1
|
Zhang Y, Luo C, Huang P, Cheng Y, Ma Y, Gao J, Ding H. Luteolin alleviates muscle atrophy, mitochondrial dysfunction and abnormal FNDC5 expression in high fat diet-induced obese rats and palmitic acid-treated C2C12 myotubes. J Nutr Biochem 2025; 135:109780. [PMID: 39395694 DOI: 10.1016/j.jnutbio.2024.109780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
Obesity is associated with a series of skeletal muscle impairments and dysfunctions, which are characterized by metabolic disturbances and muscle atrophy. Luteolin is a phenolic phytochemical with broad pharmacological activities. The present study aimed to evaluate the protective effects of Luteolin on muscle function and explore the potential mechanisms in high-fat diet (HFD)-induced obese rats and palmitic acid (PA)-treated C2C12 myotubes. Male Sprague-Dawley (SD) rats were fed with a control diet or HFD and orally administrated 0.5% sodium carboxymethyl cellulose (vehicle) or Luteolin (25, 50, and 100 mg/kg, respectively) for 12 weeks. The results showed that Luteolin ameliorated HFD-induced body weight gain, glucose intolerance and hyperlipidemia. Luteolin also alleviated muscle atrophy, decreased ectopic lipid deposition and prompted muscle-fiber-type conversion in the skeletal muscle. Meanwhile, we observed an evident improvement in mitochondrial quality control and respiratory capacity, accompanied by reduced oxidative stress. Mechanistic studies indicated that AMPK/SIRT1/PGC-1α signaling pathway plays a key role in the protective effects of Luteolin on skeletal muscle in the obese states, which was further verified by using specific inhibitors of AMPK and SIRT1. Moreover, the mRNA expression levels of markers in brown adipocyte formation were significantly up-regulated post Luteolin supplementation in different adipose depots. Taken together, these results revealed that Luteolin supplementation might be a promising strategy to prevent obesity-induced loss of mass and biological dysfunctions of skeletal muscle.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Department of Pharmaceutical Science, Wuhan University, Wuhan 430000, China
| | - Chunyun Luo
- Department of Pharmaceutical Science, Wuhan University, Wuhan 430000, China
| | - Puxin Huang
- Department of Pharmaceutical Science, Wuhan University, Wuhan 430000, China
| | - Yahong Cheng
- Department of Pharmaceutical Science, Wuhan University, Wuhan 430000, China
| | - Yufang Ma
- Department of Pharmaceutical Science, Wuhan University, Wuhan 430000, China
| | - Jiefang Gao
- Department of Pharmaceutical Science, Wuhan University, Wuhan 430000, China
| | - Hong Ding
- Department of Pharmaceutical Science, Wuhan University, Wuhan 430000, China.
| |
Collapse
|
2
|
Wang B, Xu H, Shang S, Liu L, Sun C, Du W. Irisin improves ROS‑induced mitohormesis imbalance in H9c2 cells. Mol Med Rep 2024; 30:240. [PMID: 39422020 PMCID: PMC11544398 DOI: 10.3892/mmr.2024.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Abnormal mitohormesis is a key pathogenic mechanism that induces a variety of cardiac diseases, including cardiac hypertrophy and heart failure. Irisin as a muscle factor serves a cardioprotective role in response to cellular oxidative stress injury. Rat cardiomyocyte cells (H9c2) were treated with 40 µM exogenous H2O2 to establish an oxidative stress model, followed by addition of 75 nM exogenous irisin for experiments to determine mitochondrial membrane potential, reactive oxygen species, and Mitohormesis‑related factors by attrition cytometry. Subsequently, the expression of mitochondrial membrane potential, reactive oxygen species and Mitohormesis‑related factors were continued to be determined by establishing a peroxisome proliferator‑activated receptor γ coactivator‑1 alpha (PGC‑1α) siRNA interference model and continuing the treatment with the addition of 75 nM irisin 12 h before the end of interference. When H9c2 cells underwent oxidative stress, irisin partially improved mitochondrial membrane potential and reactive oxygen species levels and partially restored mitochondrial energy metabolism by upregulating fusion proteins optic atrophy 1 (OPA1) mitochondrial dynamin‑like GTPase and mitofusin 2 and downregulating fission protein dynamin‑related protein 1. Following interference with PGC‑1α, irisin promoted mitochondrial biosynthesis by increasing the mRNA levels of OPA1 and protein levels of cytochrome c oxidase subunit 4. These results suggested that irisin acted partially independently of the PGC‑1α signaling pathway to regulate mitohormesis imbalance due to oxidative stress and maintain energy metabolism by improving mitochondrial structure.
