1
|
Ferris E, Gonzalez Murcia JD, Cristina Rodriguez A, Steinwand S, Stacher Hörndli C, Traenkner D, Maldonado-Catala PJ, Gregg C. Genomic Convergence in Hibernating Mammals Elucidates the Genetics of Metabolic Regulation in the Hypothalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600891. [PMID: 38979381 PMCID: PMC11230405 DOI: 10.1101/2024.06.26.600891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Elucidating the genetic basis of mammalian metabolism could help define mechanisms central to health and disease. Here, we define conserved cis-regulatory elements (CREs) and programs for mammalian metabolic control. We delineate gene expression and chromatin responses in the mouse hypothalamus for 7 steps of the Fed-to-Fasted-to-Refed (FFR) response process. Comparative genomics of hibernating versus non-hibernating lineages then illuminates cis-elements showing convergent changes in hibernators. Hibernators accumulated loss-of-function effects for specific CREs regulating hypothalamic FFR responses. Multi-omics approaches pinpoint key CREs, genes, regulatory programs, and cell types in the divergence of hibernating and homeothermic lineages. The refeeding period after extended fasting is revealed as one critical period of chromatin remodeling with convergent genomic changes. This genetic framework is a step toward harnessing hibernator adaptations in medicine.
Collapse
Affiliation(s)
- Elliott Ferris
- Departments of Neurobiology, University of Utah; Salt Lake City, 84105, USA
| | | | | | - Susan Steinwand
- Departments of Neurobiology, University of Utah; Salt Lake City, 84105, USA
| | | | - Dimitri Traenkner
- Departments of Neurobiology, University of Utah; Salt Lake City, 84105, USA
| | - Pablo J Maldonado-Catala
- Departments of Neurobiology, University of Utah; Salt Lake City, 84105, USA
- Biomedical Informatics, University of Utah; Salt Lake City, 84105, USA
| | - Christopher Gregg
- Departments of Neurobiology, University of Utah; Salt Lake City, 84105, USA
- Human Genetics, University of Utah; Salt Lake City, 84105, USA
| |
Collapse
|
2
|
Steinwand S, Stacher Hörndli C, Ferris E, Emery J, Gonzalez Murcia JD, Cristina Rodriguez A, Leydsman TC, Chaix A, Thomas A, Davey C, Gregg C. Conserved Noncoding Cis-Elements Associated with Hibernation Modulate Metabolic and Behavioral Adaptations in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600851. [PMID: 38979203 PMCID: PMC11230392 DOI: 10.1101/2024.06.26.600851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Our study elucidates functional roles for conserved cis-elements associated with the evolution of mammalian hibernation. Genomic analyses found topologically associated domains (TADs) that disproportionately accumulated convergent genomic changes in hibernators, including the TAD for the Fat Mass & Obesity (Fto) locus. Some hibernation-linked cis-elements in this TAD form regulatory contacts with multiple neighboring genes. Knockout mice for these cis-elements exhibit Fto, Irx3, and Irx5 gene expression changes, impacting hundreds of genes downstream. Profiles of pre-torpor, torpor, and post-torpor phenotypes found distinct roles for each cis-element in metabolic control, while a high caloric diet uncovered different obesogenic effects. One cis-element promoting a lean phenotype influences foraging behaviors throughout life, affecting specific behavioral sequences. Thus, convergent evolution in hibernators pinpoints functional genetic mechanisms of mammalian metabolic control.
