supplementation upregulated the mRNA expressions of genes daf-16, hsp-16.2, sir-2.1, skn-1 and sod-3 and downregulated the expression of daf-2 in the nematodes, whereas PSPA only induced the increase in the expressions of sir-2.1, skn-1 and sod-3. Overall, FSPA can improve stress resistance and extend the lifespan of C. elegans by both insulin/IGF-1 signaling pathway and dietary restriction pathway, providing a theoretical basis for the application of PSPA in fermented food as functional pigments.
Collapse
Affiliation(s)
- Jichun Zhao
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China. .,Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg 1958, Denmark
| | - Jie Yu
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Qi Zhi
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Tingting Yuan
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Xiaojuan Lei
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China. .,Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China. .,Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
17
|
Ge Y, Chen H, Wang J, Liu G, Cui SW, Kang J, Jiang Y, Wang H. Naringenin prolongs lifespan and delays aging mediated by IIS and MAPK in Caenorhabditis elegans. Food Funct 2021; 12:12127-12141. [PMID: 34787618 DOI: 10.1039/d1fo02472h] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Naringenin (NN) is one of the most abundant flavonoids in citrus and grapefruits and has been shown to have antioxidant properties in vitro. The purpose of the study is to examine the antioxidant and anti-aging activities of NN in C. elegans, and to further explore the molecular mechanism. The results showed that NN enhanced the lifespan under normal and oxidative stress induced by H2O2. After treatment with NN, locomotion capability was improved and aging pigment accumulation was suppressed. NN also delayed the paralysis and reversed the defective chemotaxis behavior induced by Aβ protein. Meanwhile, the treatment with NN enhanced the activities of antioxidant enzymes and reduced the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) content. The possible targets and pathways interacting with NN were predicted by network pharmacology. Real-time PCR analysis indicated that NN upregulated the expression levels of daf-16, sek-1 and skn-1, downregulated the expression levels of daf-2, age-1 and akt-1, and further activated sod-3, ctl-1, ctl-2, gst-4 and mtl-1. Moreover, the selected mutant strains were used and molecular docking was conducted to further suggest that IIS and MAPK pathways could be involved in the NN-mediated longevity-promoting effect.
Collapse
Affiliation(s)
- Yue Ge
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China.
| | - Huibin Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jilite Wang
- Department of Agriculture, Hetao College, Inner Mongolia, Bayannur, China
| | - Guishan Liu
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Steve W Cui
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Canada
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China.
| | - Yumei Jiang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China.
| |
Collapse
|
18
|
Chalorak P, Sornkaew N, Manohong P, Niamnont N, Malaiwong N, Limboonreung T, Sobhon P, Aschner M, Meemon K. Diterpene glycosides from Holothuria scabra exert the α-synuclein degradation and neuroprotection against α-synuclein-Mediated neurodegeneration in C. elegans model. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114347. [PMID: 34147616 PMCID: PMC8381228 DOI: 10.1016/j.jep.2021.114347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/12/2021] [Accepted: 06/15/2021] [Indexed: 05/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Holothuria (Metriatyla) scabra Jaeger (H. scabra), sea cucumber, is the marine organism that has been used as traditional food and medicine to gain the health benefits since ancient time. Although our recent studies have shown that crude extracts from H. scabra exhibited neuroprotective effects against Parkinson's disease (PD), the underlying mechanisms and bioactive compounds are still unknown. AIM OF THE STUDY In the present study, we examined the efficacy of purified compounds from H. scabra and their underlying mechanism on α-synuclein degradation and neuroprotection against α-synuclein-mediated neurodegeneration in a transgenic Caenorhabditis elegans PD model. MATERIAL AND METHODS The H. scabra compounds (HSEA-P1 and P2) were purified and examined for their toxicity and optimal dose-range by food-clearance and lifespan assays. The α-synuclein degradation and neuroprotection against α-synuclein-mediated neurodegeneration were determined using transgenic C. elegans model, Punc-54::α-syn and Pdat-1:: α-syn; Pdat-1::GFP, respectively, and then further investigated by determining the behavioral assays including locomotion rate, basal slowing rate, ethanol avoidance, and area-restricted searching. The underlying mechanisms related to autophagy were clarified by quantitative PCR and RNAi experiments. RESULTS Our results showed that HSEA-P1 and HSEA-P2 significantly diminished α-synuclein accumulation, improved motility deficits, and recovered the shortened lifespan. Moreover, HSEA-P1 and HSEA-P2 significantly protected dopaminergic neurons from α-synuclein toxicity and alleviated dopamine-associated behavioral deficits, i.e., basal slowing, ethanol avoidance, and area-restricted searching. HSEA-P1 and HSEA-P2 also up-regulated autophagy-related genes, including beclin-1/bec-1, lc-3/lgg-1, and atg-7/atg-7. RNA interference (RNAi) of these genes in transgenic α-synuclein worms confirmed that lc-3/lgg-1 and atg-7/atg-7 were required for α-synuclein degradation and DAergic neuroprotection activities of HSEA-P1 and HSEA-P2. NMR and mass spectrometry analysis revealed that the HSEA-P1 and HSEA-P2 contained diterpene glycosides. CONCLUSION These findings indicate that diterpene glycosides extracted from H. scabra decreases α-synuclein accumulation and protects α-synuclein-mediated DAergic neuronal loss and its toxicities via lgg-1 and atg-7.
