1
|
Fasouli ES, Katsantoni E. Age-associated myeloid malignancies - the role of STAT3 and STAT5 in myelodysplastic syndrome and acute myeloid leukemia. FEBS Lett 2024. [PMID: 39048534 DOI: 10.1002/1873-3468.14985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
In the last few decades, the increasing human life expectancy has led to the inflation of the elderly population and consequently the escalation of age-related disorders. Biological aging has been associated with the accumulation of somatic mutations in the Hematopoietic Stem Cell (HSC) compartment, providing a fitness advantage to the HSCs leading to clonal hematopoiesis, that includes non-malignant and malignant conditions (i.e. Clonal Hematopoiesis of Indeterminate Potential, Myelodysplastic Syndrome and Acute Myeloid Leukemia). The Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway is a key player in both normal and malignant hematopoiesis. STATs, particularly STAT3 and STAT5, are greatly implicated in normal hematopoiesis, immunity, inflammation, leukemia, and aging. Here, the pleiotropic functions of JAK-STAT pathway in age-associated hematopoietic defects and of STAT3 and STAT5 in normal hematopoiesis, leukemia, and inflammaging are reviewed. Even though great progress has been made in deciphering the role of STATs, further research is required to provide a deeper understanding of the molecular mechanisms of leukemogenesis, as well as novel biomarkers and therapeutic targets for improved management of age-related disorders.
Collapse
Affiliation(s)
- Eirini Sofia Fasouli
- Biomedical Research Foundation, Academy of Athens, Basic Research Center, Athens, Greece
| | - Eleni Katsantoni
- Biomedical Research Foundation, Academy of Athens, Basic Research Center, Athens, Greece
| |
Collapse
|
2
|
Li Y, Seet CS, Mack R, Joshi K, Runde AP, Hagen PA, Barton K, Breslin P, Kini A, Ji HL, Zhang J. Distinct roles of hematopoietic cytokines in the regulation of leukemia stem cells in murine MLL-AF9 leukemia. Stem Cell Reports 2024; 19:100-111. [PMID: 38101400 PMCID: PMC10828676 DOI: 10.1016/j.stemcr.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Lymphoid-primed multipotent progenitor (LMPP)-like and granulocyte-monocyte progenitor (GMP)-like leukemia stem cells (LSCs) co-exist in the blood of most patients with acute myeloid leukemia (AML). Complete elimination of both types of LSCs is required to cure AML. Using an MLL-AF9-induced murine AML model, we studied the role of hematopoietic cytokines in the survival of LMPP- and GMP-like LSCs. We found that SCF or FLT3L promotes the survival of LMPP-like LSCs by stimulating Stat5-mediated Mcl1 expression, whereas interleukin-3 (IL-3) or IL-6 induces the survival of GMP-like LSCs by stimulating Stat3/nuclear factor κB (NF-κB)-mediated Bcl2 expression. Functional study demonstrated that, compared to AML cells cultured in IL-3 and IL-6 medium, AML cells in SCF- or Flt3L-only culture are highly clonogenic in in vitro culture and are highly leukemogenic in vivo. Our study suggests that co-inhibition of both STAT5-MCL1 and STAT3/NF-κB-BCL2 signaling might represent an improved treatment strategy against AML, specifically AML cases with a monocytic phenotype and/or FLT3 mutations.
Collapse
Affiliation(s)
- Yanchun Li
- Blood Disease Laboratory, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710126, P.R. China
| | - Christopher S Seet
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Ryan Mack
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Departments of Cancer Biology and Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Kanak Joshi
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Departments of Cancer Biology and Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Austin P Runde
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Departments of Cancer Biology and Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Patrick A Hagen
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Kevin Barton
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Peter Breslin
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Departments of Biology, Molecular/Cellular Physiology, and Cancer Biology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Ameet Kini
- Department of Pathology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Hong-Long Ji
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA; Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| | - Jiwang Zhang
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Departments of Cancer Biology and Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL 60153, USA; Department of Pathology, Loyola University Medical Center, Maywood, IL 60153, USA.
| |
Collapse
|
3
|
Slepicka PF, Somasundara AVH, Dos Santos CO. The molecular basis of mammary gland development and epithelial differentiation. Semin Cell Dev Biol 2021; 114:93-112. [PMID: 33082117 PMCID: PMC8052380 DOI: 10.1016/j.semcdb.2020.09.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Our understanding of the molecular events underpinning the development of mammalian organ systems has been increasing rapidly in recent years. With the advent of new and improved next-generation sequencing methods, we are now able to dig deeper than ever before into the genomic and epigenomic events that play critical roles in determining the fates of stem and progenitor cells during the development of an embryo into an adult. In this review, we detail and discuss the genes and pathways that are involved in mammary gland development, from embryogenesis, through maturation into an adult gland, to the role of pregnancy signals in directing the terminal maturation of the mammary gland into a milk producing organ that can nurture the offspring. We also provide an overview of the latest research in the single-cell genomics of mammary gland development, which may help us to understand the lineage commitment of mammary stem cells (MaSCs) into luminal or basal epithelial cells that constitute the mammary gland. Finally, we summarize the use of 3D organoid cultures as a model system to study the molecular events during mammary gland development. Our increased investigation of the molecular requirements for normal mammary gland development will advance the discovery of targets to predict breast cancer risk and the development of new breast cancer therapies.
Collapse
Affiliation(s)
- Priscila Ferreira Slepicka
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | - Camila O Dos Santos
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
4
|
Orlova A, Wagner C, de Araujo ED, Bajusz D, Neubauer HA, Herling M, Gunning PT, Keserű GM, Moriggl R. Direct Targeting Options for STAT3 and STAT5 in Cancer. Cancers (Basel) 2019; 11:E1930. [PMID: 31817042 PMCID: PMC6966570 DOI: 10.3390/cancers11121930] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/22/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022] Open
Abstract
Signal transducer and activator of transcription (STAT)3 and STAT5 are important transcription factors that are able to mediate or even drive cancer progression through hyperactivation or gain-of-function mutations. Mutated STAT3 is mainly associated with large granular lymphocytic T-cell leukemia, whereas mutated STAT5B is associated with T-cell prolymphocytic leukemia, T-cell acute lymphoblastic leukemia and γδ T-cell-derived lymphomas. Hyperactive STAT3 and STAT5 are also implicated in various hematopoietic and solid malignancies, such as chronic and acute myeloid leukemia, melanoma or prostate cancer. Classical understanding of STAT functions is linked to their phosphorylated parallel dimer conformation, in which they induce gene transcription. However, the functions of STAT proteins are not limited to their phosphorylated dimerization form. In this review, we discuss the functions and the roles of unphosphorylated STAT3/5 in the context of chromatin remodeling, as well as the impact of STAT5 oligomerization on differential gene expression in hematopoietic neoplasms. The central involvement of STAT3/5 in cancer has made these molecules attractive targets for small-molecule drug development, but currently there are no direct STAT3/5 inhibitors of clinical grade available. We summarize the development of inhibitors against the SH2 domains of STAT3/5 and discuss their applicability as cancer therapeutics.