Collapse
Affiliation(s)
- Susan Steinwand
- Department of Neurobiology, University of Utah; Salt Lake City, 84105, USA
| | | | - Elliott Ferris
- Department of Neurobiology, University of Utah; Salt Lake City, 84105, USA
| | - Jared Emery
- Department of Neurobiology, University of Utah; Salt Lake City, 84105, USA
| | | | | | - Tyler C. Leydsman
- Department of Neurobiology, University of Utah; Salt Lake City, 84105, USA
| | - Amandine Chaix
- Department of Nutrition and Integrative Physiology, University of Utah; Salt Lake City, 84105, USA
| | - Alun Thomas
- Division of Epidemiology, University of Utah; Salt Lake City, 84105, USA
- Study Design and Biostatistics Center, University of Utah; Salt Lake City, 84105, USA
| | - Crystal Davey
- Mutation Generation & Detection Core Facility, University of Utah; Salt Lake City, 84105, USA
| | - Christopher Gregg
- Department of Neurobiology, University of Utah; Salt Lake City, 84105, USA
- Department of Human Genetics, University of Utah; Salt Lake City, 84105, USA
| |
Collapse
|
3
|
Brandhorst S, Longo VD. Exploring juventology: unlocking the secrets of youthspan and longevity programs. FRONTIERS IN AGING 2024; 5:1379289. [PMID: 38638872 PMCID: PMC11024265 DOI: 10.3389/fragi.2024.1379289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
In recent decades, the study of biological aging has evolved from simplistic theories like the free radical theory to more complex and nuanced perspectives. In particular, the identification of evolutionary conserved genes and signaling pathways that can modulate both lifespan but also healthspan has resulted in the expanding understanding of the link between nutrients, signal transduction proteins, and aging along with substantial support for the existence of multiple "longevity programs," which are activated based on the availability of nutrients. Periodic fasting and other dietary restrictions can promote entry into a longevity program characterized by cellular protection and optimized function, and the activation of regenerative processes that lead to rejuvenation. This review discusses the idea of juventology, a novel field proposing the existence of longevity programs that can maintain organisms in a highly functional state for extended periods of time. Drawing upon research on Saccharomyces cerevisiae and other model organisms, the review explores the distinctiveness of juventology from traditional aging-centered views. The focus on the "age of youth" challenges conventional thinking and opens new avenues for understanding and extending the period of peak functionality in organisms. Thus, a "juventology"-based strategy can complement the traditional gerontology approach by focusing not on aging but on the longevity program affecting the life history period in which mortality is very low and organisms remain youthful, healthy, and fully functional.
Collapse
Affiliation(s)
- Sebastian Brandhorst
- Leonard Davis School of Gerontology, Longevity Institute, University of Southern California, Los Angeles, CA, United States
| | | |
Collapse
|
4
|
Cuyutupa VR, Moser D, Diedrich V, Cheng Y, Billaud JN, Haugg E, Singer D, Bereiter-Hahn J, Herwig A, Choukér A. Blood transcriptomics mirror regulatory mechanisms during hibernation-a comparative analysis of the Djungarian hamster with other mammalian species. Pflugers Arch 2023; 475:1149-1160. [PMID: 37542567 PMCID: PMC10499953 DOI: 10.1007/s00424-023-02842-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 08/07/2023]
Abstract
Hibernation enables many species of the mammalian kingdom to overcome periods of harsh environmental conditions. During this physically inactive state metabolic rate and body temperature are drastically downregulated, thereby reducing energy requirements (torpor) also over shorter time periods. Since blood cells reflect the organism´s current condition, it was suggested that transcriptomic alterations in blood cells mirror the torpor-associated physiological state. Transcriptomics on blood cells of torpid and non-torpid Djungarian hamsters and QIAGEN Ingenuity Pathway Analysis (IPA) revealed key target molecules (TMIPA), which were subjected to a comparative literature analysis on transcriptomic alterations during torpor/hibernation in other mammals. Gene expression similarities were identified in 148 TMIPA during torpor nadir among various organs and phylogenetically different mammalian species. Based on TMIPA, IPA network analyses corresponded with described inhibitions of basic cellular mechanisms and immune system-associated processes in torpid mammals. Moreover, protection against damage to the heart, kidney, and liver was deduced from this gene expression pattern in blood cells. This study shows that blood cell transcriptomics can reflect the general physiological state during torpor nadir. Furthermore, the understanding of molecular processes for torpor initiation and organ preservation may have beneficial implications for humans in extremely challenging environments, such as in medical intensive care units and in space.
Collapse
Affiliation(s)
- Valeria Rojas Cuyutupa
- Laboratory of Translational Research 'Stress and Immunity', Department of Anesthesiology, LMU Hospital, Ludwig-Maximilians-Universität in Munich, Marchioninistr. 15, Munich, 81377, Germany
| | - Dominique Moser
- Laboratory of Translational Research 'Stress and Immunity', Department of Anesthesiology, LMU Hospital, Ludwig-Maximilians-Universität in Munich, Marchioninistr. 15, Munich, 81377, Germany
| | - Victoria Diedrich
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Yiming Cheng
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität in Munich, Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz, Munich, Neuherberg, Germany
| | | | - Elena Haugg
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Dominique Singer
- Division of Neonatology and Pediatric Critical Care Medicine, University Medical Center Eppendorf, Hamburg, Germany
| | - Jürgen Bereiter-Hahn
- Institute for Cell Biology and Neurosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Annika Herwig
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Alexander Choukér
- Laboratory of Translational Research 'Stress and Immunity', Department of Anesthesiology, LMU Hospital, Ludwig-Maximilians-Universität in Munich, Marchioninistr. 15, Munich, 81377, Germany.