Collapse
Affiliation(s)
- Pawanrat Chalorak
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
| | - Nilubon Sornkaew
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bang Mod, Bangkok, 10140, Thailand.
| | - Preeyanuch Manohong
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bang Mod, Bangkok, 10140, Thailand.
| | - Nakorn Niamnont
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bang Mod, Bangkok, 10140, Thailand.
| | - Nawaphat Malaiwong
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
| | - Tanapol Limboonreung
- Division of Oral Biology, Faculty of Dentistry, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok, 10520, Thailand.
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
| | - Michael Aschner
- Department of Molecular Pharmacology, Neuroscience, and Pediatrics, Albert Einstein College of Medicine, Morris Park Avenue, Bronx, NY, 10461, USA.
| | - Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
| |
Collapse
|
19
|
Li N, Li X, Shi YL, Gao JM, He YQ, Li F, Shi JS, Gong QH. Trilobatin, a Component from Lithocarpus polystachyrus Rehd., Increases Longevity in C. elegans Through Activating SKN1/SIRT3/DAF16 Signaling Pathway. Front Pharmacol 2021; 12:655045. [PMID: 33935768 PMCID: PMC8082181 DOI: 10.3389/fphar.2021.655045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/15/2021] [Indexed: 12/28/2022] Open
Abstract
Trilobatin (TLB) is an effective component from Lithocarpus polystachyrus Rehd. Our previous study revealed that TLB protected against oxidative injury in neuronal cells by AMPK/Nrf2/SIRT3 signaling pathway. However, whether TLB can delay aging remains still a mystery. Therefore, the present study was designed to investigate the possible longevity-enhancing effect of TLB, and further to explore its underlying mechanism in Caenorhabditis elegans (C. elegans). The results showed that TLB exerted beneficial effects on C. elegans, as evidenced by survival rate, body movement assay and pharynx-pumping assay. Furthermore, TLB not only significantly decreased ROS and MDA levels, but also increased anti-oxidant enzyme activities including CAT and SOD, as well as its subtypes SOD2 andSOD3, but not affect SOD1 activity, as evidenced by heat and oxidative stress resistance assays. Whereas, the anti-oxidative effects of TLB were almost abolished in SKN1, Sir2.3, and DAF16 mutant C. elegans. Moreover, TLB augmented the fluorescence intensity of DAF16: GFP, SKN1:GFP, GST4:GFP mutants, indicating that TLB increased the contents of SKN1, SIRT3 and DAF16 due to fluorescence intensity of these mutants, which were indicative of these proteins. In addition, TLB markedly increased the protein expressions of SKN1, SIRT3 and DAF16 as evidenced by ELISA assay. However, its longevity-enhancing effect were abolished in DAF16, Sir2.3, SKN1, SOD2, SOD3, and GST4 mutant C. elegans than those of non-TLB treated controls. In conclusion, TLB effectively prolongs lifespan of C. elegans, through regulating redox homeostasis, which is, at least partially, mediated by SKN1/SIRT3/DAF16 signaling pathway.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xi Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yan-Ling Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian-Mei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China.,Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yu-Qi He
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China.,Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Fei Li
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China.,Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China.,Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qi-Hai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China.,Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
20
|
Tangrodchanapong T, Sornkaew N, Yurasakpong L, Niamnont N, Nantasenamat C, Sobhon P, Meemon K. Beneficial Effects of Cyclic Ether 2-Butoxytetrahydrofuran from Sea Cucumber Holothuria scabra against Aβ Aggregate Toxicity in Transgenic Caenorhabditis elegans and Potential Chemical Interaction. Molecules 2021; 26:molecules26082195. [PMID: 33920352 PMCID: PMC8070609 DOI: 10.3390/molecules26082195] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