Collapse
Affiliation(s)
- Anna Orlova
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria; (A.O.); (C.W.); (H.A.N.)
| | - Christina Wagner
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria; (A.O.); (C.W.); (H.A.N.)
| | - Elvin D. de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (E.D.d.A.); (P.T.G.)
- Centre for Medicinal Chemistry, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (D.B.); (G.M.K.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria; (A.O.); (C.W.); (H.A.N.)
| | - Marco Herling
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), and Center for Molecular Medicine Cologne (CMMC), Cologne University, 50937 Cologne, Germany;
| | - Patrick T. Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (E.D.d.A.); (P.T.G.)
- Centre for Medicinal Chemistry, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (D.B.); (G.M.K.)
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria; (A.O.); (C.W.); (H.A.N.)
| |
Collapse
|
5
|
Maurer B, Kollmann S, Pickem J, Hoelbl-Kovacic A, Sexl V. STAT5A and STAT5B-Twins with Different Personalities in Hematopoiesis and Leukemia. Cancers (Basel) 2019; 11:E1726. [PMID: 31690038 PMCID: PMC6895831 DOI: 10.3390/cancers11111726] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022] Open
Abstract
The transcription factors STAT5A and STAT5B have essential roles in survival and proliferation of hematopoietic cells-which have been considered largely redundant. Mutations of upstream kinases, copy number gains, or activating mutations in STAT5A, or more frequently in STAT5B, cause altered hematopoiesis and cancer. Interfering with their activity by pharmacological intervention is an up-and-coming therapeutic avenue. Precision medicine requests detailed knowledge of STAT5A's and STAT5B's individual functions. Recent evidence highlights the privileged role for STAT5B over STAT5A in normal and malignant hematopoiesis. Here, we provide an overview on their individual functions within the hematopoietic system.
Collapse
Affiliation(s)
- Barbara Maurer
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria.
| | - Sebastian Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Judith Pickem
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Andrea Hoelbl-Kovacic
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
6
|
Koblish H, Li YL, Shin N, Hall L, Wang Q, Wang K, Covington M, Marando C, Bowman K, Boer J, Burke K, Wynn R, Margulis A, Reuther GW, Lambert QT, Dostalik Roman V, Zhang K, Feng H, Xue CB, Diamond S, Hollis G, Yeleswaram S, Yao W, Huber R, Vaddi K, Scherle P. Preclinical characterization of INCB053914, a novel pan-PIM kinase inhibitor, alone and in combination with anticancer agents, in models of hematologic malignancies. PLoS One 2018; 13:e0199108. [PMID: 29927999 PMCID: PMC6013247 DOI: 10.1371/journal.pone.0199108] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 12/17/2022] Open
Abstract
The Proviral Integration site of Moloney murine leukemia virus (PIM) serine/threonine protein kinases are overexpressed in many hematologic and solid tumor malignancies and play central roles in intracellular signaling networks important in tumorigenesis, including the Janus kinase-signal transducer and activator of transcription (JAK/STAT) and phosphatidylinositol 3-kinase (PI3K)/AKT pathways. The three PIM kinase isozymes (PIM1, PIM2, and PIM3) share similar downstream substrates with other key oncogenic kinases and have differing but mutually compensatory functions across tumors. This supports the therapeutic potential of pan-PIM kinase inhibitors, especially in combination with other anticancer agents chosen based on their role in overlapping signaling networks. Reported here is a preclinical characterization of INCB053914, a novel, potent, and selective adenosine triphosphate-competitive pan-PIM kinase inhibitor. In vitro, INCB053914 inhibited proliferation and the phosphorylation of downstream substrates in cell lines from multiple hematologic malignancies. Effects were confirmed in primary bone marrow blasts from patients with acute myeloid leukemia treated ex vivo and in blood samples from patients receiving INCB053914 in an ongoing phase 1 dose-escalation study. In vivo, single-agent INCB053914 inhibited Bcl-2-associated death promoter protein phosphorylation and dose-dependently inhibited tumor growth in acute myeloid leukemia and multiple myeloma xenografts. Additive or synergistic inhibition of tumor growth was observed when INCB053914 was combined with selective PI3Kδ inhibition, selective JAK1 or JAK1/2 inhibition, or cytarabine. Based on these data, pan-PIM kinase inhibitors, including INCB053914, may have therapeutic utility in hematologic malignancies when combined with other inhibitors of oncogenic kinases or standard chemotherapeutics.
Collapse
Affiliation(s)
- Holly Koblish
- Incyte Corporation, Wilmington, Delaware, United States of America
- * E-mail:
| | - Yun-long Li
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Niu Shin
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Leslie Hall
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Qian Wang
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Kathy Wang
- Incyte Corporation, Wilmington, Delaware, United States of America
| | | | - Cindy Marando
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Kevin Bowman
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Jason Boer
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Krista Burke
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Richard Wynn
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Alex Margulis
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Gary W. Reuther
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Que T. Lambert
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | | | - Ke Zhang
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Hao Feng
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Chu-Biao Xue
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Sharon Diamond
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Greg Hollis
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Swamy Yeleswaram
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Wenqing Yao
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Reid Huber
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Kris Vaddi
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Peggy Scherle
- Incyte Corporation, Wilmington, Delaware, United States of America
| |
Collapse
|
7
|
Sachs Z, Been RA, DeCoursin KJ, Nguyen HT, Mohd Hassan NA, Noble-Orcutt KE, Eckfeldt CE, Pomeroy EJ, Diaz-Flores E, Geurts JL, Diers MD, Hasz DE, Morgan KJ, MacMillan ML, Shannon KM, Largaespada DA, Wiesner SM. Stat5 is critical for the development and maintenance of myeloproliferative neoplasm initiated by Nf1 deficiency. Haematologica 2016; 101:1190-1199. [PMID: 27418650 DOI: 10.3324/haematol.2015.136002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 06/15/2016] [Indexed: 11/09/2022] Open
Abstract
Juvenile myelomonocytic leukemia is a rare myeloproliferative neoplasm characterized by hyperactive RAS signaling. Neurofibromin1 (encoded by the NF1 gene) is a negative regulator of RAS activation. Patients with neurofibromatosis type 1 harbor loss-of-function mutations in NF1 and have a 200- to 500-fold increased risk of juvenile myelomonocytic leukemia. Leukemia cells from patients with juvenile myelomonocytic leukemia display hypersensitivity to certain cytokines, such as granulocyte-macrophage colony-stimulating factor. The granulocyte-macrophage colony-stimulating factor receptor utilizes pre-associated JAK2 to initiate signals after ligand binding. JAK2 subsequently activates STAT5, among other downstream effectors. Although STAT5 is gaining recognition as an important mediator of growth factor signaling in myeloid leukemias, the contribution of STAT5 to the development of hyperactive RAS-initiated myeloproliferative disease has not been well described. In this study, we investigated the consequence of STAT5 attenuation via genetic and pharmacological approaches in Nf1-deficient murine models of juvenile myelomonocytic leukemia. We found that homozygous Stat5 deficiency extended the lifespan of Nf1-deficient mice and eliminated the development of myeloproliferative neoplasm associated with Nf1 gene loss. Likewise, we found that JAK inhibition with ruxolitinib attenuated myeloproliferative neoplasm in Nf1-deficient mice. Finally, we found that primary cells from a patient with KRAS-mutant juvenile myelomonocytic leukemia displayed reduced colony formation in response to JAK2 inhibition. Our findings establish a central role for STAT5 activation in the pathogenesis of juvenile myelomonocytic leukemia and suggest that targeting this pathway may be of clinical utility in these patients.