Collapse
Affiliation(s)
- Baogui Wang
- School of Healthy Aging, Shandong Women's University, Jinan, Shandong 250000, P.R. China
- Department of Biological and Environmental Engineering, Binzhou University, Binzhou, Shandong 256600, P.R. China
| | - Haibo Xu
- School of Healthy Aging, Shandong Women's University, Jinan, Shandong 250000, P.R. China
- Sports and Human Sciences Major, Department of Physical Education, Binzhou University, Binzhou, Shandong 256600, P.R. China
| | - Shuai Shang
- Department of Biological and Environmental Engineering, Binzhou University, Binzhou, Shandong 256600, P.R. China
| | - Longxiang Liu
- Department of Biological and Environmental Engineering, Binzhou University, Binzhou, Shandong 256600, P.R. China
| | - Chunlong Sun
- Department of Biological and Environmental Engineering, Binzhou University, Binzhou, Shandong 256600, P.R. China
| | - Wen Du
- Department of Biological and Environmental Engineering, Binzhou University, Binzhou, Shandong 256600, P.R. China
| |
Collapse
|
3
|
Duan Z, Yang Y, Qin M, Yi X. Interleukin 15: A new intermediary in the effects of exercise and training on skeletal muscle and bone function. J Cell Mol Med 2024; 28:e70136. [PMID: 39601091 PMCID: PMC11599876 DOI: 10.1111/jcmm.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 11/29/2024] Open
Abstract
Interleukin-15 (IL-15), a pro-inflammatory cytokine, is produced mainly by skeletal muscle cells, macrophages and epithelial cells. Recent research has demonstrated that IL-15 is closely related to the functions of bone and skeletal muscle in the locomotor system. There is growing evidence that exercise, an important means to regulate the immune and locomotor systems, influences IL-15 content in various tissues, thereby indirectly affecting the function of bones and muscles. Furthermore, the form, intensity, and duration of exercise determine the degree of change in IL-15 and downstream effects. This paper reviews the structure, synthesis and secretion of IL-15, the role of IL-15 in regulating the metabolism of bone tissue cells and myofibers through binding to the IL-15 receptor-α (IL-15Rα), and the response of IL-15 to different types of exercise. This review provides a reference for further analyses of the role and mechanism of action of IL-15 in the regulation of metabolism during exercise.
Collapse
Affiliation(s)
- Ziqiang Duan
- School of Sports HealthShenyang Sport UniversityShenyangChina
| | - Yang Yang
- School of KinesiologyShanghai University of SportShanghaiChina
| | - Mianhong Qin
- School of Sports HealthShenyang Sport UniversityShenyangChina
| | - Xuejie Yi
- Social Science Research CenterShenyang Sport UniversityShenyangChina
| |
Collapse
|
4
|
Yang R, Zhang X, Chen C, Li Y, Yin J. From Lawn to Health: Understanding the Prostate Cancer Risk in Light DIY Activities. Am J Mens Health 2024; 18:15579883241287386. [PMID: 39397489 PMCID: PMC11526161 DOI: 10.1177/15579883241287386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
This study employs two-sample Mendelian Randomization (MR) analysis to investigate the causal relationship between light DIY activities and prostate cancer. We used single nucleotide polymorphisms (SNPs) associated with light DIY activities obtained from published genome-wide association studies (GWASs) and summary-level genetic data related to prostate cancer from published GWAS. The primary analysis was conducted using the inverse-variance weighted (IVW) method for two-sample MR analysis. Cochran's Q statistic was used to assess heterogeneity, MR-Egger was employed to detect horizontal pleiotropy, and "leave-one-out" analysis was performed for sensitivity analysis. Given the presence of heterogeneity, the random-effects IVW method was used for the primary analysis. The random-effects IVW results indicated a positive causal relationship between participation in light DIY activities and the risk of prostate cancer (odds ratio [OR] = 1.024, 95% confidence interval [CI]: 1.001-1.048; p = .039). The weighted median (WM) method results supported this finding (OR = 1.025, 95% CI: 1.003-1.048; p = .024). Participation in light DIY activities may slightly increase the risk of prostate cancer. This finding emphasizes the need to carefully consider the types and intensities of physical activities when making public health recommendations and personal lifestyle choices.