| |
Collapse
|
5
|
Ma WX, Yuan PC, Zhang H, Kong LX, Lazarus M, Qu WM, Wang YQ, Huang ZL. Adenosine and P1 receptors: Key targets in the regulation of sleep, torpor, and hibernation. Front Pharmacol 2023; 14:1098976. [PMID: 36969831 PMCID: PMC10036772 DOI: 10.3389/fphar.2023.1098976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Graphical AbstractAdenosine mediates sleep, torpor and hibernation through P1 receptors. Recent reasearch has shown that P1 receptors play a vital role in the regulation of sleep-wake, torpor and hibernation-like states. In this review, we focus on the roles and neurobiological mechanisms of the CNS adenosine and P1 receptors in these three states. Among them, A1 and A2A receptors are key targets for sleep-wake regulation, A1Rs and A3Rs are very important for torpor induction, and activation of A1Rs is sufficient for hibernation-like state.
Collapse
Affiliation(s)
- Wei-Xiang Ma
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ping-Chuan Yuan
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Hui Zhang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Ling-Xi Kong
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Wei-Min Qu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
- *Correspondence: Wei-Min Qu, ; Yi-Qun Wang, ; Zhi-Li Huang,
| | - Yi-Qun Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
- *Correspondence: Wei-Min Qu, ; Yi-Qun Wang, ; Zhi-Li Huang,
| | - Zhi-Li Huang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
- *Correspondence: Wei-Min Qu, ; Yi-Qun Wang, ; Zhi-Li Huang,
| |
Collapse
|
6
|
Sullivan IR, Adams DM, Greville LJS, Faure PA, Wilkinson GS. Big brown bats experience slower epigenetic ageing during hibernation. Proc Biol Sci 2022; 289:20220635. [PMID: 35946154 PMCID: PMC9364000 DOI: 10.1098/rspb.2022.0635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Comparative analyses of bats indicate that hibernation is associated with increased longevity among species. However, it is not yet known if hibernation affects biological ageing of individuals. Here, we use DNA methylation (DNAm) as an epigenetic biomarker of ageing to determine the effect of hibernation on the big brown bat, Eptesicus fuscus. First, we compare epigenetic age, as predicted by a multi-species epigenetic clock, between hibernating and non-hibernating animals and find that hibernation is associated with epigenetic age. Second, we identify genomic sites that exhibit hibernation-associated change in DNAm, independent of age, by comparing samples taken from the same individual in hibernating and active seasons. This paired comparison identified over 3000 differentially methylated positions (DMPs) in the genome. Genome-wide association comparisons to tissue-specific functional elements reveals that DMPs with elevated DNAm during winter occur at sites enriched for quiescent chromatin states, whereas DMPs with reduced DNAm during winter occur at sites enriched for transcription enhancers. Furthermore, genes nearest DMPs are involved in regulation of metabolic processes and innate immunity. Finally, significant overlap exists between genes nearest hibernation DMPs and genes nearest previously identified longevity DMPs. Taken together, these results are consistent with hibernation influencing ageing and longevity in bats.
Collapse
Affiliation(s)
- Isabel R. Sullivan
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Danielle M. Adams
- Department of Biology, University of Maryland, College Park, MD 20742, USA,Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| | - Lucas J. S. Greville
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada L8S 4K1,Department of Biology, University of Waterloo, Waterloo, ON, Canada N3 L 3G1
| | - Paul A. Faure
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada L8S 4K1
| | | |
Collapse
|
7
|
Al-Attar R, Storey KB. Lessons from nature: Leveraging the freeze-tolerant wood frog as a model to improve organ cryopreservation and biobanking. Comp Biochem Physiol B Biochem Mol Biol 2022; 261:110747. [PMID: 35460874 DOI: 10.1016/j.cbpb.2022.110747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022]
Abstract
The freeze-tolerant wood frog, Rana sylvatica, is one of the very few vertebrate species known to endure full body freezing in winter and thaw in early spring without any significant sign of damage. Once frozen, wood frogs show no cardiac or lung activity, brain function, or physical movement yet resume full physiological and biochemical functions within hours after thawing. The miraculous ability to tolerate such extreme stresses makes wood frogs an attractive model for identifying the molecular mechanisms that can promote freeze/thaw endurance. Recapitulating these pro-survival strategies in transplantable human cells and organs could improve viability post-thaw leading to better post-transplant outcomes, in addition to providing more time for adequate distribution of these transplantable materials across larger geographical areas. Indeed, several laboratories are beginning to mimic the pro-survival responses observed in wood frogs to preservation of human cells, tissues and organs and, to date, a few trials have been successful in extending preservation time prior to transplantation. In this review, we discuss the biology of the freeze-tolerant wood frog, current advances in biobanking based on these animals, and extend our discussion to future prospects for cryopreservation as an aid to regenerative medicine.