The pathological finding of amyloid-β (Aβ) aggregates is thought to be a leading cause of untreated Alzheimer’s disease (AD). In this study, we isolated 2-butoxytetrahydrofuran (2-BTHF), a small cyclic ether, from Holothuria scabra and demonstrated its therapeutic potential against AD through the attenuation of Aβ aggregation in a transgenic Caenorhabditis elegans model. Our results revealed that amongst the five H. scabra isolated compounds, 2-BTHF was shown to be the most effective in suppressing worm paralysis caused by Aβ toxicity and in expressing strong neuroprotection in CL4176 and CL2355 strains, respectively. An immunoblot analysis showed that CL4176 and CL2006 treated with 2-BTHF showed no effect on the level of Aβ monomers but significantly reduced the toxic oligomeric form and the amount of 1,4-bis(3-carboxy-hydroxy-phenylethenyl)-benzene (X-34)-positive fibril deposits. This concurrently occurred with a reduction of reactive oxygen species (ROS) in the treated CL4176 worms. Mechanistically, heat shock factor 1 (HSF-1) (at residues histidine 63 (HIS63) and glutamine 72 (GLN72)) was shown to be 2-BTHF’s potential target that might contribute to an increased expression of autophagy-related genes required for the breakdown of the Aβ aggregate, thus attenuating its toxicity. In conclusion, 2-BTHF from H. scabra could protect C. elegans from Aβ toxicity by suppressing its aggregation via an HSF-1-regulated autophagic pathway and has been implicated as a potential drug for AD.
Collapse
Affiliation(s)
- Taweesak Tangrodchanapong
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.T.); (L.Y.); (P.S.)
| | - Nilubon Sornkaew
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand; (N.S.); (N.N.)
| | - Laphatrada Yurasakpong
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.T.); (L.Y.); (P.S.)
| | - Nakorn Niamnont
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand; (N.S.); (N.N.)
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand;
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.T.); (L.Y.); (P.S.)
| | - Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.T.); (L.Y.); (P.S.)
- Correspondence: or ; Tel.: +66-22-015-407
| |
Collapse
|
21
|
Sun Y, Zhang Y, Qi W, Xie J, Cui X. Saponins extracted by ultrasound from Zizyphus jujuba Mil var. spinosa leaves exert resistance to oxidative damage in Caenorhabditis elegans. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00653-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Characterization of the structure and analysis of the anti-oxidant effect of microalga Spirulina platensis polysaccharide on Caenorhabditis elegans mediated by modulating microRNAs and gut microbiota. Int J Biol Macromol 2020; 163:2295-2305. [DOI: 10.1016/j.ijbiomac.2020.09.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/26/2022]
|
23
|
Wang S, Xue J, Zhang S, Zheng S, Xue Y, Xu D, Zhang X. Composition of peony petal fatty acids and flavonoids and their effect on Caenorhabditis elegans lifespan. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:1-12. [PMID: 33092723 DOI: 10.1016/j.plaphy.2020.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/22/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
The colorful petals of tree peony (Paeonia suffruticosa Andrews) are widely used as a source of additives in food, fragrances, and cosmetics. However, the nutritional composition of peony petals is undetermined, thereby limiting utility and product development. In this work, fresh petals of 15 traditional Chinese tree peony cultivars were selected to analyze the composition of soluble sugars, starch, and soluble protein. Extracted fatty acids (FAs) and flavonoids from petals were characterized by GC-MS and UPLC-triple-TOF-MS, respectively. The oxidative stress resistance (generated by paraquat) effects of petal extracts of three cultivars were also investigated in the model organism Caenorhabditis elegans. Our results showed that the petals were highly enriched in soluble sugars. 11 FAs were found in tree peony petals, and their compositions were similar to that of tree peony seeds. A total of 56 flavonoids were detected in tree peony petals, 28 of which were reported for the first time in tree peony petals, indicating that UPLC-triple-TOF-MS can improve the identification efficiency of flavonoids. Further analysis of tree peony petal metabolites indicated that anthocyanidin and flavonol composition might be used as specific chemotaxonomic biomarkers for cultivar classification. Flavonoids, linoleic acid, and α-linolenic acid (ALA) in petals might provide antioxidant activity. 150 mg/L of petal extracts of all three tested cultivars increased the lifespan of C. elegans. It was suggested that the petal extracts possessed anti-aging effects and oxidative stress resistance. These results highlight that tree peony petals can serve as natural antioxidant food resources in the future.