Collapse
Affiliation(s)
- Zohar Sachs
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Raha A Been
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA College of Veterinary Medicine and Department of Comparative and Molecular Biosciences, University of Minnesota, St. Paul, MN, USA
| | | | - Hanh T Nguyen
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | - Klara E Noble-Orcutt
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Craig E Eckfeldt
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Emily J Pomeroy
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Ernesto Diaz-Flores
- Department of Pediatrics, University of California, San Francisco, CA, USA Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Jennifer L Geurts
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Miechaleen D Diers
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Diane E Hasz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Kelly J Morgan
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Margaret L MacMillan
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA Blood and Marrow Transplantation Program, University of Minnesota, Minneapolis, MN, USA
| | - Kevin M Shannon
- Department of Pediatrics, University of California, San Francisco, CA, USA Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - David A Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA Blood and Marrow Transplantation Program, University of Minnesota, Minneapolis, MN, USA
| | - Stephen M Wiesner
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA Center for Allied Health Programs, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
8
|
Comparison of Signaling Pathways Gene Expression in CD34(-) Umbilical Cord Blood and Bone Marrow Stem Cells. Stem Cells Int 2016; 2016:5395261. [PMID: 26839563 PMCID: PMC4709787 DOI: 10.1155/2016/5395261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 08/30/2015] [Accepted: 09/16/2015] [Indexed: 12/30/2022] Open
Abstract
The aim of the study was to compare the biological activity of the total pool of genes in CD34− umbilical cord blood and bone marrow stem cells and to search for the differences in signaling pathway gene expression responsible for the biological processes. The introductory analysis revealed a big similarity of gene expression among stem cells. When analyzing GO terms for biological processes, we observed an increased activity of JAK-STAT signaling pathway, calcium-mediated, cytokine-mediated, integrin-mediated signaling pathway, and MAPK in a cluster of upregulating genes in CD34− umbilical cord blood stem cells. At the same time, we observed a decreased activity of BMP signaling pathways, TGF-beta pathway, and VEGF receptor signaling pathway in a cluster of downregulating genes in CD34− umbilical cord blood stem cells. In accordance with KEGG classification, the cytokine-cytokine receptor interaction, toll-like receptor signaling pathway, and JAK-STAT signaling pathway are overrepresented in CD34− umbilical cord blood stem cells. A similar gene expression in both CD34− UCB and BM stem cells was characteristic for such biological processes as cell division, cell cycle gene expression, mitosis, telomere maintenance with telomerase, RNA and DNA treatment processes during cell division, and similar genes activity of Notch and Wnt signaling pathways.
Collapse
|
9
|
Van Etten RA. Insights into the pathophysiology and therapy of myeloproliferative neoplasms from mouse models. Leuk Suppl 2014; 3:S27-8. [PMID: 27175270 DOI: 10.1038/leusup.2014.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- R A Van Etten
- Chao Family Comprehensive Cancer Center, Hematology/Oncology Division, University of California , Irvine, CA, USA
| |
Collapse
|
10
|
Timofeeva OA, Tarasova NI. Alternative ways of modulating JAK-STAT pathway: Looking beyond phosphorylation. JAKSTAT 2014; 1:274-84. [PMID: 24058784 PMCID: PMC3670285 DOI: 10.4161/jkst.22313] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Most attempts to develop inhibitors of STAT transcription factors target either activating phosphorylation of tyrosine residue or SH2 domains. However, all six domains of STATs are highly conserved between the species and play important roles in the function of this family of transcription factors. STATs are involved in numerous protein-protein interactions that are likely to regulate and fine tune transcriptional activity. Targeting these interactions can provide plentiful opportunities for the discovery of novel drug candidates and powerful chemical biology tools. Using N-terminal domains as an example we describe alternative rational approaches to the development of modulators of JAK-STAT signaling.
Collapse
Affiliation(s)
- Olga A Timofeeva
- Departments of Oncology; Lombardi Comprehensive Cancer Center; Georgetown University Medical Center; Washington, DC USA ; Department of Radiation Medicine; Lombardi Comprehensive Cancer Center; Georgetown University Medical Center; Washington, DC USA
| | | |
Collapse
|
11
|
Schepers H, Wierenga ATJ, Vellenga E, Schuringa JJ. STAT5-mediated self-renewal of normal hematopoietic and leukemic stem cells. JAKSTAT 2014; 1:13-22. [PMID: 24058747 PMCID: PMC3670129 DOI: 10.4161/jkst.19316] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 01/07/2023] Open
Abstract
The level of transcription factor activity critically regulates cell fate decisions such as hematopoietic stem cell self-renewal and differentiation. The balance between hematopoietic stem cell self-renewal and differentiation needs to be tightly controlled, as a shift toward differentiation might exhaust the stem cell pool, while a shift toward self-renewal might mark the onset of leukemic transformation. A number of transcription factors have been proposed to be critically involved in governing stem cell fate and lineage commitment, such as Hox transcription factors, c-Myc, Notch1, β-catenin, C/ebpα, Pu.1 and STAT5. It is therefore no surprise that dysregulation of these transcription factors can also contribute to the development of leukemias. This review will discuss the role of STAT5 in both normal and leukemic hematopoietic stem cells as well as mechanisms by which STAT5 might contribute to the development of human leukemias.
Collapse
Affiliation(s)
- Hein Schepers
- Department of Experimental Hematology; University Medical Center Groningen; Groningen, The Netherlands ; Department of Stem Cell Biology; University Medical Center Groningen; Groningen, The Netherlands
| | | | | | | |
Collapse
|
12
|
Goldstein J, Fletcher S, Roth E, Wu C, Chun A, Horsley V. Calcineurin/Nfatc1 signaling links skin stem cell quiescence to hormonal signaling during pregnancy and lactation. Genes Dev 2014; 28:983-94. [PMID: 24732379 PMCID: PMC4018496 DOI: 10.1101/gad.236554.113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In most tissues, the prevailing view is that stem cell (SC) niches are generated by signals from within the nearby tissue environment. Here, we define genetic changes altered in hair follicle (HF) SCs in mice treated with a potent SC activator, cyclosporine A (CSA), which inhibits the phosphatase calcineurin (CN) and the activity of the transcription factor nuclear factor of activated T cells c1 (Nfatc1). We show that CN/Nfatc1 regulates expression of prolactin receptor (Prlr) and that canonical activation of Prlr and its downstream signaling via Jak/Stat5 drives quiescence of HF SCs during pregnancy and lactation, when serum prolactin (Prl) levels are highly elevated. Using Prl injections and genetic/pharmacological loss-of-function experiments in mice, we show that Prl signaling stalls follicular SC activation through its activity in the skin epithelium. Our findings define a unique CN-Nfatc1-Prlr-Stat5 molecular circuitry that promotes persistent SC quiescence in the skin.