Collapse
Affiliation(s)
- Rasha Al-Attar
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada; McEwen Stem Cell Institute, University Health Network, Toronto, Ontario, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
8
|
Al-Attar R, Storey KB. RAGE management: ETS1- EGR1 mediated transcriptional networks regulate angiogenic factors in wood frogs. Cell Signal 2022; 98:110408. [PMID: 35842171 DOI: 10.1016/j.cellsig.2022.110408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 11/03/2022]
Abstract
Freeze-tolerant species, such as wood frogs (Rana sylvatica), are susceptible to multiple co-occurring stresses that they must overcome to survive. Freezing is accompanied by mechanical stress and dehydration due to ice crystal formation in the extracellular space, ischemia/anoxia due to interruption in blood flood, and hyperglycemia due to cryoprotective measures. Wood frogs can survive dehydration, anoxia, and high glucose stress independently of freezing, thereby creating a multifactorial model for studying freeze-tolerance. Oxidative stress and high glucose levels favors the production of pro-oxidant molecules and advanced glycation end product (AGE) adducts that could cause substantial cellular damage. In this study, the involvement of the high mobility group box 1 (HMGB1)-AGE/RAGE (receptor for AGE) axis and the regulation of ETS1 and EGR1-mediated angiogenic responses were investigated in liver of wood frogs expose to freeze/thaw, anoxia/reoxygenation and dehydration/rehydration treatments. HMGB1 and not AGE-adducts are likely to induce the activation of ETS1 and EGR1 via the RAGE pathway. The increase in nuclear localization of both ETS1 and EGR1, but not DNA binding activity in response to stress hints to a potential spatial and temporal regulation in inducing angiogenic factors. Freeze/thaw and dehydration/rehydration treatments increase the levels of both pro- and anti-angiogenic factors, perhaps to prepare for the distribution of cryoprotectants or enable the repair of damaged capillaries and wounds when needed. Overall, wood frogs appear to anticipate the need for angiogenesis in response to freezing and dehydration but not anoxic treatments, probably due to mechanical stress associated with the two former conditions.
Collapse
Affiliation(s)
- Rasha Al-Attar
- Institude of Biochemistry and Department of Biology, Carleton University, Ottawa, ON K1S-5B6, Canada; McEwen Stem Cell Institute, University Health Network, Toronto, Ontario, Canada
| | - Kenneth B Storey
- Institude of Biochemistry and Department of Biology, Carleton University, Ottawa, ON K1S-5B6, Canada.
| |
Collapse
|
9
|
Hyams Y, Panov J, Rosner A, Brodsky L, Rinkevich Y, Rinkevich B. Transcriptome landscapes that signify Botrylloides leachi (Ascidiacea) torpor states. Dev Biol 2022; 490:22-36. [PMID: 35809632 DOI: 10.1016/j.ydbio.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/18/2022]
Abstract
Harsh environments enforce the expression of behavioural, morphological, physiological, and reproductive rejoinders, including torpor. Here we study the morphological, cellular, and molecular alterations in torpor architype in the colonial urochordate Botrylloides aff. leachii by employing whole organism Transmission electron (TEM) and light microscope observations, RNA sequencing, real-time polymerase chain reaction (qPCR) quantification of selected genes, and immunolocalization of WNT, SMAD and SOX2 gene expressions. On the morphological level, torpor starts with gradual regression of all zooids and buds which leaves the colony surviving as condensed vasculature remnants that may be 'aroused' to regenerate fully functional colonies upon changes in the environment. Simultaneously, we observed altered distributions of hemolymph cell types. Phagocytes doubled in number, while the number of morula cells declined by half. In addition, two new circulating cell types were observed, multi-nucleated and bacteria-bearing cells. RNA sequencing technology revealed marked differences in gene expression between different organism compartments and states: active zooids and ampullae, and between mid-torpor and naive colonies, or naive and torpid colonies. Gene Ontology term enrichment analyses further showed disparate biological processes. In torpid colonies, we observed overall 233 up regulated genes. These genes included NR4A2, EGR1, MUC5AC, HMCN2 and. Also, 27 transcription factors were upregulated in torpid colonies including ELK1, HDAC3, RBMX, MAZ, STAT1, STAT4 and STAT6. Interestingly, genes involved in developmental processes such as SPIRE1, RHOA, SOX11, WNT5A and SNX18 were also upregulated in torpid colonies. We further validated the dysregulation of 22 genes during torpor by utilizing qPCR. Immunohistochemistry of representative genes from three signaling pathways revealed high expression of these genes in circulated cells along torpor. WNT agonist administration resulted in early arousal from torpor in 80% of the torpid colonies while in active colonies WNT agonist triggered the torpor state. Abovementioned results thus connote unique transcriptome landscapes associated with Botrylloides leachii torpor.