Collapse
Affiliation(s)
- Rui Yang
- Capital University of Physical Education and Sports, Beijing, China
| | - Xiguang Zhang
- China Athletics College, Beijing Sport University, Beijing, China
| | - Chen Chen
- Luoyang Vocational College of Culture and Tourism, Luoyang, China
| | - Ya Li
- Suzhou City College, Suzhou, China
| | - Jun Yin
- Capital University of Physical Education and Sports, Beijing, China
| |
Collapse
|
5
|
Kim R, Byun K, Jeon B. Importance of physical exercise for combatting sarcopenia in patients with Parkinson's disease: What is the next step? Parkinsonism Relat Disord 2024; 126:107068. [PMID: 39048420 DOI: 10.1016/j.parkreldis.2024.107068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Affiliation(s)
- Ryul Kim
- Department of Neurology, Seoul Metropolitan Government - Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea.
| | - Kyeongho Byun
- Division of Sport Science, Sport Science Institute & Health Promotion Center, Incheon National University, Incheon, South Korea.
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
6
|
Fusagawa H, Sato T, Yamada T, Naito A, Tokuda N, Yamauchi N, Ichise N, Ogawa T, Karaushi T, Teramoto A, Tohse N. High-intensity interval training using electrical stimulation ameliorates muscle fatigue in chronic kidney disease-related cachexia by restoring mitochondrial respiratory dysfunction. Front Physiol 2024; 15:1423504. [PMID: 38989049 PMCID: PMC11233723 DOI: 10.3389/fphys.2024.1423504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Background Exercise, especially high-intensity interval training (HIIT), can increase mitochondrial respiratory capacity and enhance muscular endurance, but its systemic burden makes it difficult to safely and continuously prescribe for patients with chronic kidney disease (CKD)-related cachexia who are in poor general condition. In this study, we examined whether HIIT using electrical stimulation (ES), which does not require whole-body exercise, improves muscle endurance in the skeletal muscle of 5/6 nephrectomized rats, a widely used animal model for CKD-related cachexia. Methods Male Wistar rats (10 weeks old) were randomly assigned to a group of sham-operated (Sham) rats and a group of 5/6 nephrectomy (Nx) rats. HIIT was performed on plantar flexor muscles in vivo with supramaximal ES every other day for 4 weeks to assess muscle endurance, myosin heavy-chain isoforms, and mitochondrial respiratory function in Nx rats. A single session was also performed to identify upstream signaling pathways altered by HIIT using ES. Results In the non-trained plantar flexor muscles from Nx rats, the muscle endurance was significantly lower than that in plantar flexor muscles from Sham rats. The proportion of myosin heavy chain IIa/x, mitochondrial content, mitochondrial respiratory capacity, and formation of mitochondrial respiratory supercomplexes in the plantaris muscle were also significantly decreased in the non-trained plantar flexor muscles from Nx rats than compared to those in plantar flexor muscles from Sham rats. Treatment with HIIT using ES for Nx rats significantly improved these molecular and functional changes to the same degrees as those in Sham rats. Furthermore, a single session of HIIT with ES significantly increased the phosphorylation levels of AMP-activated protein kinase (AMPK) and p38 mitogen-activated protein kinase (MAPK), pathways that are essential for mitochondrial activation signaling by exercise, in the plantar muscles of both Nx and Sham rats. Conclusion The findings suggest that HIIT using ES ameliorates muscle fatigue in Nx rats via restoration of mitochondrial respiratory dysfunction with activation of AMPK and p38 MAPK signaling. Our ES-based HIIT protocol can be performed without placing a burden on the whole body and be a promising intervention that is implemented even in conditions of reduced general performance status such as CKD-related cachexia.