Collapse
Affiliation(s)
- Jill Goldstein
- Department of Molecular, Cell, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
13
|
Wang Z, Bunting KD. STAT5 in hematopoietic stem cell biology and transplantation. JAKSTAT 2013; 2:e27159. [PMID: 24498540 DOI: 10.4161/jkst.27159] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/05/2013] [Accepted: 11/11/2013] [Indexed: 01/21/2023] Open
Abstract
Signal transducer and activator of transcription 5 (STAT5) regulates normal lympho-myeloid development through activation downstream of early-acting cytokines, their receptors, and Janus kinases (JAKs). Despite a general understanding of the role of STAT5 in hematopoietic stem cell (HSC) proliferation, survival, and self-renewal, the transcriptional targets and mechanisms of gene regulation that control multi-lineage engraftment following transplantation for the most part remain to be understood. In this review, we focus on the role of STAT5 in HSC transplantation and recent developments toward identifying the relevant downstream target genes and their role as part of a pleiotropic STAT5 mediated signaling response.
Collapse
Affiliation(s)
- Zhengqi Wang
- Aflac Cancer and Blood Disorders Center; Children's Healthcare of Atlanta; Department of Pediatrics; Emory University School of Medicine; Atlanta, GA USA
| | - Kevin D Bunting
- Aflac Cancer and Blood Disorders Center; Children's Healthcare of Atlanta; Department of Pediatrics; Emory University School of Medicine; Atlanta, GA USA
| |
Collapse
|
14
|
Lin WC, Schmidt JW, Creamer BA, Triplett AA, Wagner KU. Gain-of-function of Stat5 leads to excessive granulopoiesis and lethal extravasation of granulocytes to the lung. PLoS One 2013; 8:e60902. [PMID: 23565285 PMCID: PMC3614894 DOI: 10.1371/journal.pone.0060902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/05/2013] [Indexed: 11/25/2022] Open
Abstract
The Signal Transducer and Activator of Transcription 5 (Stat5) plays a significant role in normal hematopoiesis and a variety of hematopoietic malignancies. Deficiency in Stat5 causes impaired cytokine-mediated proliferation and survival of progenitors and their differentiated descendants along major hematopoietic lineages such as erythroid, lymphoid, and myeloid cells. Overexpression and persistent activation of Stat5 are sufficient for neoplastic transformation and development of multi-lineage leukemia in a transplant model. Little is known, however, whether a continuous activation of this signal transducer is essential for the maintenance of hematopoietic malignancies. To address this issue, we developed transgenic mice that express a hyperactive mutant of Stat5 in hematopoietic progenitors and derived lineages in a ligand-controlled manner. In contrast to the transplant model, expression of mutant Stat5 did not adversely affect normal hematopoiesis in the presence of endogenous wildtype Stat5 alleles. However, the gain-of-function of this signal transducer in mice that carry Stat5a/b hypomorphic alleles resulted in abnormally high numbers of circulating granulocytes that caused severe airway obstruction. Downregulation of hyperactive Stat5 in diseased animals restored normal granulopoiesis, which also resulted in a swift clearance of granulocytes from the lung. Moreover, we demonstrate that Stat5 promotes the initiation and maintenance of severe granulophilia in a cell autonomous manner. The results of this study show that the gain-of-function of Stat5 causes excessive granulopoiesis and prolonged survival of granulocytes in circulation. Collectively, our findings underline the critical importance of Stat5 in maintaining a normal balance between myeloid and lymphoid cells during hematopoiesis, and we provide direct evidence for a function of Stat5 in granulophilia–associated pulmonary dysfunction.
Collapse
Affiliation(s)
- Wan-chi Lin
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jeffrey W. Schmidt
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Bradley A. Creamer
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Aleata A. Triplett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Kay-Uwe Wagner
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
15
|
STAT3 suppresses transcription of proapoptotic genes in cancer cells with the involvement of its N-terminal domain. Proc Natl Acad Sci U S A 2013; 110:1267-72. [PMID: 23288901 DOI: 10.1073/pnas.1211805110] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activation of STAT3 in cancers leads to gene expression promoting cell proliferation and resistance to apoptosis, as well as tumor angiogenesis, invasion, and migration. In the characterization of effects of ST3-H2A2, a selective inhibitor of the STAT3 N-terminal domain (ND), we observed that the compound induced apoptotic death in cancer cells associated with robust activation of proapoptotic genes. Using ChIP and tiling human promoter arrays, we found that activation of gene expression in response to ST3-H2A2 is accompanied by altered STAT3 chromatin binding. Using inhibitors of STAT3 phosphorylation and a dominant-negative STAT3 mutant, we found that the unphosphorylated form of STAT3 binds to regulatory regions of proapoptotic genes and prevents their expression in tumor cells but not normal cells. siRNA knockdown confirmed the effects of ST3-HA2A on gene expression and chromatin binding to be STAT3 dependent. The STAT3-binding region of the C/EBP-homologous protein (CHOP) promoter was found to be localized in DNaseI hypersensitive site of chromatin in cancer cells but not in nontransformed cells, suggesting that STAT3 binding and suppressive action can be chromatin structure dependent. These data demonstrate a suppressive role for the STAT3 ND in the regulation of proapoptotic gene expression in cancer cells, providing further support for targeting STAT3 ND for cancer therapy.
Collapse
|
16
|
Fossett N. Signal transduction pathways, intrinsic regulators, and the control of cell fate choice. Biochim Biophys Acta Gen Subj 2012; 1830:2375-84. [PMID: 22705942 DOI: 10.1016/j.bbagen.2012.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 05/10/2012] [Accepted: 06/07/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Information regarding changes in organismal status is transmitted to the stem cell regulatory machinery by a limited number of signal transduction pathways. Consequently, these pathways derive their functional specificity through interactions with stem cell intrinsic master regulators, notably transcription factors. Identifying the molecular underpinnings of these interactions is critical to understanding stem cell function. SCOPE OF REVIEW This review focuses on studies in Drosophila that identify the gene regulatory basis for interactions between three different signal transduction pathways and an intrinsic master transcriptional regulator in the context of hematopoietic stem-like cell fate choice. Specifically, the interface between the GATA:FOG regulatory complex and the JAK/STAT, BMP, and Hedgehog pathways is examined. MAJOR CONCLUSIONS The GATA:FOG complex coordinates information transmitted by at least three different signal transduction pathways as a means to control stem-like cell fate choice. This illustrates emerging principles concerning regulation of stem cell function and describes a gene regulatory link between changes in organismal status and stem cell response. GENERAL SIGNIFICANCE The Drosophila model system offers a powerful approach to identify the molecular basis of how stem cells receive, interpret, and then respond to changes in organismal status. This article is part of a Special Issue entitled: Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- Nancy Fossett
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
17
|
Essential role for Stat5a/b in myeloproliferative neoplasms induced by BCR-ABL1 and JAK2(V617F) in mice. Blood 2012; 119:3550-60. [PMID: 22234689 DOI: 10.1182/blood-2011-12-397554] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
STAT5 proteins are constitutively activated in malignant cells from many patients with leukemia, including the myeloproliferative neoplasms (MPNs) chronic myeloid leukemia (CML) and polycythemia vera (PV), but whether STAT5 is essential for the pathogenesis of these diseases is not known. In the present study, we used mice with a conditional null mutation in the Stat5a/b gene locus to determine the requirement for STAT5 in MPNs induced by BCR-ABL1 and JAK2(V617F) in retroviral transplantation models of CML and PV. Loss of one Stat5a/b allele resulted in a decrease in BCR-ABL1-induced CML-like MPN and the appearance of B-cell acute lymphoblastic leukemia, whereas complete deletion of Stat5a/b prevented the development of leukemia in primary recipients. However, BCR-ABL1 was expressed and active in Stat5-null leukemic stem cells, and Stat5 deletion did not prevent progression to lymphoid blast crisis or abolish established B-cell acute lymphoblastic leukemia. JAK2(V617F) failed to induce polycythemia in recipients after deletion of Stat5a/b, although the loss of STAT5 did not prevent the development of myelofibrosis. These results demonstrate that STAT5a/b is essential for the induction of CML-like leukemia by BCR-ABL1 and of polycythemia by JAK2(V617F), and validate STAT5a/b and the genes they regulate as targets for therapy in these MPNs.