Collapse
Affiliation(s)
- Yosef Hyams
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 9753, Tel Shikmona, Haifa, 3109701, Israel; Marine Biology Department, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 31905, Israel.
| | - Julia Panov
- Tauber Bioinformatics Research Center, University of Haifa, Haifa, 31905, Israel; Sagol Department of Neurobiology, University of Haifa, Haifa, 3498838, Israel
| | - Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 9753, Tel Shikmona, Haifa, 3109701, Israel
| | - Leonid Brodsky
- Tauber Bioinformatics Research Center, University of Haifa, Haifa, 31905, Israel
| | - Yuval Rinkevich
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum Munchen, Max-Lebsche-Platz 31, 81377, München, Germany
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 9753, Tel Shikmona, Haifa, 3109701, Israel
| |
Collapse
|
10
|
Oliveira FRMB, Soares ES, Harms C, Cimarosti HI, Sordi R. SUMOylation in peripheral tissues under low perfusion-related pathological states. J Cell Biochem 2022; 123:1133-1147. [PMID: 35652521 DOI: 10.1002/jcb.30293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/06/2022]
Abstract
SUMOylation is described as a posttranslational protein modification (PTM) that is involved in the pathophysiological processes underlying several conditions related to ischemia- and reperfusion-induced damage. Increasing evidence suggests that, under low oxygen levels, SUMOylation might be part of an endogenous mechanism, which is triggered by injury to protect cells within the central nervous system. However, the role of ischemia-induced SUMOylation in the periphery is still unclear. This article summarizes the results of recent studies regarding SUMOylation profiles in several diseases characterized by impaired blood flow to the cardiorenal, gastrointestinal, and respiratory systems. Our review shows that although ischemic injury per se does not always increase SUMOylation levels, as seen in strokes, it seems that in most cases the positive modulation of protein SUMOylation after peripheral ischemia might be a protective mechanism. This complex relationship warrants further investigation, as the role of SUMOylation during hypoxic conditions differs from organ to organ and is still not fully elucidated.
Collapse
Affiliation(s)
- Filipe R M B Oliveira
- Department of Pharmacology, School of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil.,Postgraduate Program in Pharmacology, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Ericks S Soares
- Department of Pharmacology, School of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil.,Postgraduate Program in Pharmacology, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Christoph Harms
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Centre for Stroke Research, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Einstein Centre for Neuroscience, Berlin, Germany
| | - Helena I Cimarosti
- Department of Pharmacology, School of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil.,Postgraduate Program in Pharmacology, Federal University of Santa Catarina, Santa Catarina, Brazil.,Postgraduate Program in Neuroscience, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Regina Sordi
- Department of Pharmacology, School of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil.,Postgraduate Program in Pharmacology, Federal University of Santa Catarina, Santa Catarina, Brazil
| |
Collapse
|
11
|
Hibernation slows epigenetic ageing in yellow-bellied marmots. Nat Ecol Evol 2022; 6:418-426. [PMID: 35256811 PMCID: PMC8986532 DOI: 10.1038/s41559-022-01679-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 01/20/2022] [Indexed: 01/02/2023]
Abstract
Species that hibernate generally live longer than would be expected based solely on their body size. Hibernation is characterized by long periods of metabolic suppression (torpor) interspersed by short periods of increased metabolism (arousal). The torpor–arousal cycles occur multiple times during hibernation, and it has been suggested that processes controlling the transition between torpor and arousal states cause ageing suppression. Metabolic rate is also a known correlate of longevity; we thus proposed the ‘hibernation–ageing hypothesis’ whereby ageing is suspended during hibernation. We tested this hypothesis in a well-studied population of yellow-bellied marmots (Marmota flaviventer), which spend 7–8 months per year hibernating. We used two approaches to estimate epigenetic age: the epigenetic clock and the epigenetic pacemaker. Variation in epigenetic age of 149 samples collected throughout the life of 73 females was modelled using generalized additive mixed models (GAMM), where season (cyclic cubic spline) and chronological age (cubic spline) were fixed effects. As expected, the GAMM using epigenetic ages calculated from the epigenetic pacemaker was better able to detect nonlinear patterns in epigenetic ageing over time. We observed a logarithmic curve of epigenetic age with time, where the epigenetic age increased at a higher rate until females reached sexual maturity (two years old). With respect to circannual patterns, the epigenetic age increased during the active season and essentially stalled during the hibernation period. Taken together, our results are consistent with the hibernation–ageing hypothesis and may explain the enhanced longevity in hibernators. Species that hibernate generally have longer lifespans than expected based on their body size. The authors show epigenetic ageing patterns from a natural population of hibernating yellow-bellied marmots consistent with the hypothesis that ageing is suspended during hibernation.