Collapse
Affiliation(s)
- Hiroyori Fusagawa
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tatsuya Sato
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Azuma Naito
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Nao Tokuda
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Nao Yamauchi
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Nobutoshi Ichise
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshifumi Ogawa
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takuro Karaushi
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Teramoto
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noritsugu Tohse
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
7
|
Wang Z, Wang J. The effects of high-intensity interval training versus moderate-intensity continuous training on athletes' aerobic endurance performance parameters. Eur J Appl Physiol 2024:10.1007/s00421-024-05532-0. [PMID: 38904772 DOI: 10.1007/s00421-024-05532-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVE To systematically evaluate and meta-analyze the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on athletes of aerobic endurance performance parameters. METHODS PubMed, Web of Science, EBSCO, Embase, and Cochrane databases were searched. The assessment of quality was conducted employing The Cochrane Risk of Bias Assessment Tool, while heterogeneity examination and subgroup analysis were performed. Moreover, regression and sensitivity analyses were executed. RESULTS There was no significant difference between the effects of HIIT and MICT on the enhancement of athletes' running economy (RE) (P > 0.05); 1-3 weeks and 4-9 weeks of HIIT were more effective in improving athletes' maximum oxygen uptake (VO2max) (P < 0.05), and 10 weeks and above were not significant (P > 0.05); 1-3 weeks of HIIT was more effective in improving athletes' anaerobic threshold (AT) (P < 0.05), and 4-10 weeks was not significant (P > 0.05); 3 weeks of high-intensity interval training (HIIT) did not significantly enhance athletes' minute ventilation (VE) (P > 0.05), whereas a duration of 6-10 weeks yielded superior results (P < 0.05); 8 weeks of moderate-intensity continuous training (MICT) did not significantly enhance athletes' hemoglobin (Hb) level (P > 0.05), whereas a duration of 2-3 weeks yielded superior results (P < 0.05). CONCLUSIONS (1) HIIT and MICT have similar effects on enhancing athletes' RE. (2) 6-9 weeks' HIIT was more effective in improving athletes' VO2max and VE, and 3 weeks' HIIT was more effective in improving athletes' AT. (3) Within 3 weeks, MICT was more effective in improving the Hb level of athletes. REGISTRATION NUMBER ON PROSPERO CRD42024499039.
Collapse
Affiliation(s)
- Ziyi Wang
- College of Human Sport Science, Beijing Sport University, No.48, Shangdi Rd, Beijing, 100084, China
| | - Jun Wang
- College of Human Sport Science, Beijing Sport University, No.48, Shangdi Rd, Beijing, 100084, China.
| |
Collapse
|
8
|
Tang S, Geng Y, Lin Q. The role of mitophagy in metabolic diseases and its exercise intervention. Front Physiol 2024; 15:1339128. [PMID: 38348222 PMCID: PMC10859464 DOI: 10.3389/fphys.2024.1339128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Mitochondria are energy factories that sustain life activities in the body, and their dysfunction can cause various metabolic diseases that threaten human health. Mitophagy, an essential intracellular mitochondrial quality control mechanism, can maintain cellular and metabolic homeostasis by removing damaged mitochondria and participating in developing metabolic diseases. Research has confirmed that exercise can regulate mitophagy levels, thereby exerting protective metabolic effects in metabolic diseases. This article reviews the role of mitophagy in metabolic diseases, the effects of exercise on mitophagy, and the potential mechanisms of exercise-regulated mitophagy intervention in metabolic diseases, providing new insights for future basic and clinical research on exercise interventions to prevent and treat metabolic diseases.