Collapse
|
18
|
Takeda Y, Nakaseko C, Tanaka H, Takeuchi M, Yui M, Saraya A, Miyagi S, Wang C, Tanaka S, Ohwada C, Sakaida E, Yamaguchi N, Yokote K, Hennighausen L, Iwama A. Direct activation of STAT5 by ETV6-LYN fusion protein promotes induction of myeloproliferative neoplasm with myelofibrosis. Br J Haematol 2011; 153:589-98. [PMID: 21492125 PMCID: PMC3091948 DOI: 10.1111/j.1365-2141.2011.08663.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Myeloproliferative neoplasms (MPN), a group of haematopoietic stem cell (HSC) disorders, are often accompanied by myelofibrosis. We previously identified the fusion of the ETV6 gene to the LYN gene (ETV6-LYN) in idiopathic myelofibrosis with ins(12;8)(p13;q11q21). The introduction of ETV6-LYN into HSCs resulted in fatal MPN with massive myelofibrosis in mice, implicating the rearranged LYN kinase in the pathogenesis of MPN with myelofibrosis. However, the signalling molecules directly downstream from and activated by ETV6-LYN remain unknown. In this study, we demonstrated that the direct activation of STAT5 by ETV6-LYN is crucial for the development of MPN. ETV6-LYN was constitutively active as a kinase through autophosphorylation. ETV6-LYN, but not its kinase-dead mutant, supported cytokine-free proliferation of haematopoietic cells. STAT5 was activated in a JAK2-independent manner in ETV6-LYN-expressing cells. ETV6-LYN interacted with STAT5 and directly activated STAT5 both in vitro and in vivo. Of note, ETV6-LYN did not support the formation of colonies by Stat5-deficient HSCs under cytokine-free conditions and the capacity of ETV6-LYN to induce MPN with myelofibrosis was profoundly attenuated in a Stat5-null background. These findings define STAT5 as a direct target of ETV6-LYN and unveil the LYN-STAT5 axis as a novel pathway to augment proliferative signals in MPN and leukaemia.
Collapse
Affiliation(s)
- Yusuke Takeda
- Division of Haematology, Department of Clinical Cell Biology, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
| | - Chiaki Nakaseko
- Division of Haematology, Department of Clinical Cell Biology, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
| | - Hiroaki Tanaka
- Division of Haematology, Department of Clinical Cell Biology, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
| | - Masahiro Takeuchi
- Division of Haematology, Department of Clinical Cell Biology, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
| | - Makiko Yui
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
| | - Atsunori Saraya
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
- CREST, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Satoru Miyagi
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
- CREST, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Changshan Wang
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
- CREST, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Satomi Tanaka
- Division of Haematology, Department of Clinical Cell Biology, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
| | - Chikako Ohwada
- Division of Haematology, Department of Clinical Cell Biology, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
| | - Emiko Sakaida
- Division of Haematology, Department of Clinical Cell Biology, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
| | - Naoto Yamaguchi
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
| | - Koutaro Yokote
- Division of Haematology, Department of Clinical Cell Biology, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
- CREST, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
19
|
Identification of HIF2alpha as an important STAT5 target gene in human hematopoietic stem cells. Blood 2011; 117:3320-30. [PMID: 21263150 DOI: 10.1182/blood-2010-08-303669] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The transcription factor signal transducer and activator of transcription 5 (STAT5) fulfills essential roles in self-renewal in mouse and human hematopoietic stem cells (HSCs), and its persistent activation contributes to leukemic transformation, although little molecular insight into the underlying mechanisms has been obtained. In the present study, we show that STAT5 can impose long-term expansion exclusively on human HSCs, not on progenitors. This was associated with an enhanced cobblestone formation under bone marrow stromal cells of STAT5-transduced HSCs. Hypoxia-induced factor 2α (HIF2α) was identified as a STAT5 target gene in HSCs, and chromatin immunoprecipitation studies revealed STAT5 binding to a site 344 base pairs upstream of the start codon of HIF2α. Lentiviral RNA interference (RNAi)-mediated down-modulation of HIF2α impaired STAT5-induced long-term expansion and HSC frequencies, whereas differentiation was not affected. Glucose uptake was elevated in STAT5-activated HSCs, and several genes associated with glucose metabolism were up-regulated by STAT5 in an HIF2α-dependent manner. Our studies indicate that pathways normally activated under hypoxia might be used by STAT5 under higher oxygen conditions to maintain and/or impose HSC self-renewal properties.
Collapse
|
20
|
Li G, Miskimen KL, Wang Z, Xie XY, Tse W, Gouilleux F, Moriggl R, Bunting KD. Effective targeting of STAT5-mediated survival in myeloproliferative neoplasms using ABT-737 combined with rapamycin. Leukemia 2010; 24:1397-405. [PMID: 20535152 PMCID: PMC2921023 DOI: 10.1038/leu.2010.131] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Signal transducer and activator of transcription-5 (STAT5) is a critical transcription factor for normal hematopoiesis and its sustained activation is associated with hematologic malignancy. A persistently active mutant of STAT5 (STAT5aS711F) associates with Grb2 associated binding protein 2 (Gab2) in myeloid leukemias and promotes growth in vitro through AKT activation. Here we have retrovirally transduced wild-type or Gab2−/− mouse bone marrow cells expressing STAT5aS711F and transplanted into irradiated recipient mice to test an in vivo myeloproliferative disease (MPD) model. To target Gab2-independent AKT/mTOR activation, wild-type mice were treated separately with rapamycin. In either case, mice lacking Gab2 or treated with rapamycin displayed attenuated myeloid hyperplasia and modestly improved survival, but the effects were not cytotoxic and were reversible. To improve upon this approach, in vitro targeting of STAT5-mediated AKT/mTOR using rapamycin was combined with inhibition of the STAT5 direct target genes bcl-2 and bcl-XL using ABT-737. Striking synergy with both drugs was observed in mouse BaF3 cells expressing STAT5aS711F, TEL-JAK2, or BCR-ABL and in the relatively single agent-resistant human BCR-ABL positive K562 cell line. Therefore, targeting distinct STAT5 mediated survival signals, e.g. bcl-2/bcl-XL and AKT/mTOR may be an effective therapeutic approach for human myeloproliferative neoplasms.