Collapse
|
12
|
Blanco MB, Greene LK, Klopfer PH, Lynch D, Browning J, Ehmke EE, Yoder AD. Body Mass and Tail Girth Predict Hibernation Expression in Captive Dwarf Lemurs. Physiol Biochem Zool 2022; 95:122-129. [PMID: 34986077 DOI: 10.1086/718222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractHibernation, a metabolic strategy, allows individuals to reduce energetic demands in times of energetic deficits. Hibernation is pervasive in nature, occurring in all major mammalian lineages and geographical regions; however, its expression is variable across species, populations, and individuals, suggesting that trade-offs are at play. Whereas hibernation reduces energy expenditure, energetically expensive arousals may impose physiological burdens. The torpor optimization hypothesis posits that hibernation should be expressed according to energy availability. The greater the energy surplus, the lower the hibernation output. The thrifty female hypothesis, a variation of the torpor optimization hypothesis, states that females should conserve more energy because of their more substantial reproductive costs. Contrarily, if hibernation's benefits offset its costs, hibernation may be maximized rather than optimized (e.g., hibernators with greater fat reserves could afford to hibernate longer). We assessed torpor expression in captive dwarf lemurs, primates that are obligate, seasonal, and tropical hibernators. Across 4.5 mo in winter, we subjected eight individuals at the Duke Lemur Center to conditions conducive to hibernation, recorded estimates of skin temperature hourly (a proxy for torpor), and determined body mass and tail fat reserves bimonthly. Across and between consecutive weigh-ins, heavier dwarf lemurs spent less time in torpor and lost more body mass. At equivalent body mass, females spent more time torpid and better conserved energy than did males. Although preliminary, our results support the torpor optimization and thrifty female hypotheses, suggesting that individuals optimize rather than maximize torpor according to body mass. These patterns are consistent with hibernation phenology in Madagascar, where dwarf lemurs hibernate longer in more seasonal habitats.
Collapse
|
13
|
MicroRNA Cues from Nature: A Roadmap to Decipher and Combat Challenges in Human Health and Disease? Cells 2021; 10:cells10123374. [PMID: 34943882 PMCID: PMC8699674 DOI: 10.3390/cells10123374] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are small non-coding RNA (18–24 nt long) that fine-tune gene expression at the post-transcriptional level. With the advent of “multi-omics” analysis and sequencing approaches, they have now been implicated in every facet of basic molecular networks, including metabolism, homeostasis, and cell survival to aid cellular machinery in adapting to changing environmental cues. Many animals must endure harsh environmental conditions in nature, including cold/freezing temperatures, oxygen limitation (anoxia/hypoxia), and food or water scarcity, often requiring them to revamp their metabolic organization, frequently on a seasonal or life stage basis. MicroRNAs are important regulatory molecules in such processes, just as they are now well-known to be involved in many human responses to stress or disease. The present review outlines the role of miRNAs in natural animal models of environmental stress and adaptation including torpor/hibernation, anoxia/hypoxia tolerance, and freeze tolerance. We also discuss putative medical applications of advances in miRNA biology including organ preservation for transplant, inflammation, ageing, metabolic disorders (e.g., obesity), mitochondrial dysfunction (mitoMirs) as well as specialized miRNA subgroups respective to low temperature (CryomiRs) and low oxygen (OxymiRs). The review also covers differential regulation of conserved and novel miRNAs involved at cell, tissue, and stress specific levels across multiple species and their roles in survival. Ultimately, the species-specific comparison and conserved miRNA responses seen in evolutionarily disparate animal species can help us to understand the complex miRNA network involved in regulating and reorganizing metabolism to achieve diverse outcomes, not just in nature, but in human health and disease.