Collapse
Affiliation(s)
| | | | - Qinqin Lin
- School of Physical Education, Yanshan University, Qinhuangdao, China
| |
Collapse
|
9
|
Wang Y, Wang M, Wang Y. Irisin: A Potentially Fresh Insight into the Molecular Mechanisms Underlying Vascular Aging. Aging Dis 2023; 15:2491-2506. [PMID: 38029393 PMCID: PMC11567262 DOI: 10.14336/ad.2023.1112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023] Open
Abstract
Aging is a natural process that affects all living organisms, including humans. Aging is a complex process that involves the gradual deterioration of various biological processes and systems, including the cardiovascular system. Vascular aging refers to age-related changes in blood vessels. These changes can increase the risk of developing cardiovascular diseases, such as hypertension, atherosclerosis, and stroke. Recently, an exercise-induced muscle factor, irisin, was found to directly improve metabolism and regulate the balance of glucolipid metabolism, thereby counteracting obesity and insulin resistance. Based on a growing body of evidence, irisin modulates vascular aging. Adenosine monophosphate-activated protein kinase (AMPK) serves as a pivotal cellular energy sensor and metabolic modulator, acting as a central signaling cascade to coordinate various cellular processes necessary for maintaining vascular homeostasis. The vascular regulatory effects of irisin are closely intertwined with its interaction with the AMPK pathway. In conclusion, understanding the molecular processes used by irisin to regulate changes in vascular diseases caused by aging may inspire the development of techniques that promote healthy vascular aging. This review sought to describe the impact of irisin on the molecular mechanisms of vascular aging, including inflammation, oxidative stress, and epigenetics, from the perspective of endothelial cell function and vascular macroregulation, and summarize the multiple signaling pathways used by irisin to regulate vascular aging.
Collapse
Affiliation(s)
- Yinghui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Manying Wang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China.
| | - Yuehui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
10
|
Hua X, Hou M, Deng L, Lv N, Xu Y, Zhu X, Yang H, Shi Q, Liu H, He F. Irisin-loaded electrospun core-shell nanofibers as calvarial periosteum accelerate vascularized bone regeneration by activating the mitochondrial SIRT3 pathway. Regen Biomater 2023; 11:rbad096. [PMID: 38173773 PMCID: PMC10761201 DOI: 10.1093/rb/rbad096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/12/2023] [Accepted: 10/28/2023] [Indexed: 01/05/2024] Open
Abstract
The scarcity of native periosteum poses a significant clinical barrier in the repair of critical-sized bone defects. The challenge of enhancing regenerative potential in bone healing is further compounded by oxidative stress at the fracture site. However, the introduction of artificial periosteum has demonstrated its ability to promote bone regeneration through the provision of appropriate mechanical support and controlled release of pro-osteogenic factors. In this study, a poly (l-lactic acid) (PLLA)/hyaluronic acid (HA)-based nanofibrous membrane was fabricated using the coaxial electrospinning technique. The incorporation of irisin into the core-shell structure of PLLA/HA nanofibers (PLLA/HA@Irisin) achieved its sustained release. In vitro experiments demonstrated that the PLLA/HA@Irisin membranes exhibited favorable biocompatibility. The osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs) was improved by PLLA/HA@Irisin, as evidenced by a significant increase in alkaline phosphatase activity and matrix mineralization. Mechanistically, PLLA/HA@Irisin significantly enhanced the mitochondrial function of BMMSCs via the activation of the sirtuin 3 antioxidant pathway. To assess the therapeutic effectiveness, PLLA/HA@Irisin membranes were implanted in situ into critical-sized calvarial defects in rats. The results at 4 and 8 weeks post-surgery indicated that the implantation of PLLA/HA@Irisin exhibited superior efficacy in promoting vascularized bone formation, as demonstrated by the enhancement of bone matrix synthesis and the development of new blood vessels. The results of our study indicate that the electrospun PLLA/HA@Irisin nanofibers possess characteristics of a biomimetic periosteum, showing potential for effectively treating critical-sized bone defects by improving the mitochondrial function and maintaining redox homeostasis of BMMSCs.