Collapse
Affiliation(s)
- G Li
- Division of Hematology-Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Down-regulation of GATA1 uncouples STAT5-induced erythroid differentiation from stem/progenitor cell proliferation. Blood 2010; 115:4367-76. [DOI: 10.1182/blood-2009-10-250894] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Previously, we have shown that overexpression of an activated mutant of signal transducer and activator of transcription-5 (STAT5) induces erythropoiesis, impaired myelopoiesis, and an increase in long-term proliferation of human hematopoietic stem/progenitor cells. Because GATA1 is a key transcription factor involved in erythropoiesis, the involvement of GATA1 in STAT5-induced phenotypes was studied by shRNA-mediated knockdown of GATA1. CD34+ cord blood cells were double transduced with a conditionally active STAT5 mutant and a lentiviral vector expressing a short hairpin against GATA1. Erythropoiesis was completely abolished in the absence of GATA1, indicating that STAT5-induced erythropoiesis is GATA1-dependent. Furthermore, the impaired myelopoiesis in STAT5-transduced cells was restored by GATA1 knockdown. Interestingly, early cobblestone formation was only modestly affected, and long-term growth of STAT5-positive cells was increased in the absence of GATA1, whereby high progenitor numbers were maintained. Thus, GATA1 down-regulation allowed the dissection of STAT5-induced differentiation phenotypes from the effects on long-term expansion of stem/progenitor cells. Gene expression profiling allowed the identification of GATA1-dependent and GATA1-independent STAT5 target genes, and these studies revealed that several proliferation-related genes were up-regulated by STAT5 independent of GATA1, whereas several erythroid differentiation-related genes were found to be GATA1 as well as STAT5 dependent.
Collapse
|
22
|
Stat5a serine 725 and 779 phosphorylation is a prerequisite for hematopoietic transformation. Blood 2010; 116:1548-58. [PMID: 20508164 DOI: 10.1182/blood-2009-12-258913] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stat5 transcription factors are essential gene regulators promoting proliferation, survival, and differentiation of all hematopoietic cell types. Mutations or fusions of oncogenic tyrosine kinases often result in constitutive Stat5 activation. We have modeled persistent Stat5 activity by using an oncogenic Stat5a variant (cS5). To analyze the hitherto unrecognized role of Stat5 serine phosphorylation in this context, we have generated cS5 constructs with mutated C-terminal serines 725 and 779, either alone or in combination. Genetic complementation assays in primary Stat5(null/null) mast cells and Stat5(DeltaN) T cells demonstrated reconstitution of proliferation with these mutants. Similarly, an in vivo reconstitution experiment of transduced Stat5(null/null) fetal liver cells transplanted into irradiated wild-type recipients revealed that these mutants exhibit biologic activity in lineage differentiation. By contrast, the leukemogenic potential of cS5 in bone marrow transplants decreased dramatically in cS5 single-serine mutants or was completely absent upon loss of both serine phosphorylation sites. Our data suggest that Stat5a serine phosphorylation is a prerequisite for cS5-mediated leukemogenesis. Hence, interference with Stat5a serine phosphorylation might provide a new therapeutic option for leukemia and myeloid dysplasias without affecting major functions of Stat5 in normal hematopoiesis.
Collapse
|
23
|
Hoelbl A, Schuster C, Kovacic B, Zhu B, Wickre M, Hoelzl MA, Fajmann S, Grebien F, Warsch W, Stengl G, Hennighausen L, Poli V, Beug H, Moriggl R, Sexl V. Stat5 is indispensable for the maintenance of bcr/abl-positive leukaemia. EMBO Mol Med 2010; 2:98-110. [PMID: 20201032 PMCID: PMC2906698 DOI: 10.1002/emmm.201000062] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tumourigenesis caused by the Bcr/Abl oncoprotein is a multi-step process proceeding from initial to tumour-maintaining events and finally results in a complex tumour-supporting network. A key to successful cancer therapy is the identification of critical functional nodes in an oncogenic network required for disease maintenance. So far, the transcription factors Stat3 and Stat5a/b have been implicated in bcr/abl-induced initial transformation. However, to qualify as a potential drug target, a signalling pathway must be required for the maintenance of the leukaemic state. Data on the roles of Stat3 or Stat5a/b in leukaemia maintenance are elusive. Here, we show that both, Stat3 and Stat5 are necessary for initial transformation. However, Stat5- but not Stat3-deletion induces G0/G1 cell cycle arrest and apoptosis of imatinib-sensitive and imatinib-resistant stable leukaemic cells in vitro. Accordingly, Stat5-abrogation led to effective elimination of myeloid and lymphoid leukaemia maintenance in vivo. Hence, we identified Stat5 as a vulnerable point in the oncogenic network downstream of Bcr/Abl representing a case of non-oncogene addiction (NOA).
Collapse
Affiliation(s)
- Andrea Hoelbl
- Institute of Pharmacology, Centre of Biomolecular Medicine and Pharmacology, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li G, Wang Z, Miskimen KL, Zhang Y, Tse W, Bunting KD. Gab2 promotes hematopoietic stem cell maintenance and self-renewal synergistically with STAT5. PLoS One 2010; 5:e9152. [PMID: 20161778 PMCID: PMC2818849 DOI: 10.1371/journal.pone.0009152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 01/19/2010] [Indexed: 12/22/2022] Open
Abstract
Background Grb2-associated binding (Gab) adapter proteins play major roles in coordinating signaling downstream of hematopoietic cytokine receptors. In hematopoietic cells, Gab2 can modulate phosphatidylinositol–3 kinase and mitogen associated protein kinase activities and regulate the long-term multilineage competitive repopulating activity of hematopoietic stem cells (HSCs). Gab2 may also act in a linear pathway upstream or downstream of signal transducer and activator of transcription-5 (STAT5), a major positive regulator of HSC function. Therefore, we aimed to determine whether Gab2 and STAT5 function in hematopoiesis in a redundant or non-redundant manner. Methodology/Principal Findings To do this we generated Gab2 mutant mice with heterozygous and homozygous deletions of STAT5. In heterozygous STAT5 mutant mice, deficiencies in HSC/multipotent progenitors were reflected by decreased long-term repopulating activity. This reduction in repopulation function was mirrored in the reduced growth response to early-acting cytokines from sorted double mutant c-Kit+Lin−Sca-1+ (KLS) cells. Importantly, in non-ablated newborn mice, the host steady-state engraftment ability was impaired by loss of Gab2 in heterozygous STAT5 mutant background. Fetal liver cells isolated from homozygous STAT5 mutant mice lacking Gab2 showed significant reduction in HSC number (KLS CD150+CD48−), reduced HSC survival, and dramatic loss of self-renewal potential as measured by serial transplantation. Conclusions/Significance These data demonstrate new functions for Gab2 in hematopoiesis in a manner that is non-redundant with STAT5. Furthermore, important synergy between STAT5 and Gab2 was observed in HSC self-renewal, which might be exploited to optimize stem cell-based therapeutics.