Collapse
|
14
|
Saleem R, Al-Attar R, Storey KB. The Activation of Prosurvival Pathways in Myotis lucifugus during Torpor. Physiol Biochem Zool 2021; 94:180-187. [PMID: 33835909 DOI: 10.1086/714219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractHibernation is a strategy used by some mammals to survive harsh winter conditions. Many small mammals, such as the little brown bat, Myotis lucifugus, enter a long-term state of hibernation characterized by a period of deep torpor that can range from days to weeks. Torpid bats undergo metabolic rate depression that not only results in physiological changes but also promotes biochemical changes that favor survival. The present study utilizes multiplex technology to assess key early apoptosis markers and a select group of antioxidant enzymes in muscle, heart, and liver in euthermic controls and torpid bats. Muscle showed a significant decrease in the proapoptotic c-Jun N-terminal kinase and p53 and the antioxidant enzyme catalase but a significant increase in peroxiredoxin 2 levels. The heart responded similarly, with most proapoptotic proteins (caspase 8/9 and p53) remaining at low levels, while the antiapoptotic Bcl-2 protein significantly increased during torpor. There was no significant change in the antioxidant enzymes measured during torpor in the heart compared with the controls. The liver showed increases in catalase and Mn superoxide dismutase 2 enzymes during torpor, which correlated with activation of select antiapoptotic proteins and suppression of levels of proapoptotic ones. Overall, our data demonstrate that antiapoptotic and antioxidant defense responses have organ-specific regulation during torpor in bats. The induction of key antioxidant enzymes and antiapoptotic proteins may function as protective mechanisms that are necessary for surviving torpor.
Collapse
|
15
|
Dias IB, Bouma HR, Henning RH. Unraveling the Big Sleep: Molecular Aspects of Stem Cell Dormancy and Hibernation. Front Physiol 2021; 12:624950. [PMID: 33867999 PMCID: PMC8047423 DOI: 10.3389/fphys.2021.624950] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Tissue-resident stem cells may enter a dormant state, also known as quiescence, which allows them to withstand metabolic stress and unfavorable conditions. Similarly, hibernating mammals can also enter a state of dormancy used to evade hostile circumstances, such as food shortage and low ambient temperatures. In hibernation, the dormant state of the individual and its cells is commonly known as torpor, and is characterized by metabolic suppression in individual cells. Given that both conditions represent cell survival strategies, we here compare the molecular aspects of cellular quiescence, particularly of well-studied hematopoietic stem cells, and torpor at the cellular level. Critical processes of dormancy are reviewed, including the suppression of the cell cycle, changes in metabolic characteristics, and cellular mechanisms of dealing with damage. Key factors shared by hematopoietic stem cell quiescence and torpor include a reversible activation of factors inhibiting the cell cycle, a shift in metabolism from glucose to fatty acid oxidation, downregulation of mitochondrial activity, key changes in hypoxia-inducible factor one alpha (HIF-1α), mTOR, reversible protein phosphorylation and autophagy, and increased radiation resistance. This similarity is remarkable in view of the difference in cell populations, as stem cell quiescence regards proliferating cells, while torpor mainly involves terminally differentiated cells. A future perspective is provided how to advance our understanding of the crucial pathways that allow stem cells and hibernating animals to engage in their 'great slumbers.'
Collapse
Affiliation(s)
- Itamar B. Dias
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hjalmar R. Bouma
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
16
|
Bertile F, Habold C, Le Maho Y, Giroud S. Body Protein Sparing in Hibernators: A Source for Biomedical Innovation. Front Physiol 2021; 12:634953. [PMID: 33679446 PMCID: PMC7930392 DOI: 10.3389/fphys.2021.634953] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Proteins are not only the major structural components of living cells but also ensure essential physiological functions within the organism. Any change in protein abundance and/or structure is at risk for the proper body functioning and/or survival of organisms. Death following starvation is attributed to a loss of about half of total body proteins, and body protein loss induced by muscle disuse is responsible for major metabolic disorders in immobilized patients, and sedentary or elderly people. Basic knowledge of the molecular and cellular mechanisms that control proteostasis is continuously growing. Yet, finding and developing efficient treatments to limit body/muscle protein loss in humans remain a medical challenge, physical exercise and nutritional programs managing to only partially compensate for it. This is notably a major challenge for the treatment of obesity, where therapies should promote fat loss while preserving body proteins. In this context, hibernating species preserve their lean body mass, including muscles, despite total physical inactivity and low energy consumption during torpor, a state of drastic reduction in metabolic rate associated with a more or less pronounced hypothermia. The present review introduces metabolic, physiological, and behavioral adaptations, e.g., energetics, body temperature, and nutrition, of the torpor or hibernation phenotype from small to large mammals. Hibernating strategies could be linked to allometry aspects, the need for periodic rewarming from torpor, and/or the ability of animals to fast for more or less time, thus determining the capacity of individuals to save proteins. Both fat- and food-storing hibernators rely mostly on their body fat reserves during the torpid state, while minimizing body protein utilization. A number of them may also replenish lost proteins during arousals by consuming food. The review takes stock of the physiological, molecular, and cellular mechanisms that promote body protein and muscle sparing during the inactive state of hibernation. Finally, the review outlines how the detailed understanding of these mechanisms at play in various hibernators is expected to provide innovative solutions to fight human muscle atrophy, to better help the management of obese patients, or to improve the ex vivo preservation of organs.