Collapse
Affiliation(s)
- Shunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, PR China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Institute of Peony, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jingqi Xue
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, PR China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Institute of Peony, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shuangfeng Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, PR China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Institute of Peony, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shuning Zheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, PR China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Institute of Peony, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yuqian Xue
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, PR China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Institute of Peony, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Donghui Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, PR China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Institute of Peony, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiuxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, PR China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Institute of Peony, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
24
|
Proshkina E, Plyusnin S, Babak T, Lashmanova E, Maganova F, Koval L, Platonova E, Shaposhnikov M, Moskalev A. Terpenoids as Potential Geroprotectors. Antioxidants (Basel) 2020; 9:antiox9060529. [PMID: 32560451 PMCID: PMC7346221 DOI: 10.3390/antiox9060529] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023] Open
Abstract
Terpenes and terpenoids are the largest groups of plant secondary metabolites. However, unlike polyphenols, they are rarely associated with geroprotective properties. Here we evaluated the conformity of the biological effects of terpenoids with the criteria of geroprotectors, including primary criteria (lifespan-extending effects in model organisms, improvement of aging biomarkers, low toxicity, minimal adverse effects, improvement of the quality of life) and secondary criteria (evolutionarily conserved mechanisms of action, reproducibility of the effects on different models, prevention of age-associated diseases, increasing of stress-resistance). The number of substances that demonstrate the greatest compliance with both primary and secondary criteria of geroprotectors were found among different classes of terpenoids. Thus, terpenoids are an underestimated source of potential geroprotectors that can effectively influence the mechanisms of aging and age-related diseases.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Sergey Plyusnin
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Tatyana Babak
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Ekaterina Lashmanova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | | | - Liubov Koval
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Elena Platonova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
- Correspondence: ; Tel.: +7-8212-312-894
| |
Collapse
|
25
|
Lin GP, Wu DS, Xiao XW, Huang QY, Chen HB, Liu D, Fu HQ, Chen XH, Zhao C. Structural characterization and antioxidant effect of green alga Enteromorpha prolifera polysaccharide in Caenorhabditis elegans via modulation of microRNAs. Int J Biol Macromol 2020; 150:1084-1092. [DOI: 10.1016/j.ijbiomac.2019.10.114] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 01/14/2023]
|
26
|
Nishioka Y, Nishikawa S, Shibata T. A Hot Water Extract of Sideritis scardica Prolongs Life Span and Enhances Heat Shock Resistance in Caenorhabditis elegans. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20917283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sideritis scardica is a Lamiaceae plant that is endemic to the alpine zone of the Balkan Peninsula. The tea of S. scardica has been handed down as a “tea of longevity” in the Rhodope region of Bulgaria for an unknown amount of time. In this study, we prepared a hot water extract of S. scardica (SHWE) and examined its effects on both life span and stress response in living tissue using Caenorhabditis elegans and its transgenic mutants. The life span of wild-type N2 worms was prolonged by approximately 15% at the SHWE concentration of 5 µg/mL and approximately 22% at the SHWE concentration of 50 µg/mL, as compared with the control group. The effect of SHWE on the expression of heat shock protein 16.2 (HSP-16.2) under heat stress was investigated using TJ375 worms, a transgenic mutant of C. elegans. In the TJ375 worms pretreated with SHWE, the fluorescence intensity of green fluorescent protein fluorescence, which indicates the expression of HSP-16.2, was significantly increased. In the assay using TJ356 worms, the worms pretreated with SHWE did not show the translocation of DAF-16, a forkhead transcription factor class O homolog, from the cytoplasm to nucleus under heat stress. Additionally, under heat stress, the pretreatment of SHWE improved the survival rate of GR1307 worms, a knockout mutant of daf-16. These results indicate that SHWE enhances HSP-16.2 expression through a stress-response pathway (eg, HSF-1 pathway) other than the DAF-16 pathway, resulting in a prolonged life span of C. elegans under heat stress.