Collapse
Affiliation(s)
- Geqiang Li
- Division of Hematology-Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | | | | | | | | | | |
Collapse
|
25
|
STAT5 requires the N-domain for suppression of miR15/16, induction of bcl-2, and survival signaling in myeloproliferative disease. Blood 2009; 115:1416-24. [PMID: 20008792 DOI: 10.1182/blood-2009-07-234963] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Phosphorylated signal transducer and activator of transcription 5 (STAT5) is a biomarker and potential molecular target for hematologic malignancies. We have shown previously that lethal myeloproliferative disease (MPD) in mice mediated by persistently activated STAT5 (STAT5a(S711F)) requires the N-domain, but the mechanism was not defined. We now demonstrate by retrovirally complementing STAT5ab(null/null) primary mast cells that relative to wild-type STAT5a, STAT5a lacking the N-domain (STAT5aDeltaN) ineffectively protected against cytokine withdrawal-induced cell death. Both STAT5a and STAT5aDeltaN bound to a site in the bcl-2 gene and both bound near the microRNA 15b/16 cluster. However, only STAT5a could effectively induce bcl-2 mRNA and reciprocally suppress miR15b/16 leading to maintained bcl-2 protein levels. After retroviral complementation of STAT5ab(null/null) fetal liver cells and transplantation, persistently active STAT5a(S711F) lacking the N-domain (STAT5aDeltaN(S711F)) was insufficient to protect c-Kit(+)Lin(-)Sca-1(+) (KLS) cells from apoptosis and unable to induce bcl-2 expression, whereas STAT5a(S711F) caused robust KLS cell expansion, induction of bcl-2, and lethal MPD. Severe attenuation of MPD by STAT5aDeltaN(S711F) was reversed by H2k/bcl-2 transgenic expression. Overall, these studies define N-domain-dependent survival signaling as an Achilles heel of persistent STAT5 activation and highlight the potential therapeutic importance of targeting STAT5 N-domain-mediated regulation of bcl-2 family members.
Collapse
|
26
|
Single-cell STAT5 signal transduction profiling in normal and leukemic stem and progenitor cell populations reveals highly distinct cytokine responses. PLoS One 2009; 4:e7989. [PMID: 19956772 PMCID: PMC2776352 DOI: 10.1371/journal.pone.0007989] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 10/30/2009] [Indexed: 01/17/2023] Open
Abstract
Background Signal Transducer and Activator of Transcription 5 (STAT5) plays critical roles in normal and leukemic hematopoiesis. However, the manner in which STAT5 responds to early-acting and lineage-restricted cytokines, particularly in leukemic stem/progenitor cells, is largely unknown. Methodology/Principal Findings We optimized a multiparametric flow cytometry protocol to analyze STAT5 phosphorylation upon cytokine stimulation in stem and progenitor cell compartments at a single-cell level. In normal cord blood (CB) cells, STAT5 phosphorylation was efficiently induced by TPO, IL-3 and GM-CSF within CD34+CD38− hematopoietic stem cells (HSCs). EPO- and SCF-induced STAT5 phosphorylation was largely restricted to the megakaryocyte-erythroid progenitor (MEP) compartment, while G-CSF as well IL-3 and GM-CSF were most efficient in inducing STAT5 phosphorylation in the myeloid progenitor compartments. Strikingly, mobilized adult peripheral blood (PB) CD34+ cells responded much less efficiently to cytokine-induced STAT5 activation, with the exception of TPO. In leukemic stem and progenitor cells, highly distinct cytokine responses were observed, differing significantly from their normal counterparts. These responses could not be predicted by the expression level of cytokine receptors. Also, heterogeneity existed in cytokine requirements for long-term expansion of AML CD34+ cells on stroma. Conclusions/Significance In conclusion, our optimized multiparametric flow cytometry protocols allow the analysis of signal transduction at the single cell level in normal and leukemic stem and progenitor cells. Our study demonstrates highly distinctive cytokine responses in STAT5 phosphorylation in both normal and leukemic stem/progenitor cells.
Collapse
|
27
|
Yamaji D, Na R, Feuermann Y, Pechhold S, Chen W, Robinson GW, Hennighausen L. Development of mammary luminal progenitor cells is controlled by the transcription factor STAT5A. Genes Dev 2009; 23:2382-7. [PMID: 19833766 DOI: 10.1101/gad.1840109] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mammary alveologenesis is abrogated in the absence of the transcription factors STAT5A/5B, which mediate cytokine signaling. To reveal the underlying causes for this developmental block, we studied mammary stem and progenitor cells. While loss of STAT5A/5B did not affect the stem cell population and its ability to form mammary ducts, luminal progenitors were greatly reduced and unable to form alveoli during pregnancy. Temporally controlled expression of transgenic STAT5A in mammary epithelium lacking STAT5A/5B restored the luminal progenitor population and rescued alveologenesis in a reversible fashion in vivo. Thus, STAT5A is necessary and sufficient for the establishment of luminal progenitor cells.
Collapse
Affiliation(s)
- Daisuke Yamaji
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Wang Z, Li G, Tse W, Bunting KD. Conditional deletion of STAT5 in adult mouse hematopoietic stem cells causes loss of quiescence and permits efficient nonablative stem cell replacement. Blood 2009; 113:4856-65. [PMID: 19258595 PMCID: PMC2686137 DOI: 10.1182/blood-2008-09-181107] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Currently, there is a major need in hematopoietic stem cell (HSC) transplantation to develop reduced-intensity regimens that do not cause DNA damage and associated toxicities and that allow a wider range of patients to receive therapy. Cytokine receptor signals through c-Kit and c-Mpl can modulate HSC quiescence and engraftment, but the intracellular signals and transcription factors that mediate these effects during transplantation have not been defined. Here we show that loss of one allele of signal transducer and activator of transcription 5 (STAT5) in nonablated adult mutant mice permitted engraftment with wild-type HSC. Conditional deletion of STAT5 using Mx1-Cre caused maximal reduction in STAT5 mRNA (> 97%) and rapidly decreased quiescence-associated c-Mpl downstream targets (Tie-2, p57), increased HSC cycling, and gradually reduced survival and depleted the long-term HSC pool. Host deletion of STAT5 was persistent and permitted efficient donor long-term HSC engraftment in primary and secondary hosts in the absence of ablative conditioning. Overall, these studies establish proof of principle for targeting of STAT5 as novel transplantation conditioning and demonstrate, for the first time, that STAT5, a mitogenic factor in most cell types, including hematopoietic progenitors, is a key transcriptional regulator that maintains quiescence of HSC during steady-state hematopoiesis.