Collapse
Affiliation(s)
- Fabrice Bertile
- University of Strasbourg, CNRS, IPHC UMR 7178, Laboratoire de Spectrométrie de Masse Bio-Organique, Strasbourg, France
| | - Caroline Habold
- University of Strasbourg, CNRS, IPHC UMR 7178, Ecology, Physiology & Ethology Department, Strasbourg, France
| | - Yvon Le Maho
- University of Strasbourg, CNRS, IPHC UMR 7178, Ecology, Physiology & Ethology Department, Strasbourg, France
- Centre Scientifique de Monaco, Monaco, Monaco
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
17
|
Al-Attar R, Storey KB. RAGE against the stress: Mitochondrial suppression in hypometabolic hearts. Gene 2020; 761:145039. [PMID: 32777527 DOI: 10.1016/j.gene.2020.145039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/19/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022]
Abstract
The wood frog (Rana sylvatica) can tolerate full body freezing in winter. As a protective response, wood frogs dehydrate their cells and accumulate large quantities of glucose as an intracellular cryoprotectant. Freezing causes ischemia since blood delivery to organs is interrupted. Fascinatingly, wood frogs can tolerate dehydration, extreme hyperglycemia, and anoxia independently of freezing. In response to low oxygen levels, wood frogs strategically reduce their metabolic rates and allocate the finite amount of intracellular fuel available to pro-survival processes while reducing or interrupting all others. In this study, the involvement of advanced glycation end products (AGEs) and the high mobility group box 1 (HMGB1) protein in activating RAGE (AGE receptor) were investigated. The results show that freezing, anoxia and dehydration induced the expression of total HMGB1 and its acetylation in the heart. RAGE levels were induced in response to all stress conditions, which resulted in differential regulation of the ETS1 transcription factor. While the nuclear localization of total ETS1 was not affected, the DNA binding activity of total and its active form increased in response to freezing and dehydration but not in response to anoxia. Current results indicate that ETS1 acts as a transcriptional activator for peroxiredoxin 1 in response to freezing but acts as a transcriptional repressor of several nuclear-encoded mitochondrial genes in response to all stresses. Altogether, current results show that the HMGB1/RAGE axis may activate ETS1 and that this activation could result in both transcriptional activation and/or repression in a stress-dependent manner.
Collapse
Affiliation(s)
- Rasha Al-Attar
- Institude of Biochemistry and Department of Biology, Carleton University, Ottawa, ON K1S-5B6, Canada
| | - Kenneth B Storey
- Institude of Biochemistry and Department of Biology, Carleton University, Ottawa, ON K1S-5B6, Canada.
| |
Collapse
|
18
|
Seo AY, Speakman JR, Selman C. Metabolic rate through the life-course: From the organism to the organelle. Exp Gerontol 2020; 140:111059. [PMID: 32853835 DOI: 10.1016/j.exger.2020.111059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Arnold Y Seo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - John R Speakman
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Shenzhen, China; Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
19
|
Abstract
For centuries, people believed that bats possessed sinister powers. Bats are thought to be ancestral hosts to many deadly viruses affecting humans including Ebola, rabies, and most recently SARS-CoV-2 coronavirus. However, bats themselves tolerate these viruses without ill effects. The second power that bats have is their longevity. Bats live much longer than similar-sized land mammals. Here we review how bats' ability to control inflammation may be contributing to their longevity. The underlying mechanisms may hold clues to developing new treatments for age-related diseases. Now may be the time to use science to exploit the secret powers of bats for human benefit.
Collapse
Affiliation(s)
- Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY 14627, USA.
| | - Andrei Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, NY 14627, USA
| | - Brian K Kennedy
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore; Centre for Healthy Longevity, National University Health System, Singapore 117609, Singapore; Singapore Institute of Clinical Sciences, A(∗)STAR, Singapore 117609, Singapore.
| |
Collapse
|