Collapse
Affiliation(s)
- Xi Hua
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
- Department of Orthopedics, Suzhou Wuzhong People’s Hospital, Suzhou, Jiangsu Province 215128, China
| | - Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Lei Deng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Nanning Lv
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
- Department of Orthopedic Surgery, Lianyungang Clinical College of Xuzhou Medical University, Lianyungang 222003, China
| | - Yong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Qin Shi
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Hao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| |
Collapse
|
11
|
Zhu Y, Zhou X, Zhu A, Xiong S, Xie J, Bai Z. Advances in exercise to alleviate sarcopenia in older adults by improving mitochondrial dysfunction. Front Physiol 2023; 14:1196426. [PMID: 37476691 PMCID: PMC10355810 DOI: 10.3389/fphys.2023.1196426] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
Sarcopenia is a chronic degenerative disease affecting primarily older adults. A growing aging population is gradually increasing the number of patients suffering from sarcopenia, placing increasing financial pressure on patients' families and society in general. There is a strong link between mitochondrial dysfunction and sarcopenia pathogenesis. As a result, treating sarcopenia by improving mitochondrial dysfunction is an effective strategy. Numerous studies have demonstrated that exercise has a positive effect on mitochondrial dysfunction when treating sarcopenia. Exercise promotes mitochondrial biogenesis and mitochondrial fusion/division to add new mitochondria or improve dysfunctional mitochondria while maintaining mitochondrial calcium homeostasis, mitochondrial antioxidant defense system, and mitochondrial autophagy to promote normal mitochondrial function. Furthermore, exercise can reduce mitochondrial damage caused by aging by inhibiting mitochondrial oxidative stress, mitochondrial DNA damage, and mitochondrial apoptosis. Exercise effectiveness depends on several factors, including exercise duration, exercise intensity, and exercise form. Therefore, Moderate-intensity exercise over 4 weeks potentially mitigates sarcopenia in older adults by ameliorating mitochondrial dysfunction. HIIT has demonstrated potential as a viable approach to addressing sarcopenia in aged rats. However, further investigation is required to validate its efficacy in treating sarcopenia in older adults.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenmin Bai
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
12
|
Ni PS, Ma S, Wang ZZ, He JH, Zhang CK, Li BM, Yu XM, Li FH. Indirect regulation of HIPPO pathway by miRNA mediates high-intensity intermittent exercise to ameliorate aging skeletal muscle function. Scand J Med Sci Sports 2023; 33:834-847. [PMID: 36789636 DOI: 10.1111/sms.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
Exercise-induced microRNA (miRNA) and HIPPO pathways participate in the regulation of skeletal muscle plasticity but their underlying mechanisms remain unclear. We aimed to investigate the effect of high-intensity interval training (HIIT) on miRNA expression and the HIPPO pathway in the skeletal muscle of aging rats to determine its role in the amelioration of muscle aging. Thirty-six 18-month-old female rats were randomly divided into sedentary control (SED, n = 12), moderate-intensity continuous training (MICT, n = 12), and HIIT (n = 12) groups, with continuous exercise for 8 months. Quantitative reverse transcription-polymerase chain reaction, immunoblotting, KEGG enrichment, and dual-luciferase assays were performed on the target skeletal muscle. Compared with the SED group, the MICT and HIIT groups showed a significant trend of improvement in Lee's index and grip strength and a marked increase in skeletal muscle mitochondrial function, apoptosis, antioxidant, and lipolysis-related protein expression. They also exhibited PI3K/AKT pathway activation and a decrease in expression of HIPPO pathway-related proteins; 20 miRNAs were differentially expressed and enriched in the exercise group compared with the SED group, including the HIPPO pathway and metabolic pathways. Further analysis of L6 cells confirmed that miR-182 may target PTEN, which indirectly regulates HIPPO signaling, but not Mob1. the combined application of HIIT and MICT increased the antioxidant and lipolytic capacities of skeletal muscle and improved atrophy of aging skeletal muscle; HIIT was more effective than MICT. This may be related to HIIT-mediated AKT pathway activation and HIPPO pathway inhibition by miRNAs (miR-486 and miR-182).