Collapse
Affiliation(s)
- Zhengqi Wang
- Department of Medicine, Hematology-Oncology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
29
|
Hosui A, Kimura A, Yamaji D, Zhu BM, Na R, Hennighausen L. Loss of STAT5 causes liver fibrosis and cancer development through increased TGF-{beta} and STAT3 activation. ACTA ACUST UNITED AC 2009; 206:819-31. [PMID: 19332876 PMCID: PMC2715112 DOI: 10.1084/jem.20080003] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The molecular mechanisms underlying the development of hepatocellular carcinoma are not fully understood. Liver-specific signal transducer and activator of transcription (STAT) 5A/B–null mice (STAT5-LKO) were treated with carbon tetrachloride (CCl4), and histological analyses revealed liver fibrosis and tumors. Transforming growth factor (TGF)–β levels and STAT3 activity were elevated in liver tissue from STAT5-LKO mice upon CCl4 treatment. To define the molecular link between STAT5 silencing and TGF-β up-regulation, as well as STAT3 activation, we examined STAT5-null mouse embryonic fibroblasts and primary hepatocytes. These cells displayed elevated TGF-β protein levels, whereas messenger RNA levels remained almost unchanged. Protease inhibitor studies revealed that STAT5 deficiency enhanced the stability of mature TGF-β. Immunoprecipitation and immunohistochemistry analyses demonstrated that STAT5, through its N-terminal sequences, could bind to TGF-β and that retroviral-mediated overexpression of STAT5 decreased TGF-β levels. To confirm the in vivo significance of the N-terminal domain of STAT5, we treated mice that expressed STAT5 lacking the N terminus (STAT5-ΔN) with CCl4. STAT5-ΔN mice developed CCl4-induced liver fibrosis but no tumors. In conclusion, loss of STAT5 results in elevated TGF-β levels and enhanced growth hormone–induced STAT3 activity. We propose that a deregulated STAT5–TGF-β–STAT3 network contributes to the development of chronic liver disease.
Collapse
Affiliation(s)
- Atsushi Hosui
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Maximal STAT5-induced proliferation and self-renewal at intermediate STAT5 activity levels. Mol Cell Biol 2008; 28:6668-80. [PMID: 18779318 DOI: 10.1128/mcb.01025-08] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The level of transcription factor activity critically regulates cell fate decisions, such as hematopoietic stem cell (HSC) self-renewal and differentiation. We introduced STAT5A transcriptional activity into human HSCs/progenitor cells in a dose-dependent manner by overexpression of a tamoxifen-inducible STAT5A(1*6)-estrogen receptor fusion protein. Induction of STAT5A activity in CD34(+) cells resulted in impaired myelopoiesis and induction of erythropoiesis, which was most pronounced at the highest STAT5A transactivation levels. In contrast, intermediate STAT5A activity levels resulted in the most pronounced proliferative advantage of CD34(+) cells. This coincided with increased cobblestone area-forming cell and long-term-culture-initiating cell frequencies, which were predominantly elevated at intermediate STAT5A activity levels but not at high STAT5A levels. Self-renewal of progenitors was addressed by serial replating of CFU, and only progenitors containing intermediate STAT5A activity levels contained self-renewal capacity. By extensive gene expression profiling we could identify gene expression patterns of STAT5 target genes that predominantly associated with a self-renewal and long-term expansion phenotype versus those that identified a predominant differentiation phenotype.
Collapse
|
31
|
Interpretation of cytokine signaling through the transcription factors STAT5A and STAT5B. Genes Dev 2008; 22:711-21. [PMID: 18347089 DOI: 10.1101/gad.1643908] [Citation(s) in RCA: 266] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transcription factors from the family of Signal Transducers and Activators of Transcription (STAT) are activated by numerous cytokines. Two members of this family, STAT5A and STAT5B (collectively called STAT5), have gained prominence in that they are activated by a wide variety of cytokines such as interleukins, erythropoietin, growth hormone, and prolactin. Furthermore, constitutive STAT5 activation is observed in the majority of leukemias and many solid tumors. Inactivation studies in mice as well as human mutations have provided insight into many of STAT5's functions. Disruption of cytokine signaling through STAT5 results in a variety of cell-specific effects, ranging from a defective immune system and impaired erythropoiesis, the complete absence of mammary development during pregnancy, to aberrant liver function. On a molecular level, STAT5 has been linked to cell specification, proliferation, differentiation, and survival. Evidence is growing that the diverse outcomes of STAT5 signaling are not only determined by the expression of specific receptors but also by the interaction of STAT5 with cofactors and the cell-specific activity of members of the SOCS family, which negatively regulate STAT function. In this review, we focus on emerging concepts and challenges in the field of Janus kinase (JAK)-STAT5 signaling. First, we discuss unique functions of STAT5 in three distinct systems: mammary epithelial cells, hepatocytes, and regulatory T cells. Second, we present an example of how STAT5 can achieve cell specificity in hepatocytes through a physical and functional interaction with the glucocorticoid receptor. Third, we focus on the relevance of STAT5 in the development and progression of leukemia. Next, we discuss lessons derived from human mutations and disease. Finally, we address an emerging issue that the interpretation of experiments from STAT5-deficient mice and cells might be compromised as these cells might reroute and reprogram cytokine signals to the "wrong" STATs and thus acquire inappropriate cues. We propose that mice with mutations in various components of the JAK-STAT signaling pathway are living laboratories, which will provide insight into the versatility of signaling hardware and the adaptability of the software.
Collapse
|
32
|
Liu F, Kunter G, Krem MM, Eades WC, Cain JA, Tomasson MH, Hennighausen L, Link DC. Csf3r mutations in mice confer a strong clonal HSC advantage via activation of Stat5. J Clin Invest 2008; 118:946-55. [PMID: 18292815 DOI: 10.1172/jci32704] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 12/19/2007] [Indexed: 12/11/2022] Open
Abstract
A fundamental property of leukemic stem cells is clonal dominance of the bone marrow microenvironment. Truncation mutations of CSF3R, which encodes the G-CSF receptor (G-CSFR), are implicated in leukemic progression in patients with severe congenital neutropenia. Here we show that expression of a truncated mutant Csf3r in mice confers a strong clonal advantage at the HSC level that is dependent upon exogenous G-CSF. G-CSF-induced proliferation, phosphorylation of Stat5, and transcription of Stat5 target genes were increased in HSCs isolated from mice expressing the mutant Csf3r. Conversely, the proliferative advantage conferred by the mutant Csf3r was abrogated in myeloid progenitors lacking both Stat5A and Stat5B, and HSC function was reduced in mice expressing a truncated mutant Csf3r engineered to have impaired Stat5 activation. These data indicate that in mice, inappropriate Stat5 activation plays a key role in establishing clonal dominance by stem cells expressing mutant Csf3r.
Collapse
Affiliation(s)
- Fulu Liu
- Department of Medicine, Division of Oncology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kent D, Copley M, Benz C, Dykstra B, Bowie M, Eaves C. Regulation of Hematopoietic Stem Cells by the Steel Factor/KIT Signaling Pathway: Fig. 1. Clin Cancer Res 2008; 14:1926-30. [DOI: 10.1158/1078-0432.ccr-07-5134] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|