Collapse
Affiliation(s)
- Yoshihiko Nishioka
- Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Japan
| | | | - Toshiyuki Shibata
- Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Japan
| |
Collapse
|
27
|
Kitisin T, Suphamungmee W, Meemon K. Saponin-rich extracts from Holothuria leucospilota mediate lifespan extension and stress resistance in Caenorhabditis elegans via daf-16. J Food Biochem 2019; 43:e13075. [PMID: 31612532 DOI: 10.1111/jfbc.13075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/07/2019] [Accepted: 09/25/2019] [Indexed: 01/10/2023]
Abstract
Saponins are secondary metabolite compounds that can be found in sea cucumbers (Holothuroidea spp.). However, little is known about how saponin-rich extracts from Holothuria leucospilota can delay and prolong the lifespan of the whole organism. In this study, anti-aging effects of H. leucospilota extracts were studied on Caenorhabditis elegans. NMR analysis revealed that body wall n-butanol-extract of H. leucospilota (BW-BU) is saponin-rich. BW-BU extracts exhibited antioxidant activities by 2,2'-diphenyl-2-picrylhydrazyl assay (EC50 = 10.23 ± 0.12 mg/ml) and 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid assay (EC50 = 3.91 ± 0.04 mg/ml). BW-BU extracts increased lifespan of L4 and L1 C. elegans (5.92% and 15.76%, respectively), which also increased worm growth, stress resistance, and reduced biomarkers for aging. BW-BU extracts activated DAF-16 nuclear localization and upregulated daf-16 and DAF-16 target genes expression. Taken together, this study revealed the evidences on anti-aging activities of saponin-rich extracts from H. leucospilota, which can extend lifespan of C. elegans via daf-16. PRACTICAL APPLICATIONS: In recent years, age-associated chronic diseases have had a significant impact on quality of life. Many natural compounds exhibit anti-aging activities, especially in sea cucumber, H. leucospilota. Our results indicated that H. leucospilota is good for health. Extracts from H. leucospilota contain a bioactive compound that can be potentially used to promote longevity and disease prevention in aging.
Collapse
Affiliation(s)
- Thitinan Kitisin
- Faculty of Science, Department of Anatomy, Mahidol University, Bangkok, Thailand
| | - Worawit Suphamungmee
- Faculty of Science, Department of Anatomy, Mahidol University, Bangkok, Thailand
| | - Krai Meemon
- Faculty of Science, Department of Anatomy, Mahidol University, Bangkok, Thailand
| |
Collapse
|
28
|
Identification of novel oligopeptides from the simulated digestion of sea cucumber (Stichopus japonicus) to alleviate Aβ aggregation progression. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
29
|
Chumphoochai K, Chalorak P, Suphamungmee W, Sobhon P, Meemon K. Saponin-enriched extracts from body wall and Cuvierian tubule of Holothuria leucospilota reduce fat accumulation and suppress lipogenesis in Caenorhabditis elegans. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4158-4166. [PMID: 30767223 DOI: 10.1002/jsfa.9646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/11/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Saponins have been shown to possess many pharmacological properties, including altered fat metabolism. The black sea cucumber, Holothuria leucospilota, is a marine animal that contains a specialized organ called a Cuvierian tubule that produces and secrete the bioactive saponins into the tubules and body wall. Therefore, the aims of this study are to investigate the anti-obesity effect of saponins extracted from body wall and Cuvierian tubules of H. leucospilota. RESULTS The butanol extracts of H. leucospilota body wall and Cuvierian tubules containing high amounts of saponins significantly reduced fat deposition and triglyceride levels in Caenorhabditis elegans fed with 50 mmol L-1 glucose. Moreover, the saponin-enriched extracts of H. leucospilota significantly restored the lifespan of 2% glucose-fed worms (18.71%). Green fluorescence protein-labeled sbp-1 gene expression and nuclear translocation of daf-16 were also significantly decreased in H. leucospilota treatment. The saponin-enriched extracts downregulated the messenger RNA expressions of genes involved in fat storage and metabolism, including sbp-1, cebp, and daf-16 but upregulated the expression of nhr-49 gene. CONCLUSION Our results suggest that H. leucospilota-derived saponins may mediate the reduction of glucose-induced fat accumulation through sbp-1, cebp, daf-16 and nhr-9 pathways. Therefore, the H. leucospilota extracts could be used as nutraceuticals for anti-obesity prevention. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kawita Chumphoochai
- Faculty of Science, Department of Anatomy, Mahidol University, Bangkok, Thailand
| | - Pawanrat Chalorak
- Faculty of Science, Department of Anatomy, Mahidol University, Bangkok, Thailand
| | - Worawit Suphamungmee
- Faculty of Science, Department of Anatomy, Mahidol University, Bangkok, Thailand
| | - Prasert Sobhon
- Faculty of Science, Department of Anatomy, Mahidol University, Bangkok, Thailand
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Krai Meemon
- Faculty of Science, Department of Anatomy, Mahidol University, Bangkok, Thailand
| |
Collapse
|
30
|
Malaiwong N, Chalorak P, Jattujan P, Manohong P, Niamnont N, Suphamungmee W, Sobhon P, Meemon K. Anti-Parkinson activity of bioactive substances extracted from Holothuria leucospilota. Biomed Pharmacother 2019; 109:1967-1977. [DOI: 10.1016/j.biopha.2018.11.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/11/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022] Open
|