Collapse
Affiliation(s)
- Pin-Shi Ni
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Song Ma
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Zhuang-Zhi Wang
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Jia-Han He
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Chen-Kai Zhang
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Bo-Ming Li
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Xiao-Ming Yu
- Shanghai Seventh People's Hospital, Shanghai, China
| | - Fang-Hui Li
- School of Sport Sciences, Nanjing Normal University, Nanjing, China.,School of Sport Sciences, Zhaoqing University, Zhaoqing, China
| |
Collapse
|
13
|
Fang P, She Y, Yu M, Min W, Shang W, Zhang Z. Adipose-Muscle crosstalk in age-related metabolic disorders: The emerging roles of adipo-myokines. Ageing Res Rev 2023; 84:101829. [PMID: 36563906 DOI: 10.1016/j.arr.2022.101829] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Obesity and type 2 diabetes account for a considerable proportion of the global burden of age-related metabolic diseases. In age-related metabolic diseases, tissue crosstalk and metabolic regulation have been primarily linked to endocrine processes. Skeletal muscle and adipose tissue are endocrine organs that release myokines and adipokines into the bloodstream, respectively. These cytokines regulate metabolic responses in a variety of tissues, including skeletal muscle and adipose tissue. However, the intricate mechanisms underlying adipose-muscle crosstalk in age-related metabolic diseases are not fully understood. Recent exciting evidence suggests that myokines act to control adipose tissue functions, including lipolysis, browning, and inflammation, whereas adipokines mediate the beneficial actions of adipose tissue in the muscle, such as glucose uptake and metabolism. In this review, we assess the mechanisms of adipose-muscle crosstalk in age-related disorders and propose that the adipokines adiponectin and spexin, as well as the myokines irisin and interleukin-6 (IL-6), are crucial for maintaining the body's metabolic balance in age-related metabolic disorders. In addition, these changes of adipose-muscle crosstalk in response to exercise or dietary flavonoid consumption are part of the mechanisms of both functions in the remission of age-related metabolic disorders. A better understanding of the intricate relationships between adipose tissue and skeletal muscle could lead to more potent therapeutic approaches to prolong life and prevent age-related metabolic diseases.
Collapse
Affiliation(s)
- Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yuqing She
- Department of Endocrinology, Pukou Branch of Jiangsu People's Hospital, Nanjing 211899, China
| | - Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen Min
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
14
|
Hamasaki H. High-intensity Interval Training in Patients with Type 2 Diabetes: A Perspective from Previous Systematic Reviews. Endocr Metab Immune Disord Drug Targets 2023; 23:1248-1253. [PMID: 37005528 DOI: 10.2174/1871530323666230330124105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 04/04/2023]
|
15
|
Irisin, An Exercise-induced Bioactive Peptide Beneficial for Health Promotion During Aging Process. Ageing Res Rev 2022; 80:101680. [DOI: 10.1016/j.arr.2022.101680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/11/2022]
|
16
|
López-Cervantes SP, Sánchez NS, Calahorra M, Mena-Montes B, Pedraza-Vázquez G, Hernández-Álvarez D, Esparza-Perusquía M, Peña A, López-Díazguerrero NE, Alarcón-Aguilar A, Luna-López A, Flores-Herrera Ó, Königsberg M. Moderate exercise combined with metformin-treatment improves mitochondrial bioenergetics of the quadriceps muscle of old female Wistar rats. Arch Gerontol Geriatr 2022; 102:104717. [DOI: 10.1016/j.archger.2022.104717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 01/03/2023]
|