1
|
Choi HS, Kim BS, Yoon S, Oh SO, Lee D. Leukemic Stem Cells and Hematological Malignancies. Int J Mol Sci 2024; 25:6639. [PMID: 38928344 PMCID: PMC11203822 DOI: 10.3390/ijms25126639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The association between leukemic stem cells (LSCs) and leukemia development has been widely established in the context of genetic alterations, epigenetic pathways, and signaling pathway regulation. Hematopoietic stem cells are at the top of the bone marrow hierarchy and can self-renew and progressively generate blood and immune cells. The microenvironment, niche cells, and complex signaling pathways that regulate them acquire genetic mutations and epigenetic alterations due to aging, a chronic inflammatory environment, stress, and cancer, resulting in hematopoietic stem cell dysregulation and the production of abnormal blood and immune cells, leading to hematological malignancies and blood cancer. Cells that acquire these mutations grow at a faster rate than other cells and induce clone expansion. Excessive growth leads to the development of blood cancers. Standard therapy targets blast cells, which proliferate rapidly; however, LSCs that can induce disease recurrence remain after treatment, leading to recurrence and poor prognosis. To overcome these limitations, researchers have focused on the characteristics and signaling systems of LSCs and therapies that target them to block LSCs. This review aims to provide a comprehensive understanding of the types of hematopoietic malignancies, the characteristics of leukemic stem cells that cause them, the mechanisms by which these cells acquire chemotherapy resistance, and the therapies targeting these mechanisms.
Collapse
Affiliation(s)
- Hee-Seon Choi
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.); (S.-O.O.)
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.); (S.-O.O.)
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
- Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
2
|
Herd CL, Mellet J, Mashingaidze T, Durandt C, Pepper MS. Consequences of HIV infection in the bone marrow niche. Front Immunol 2023; 14:1163012. [PMID: 37497228 PMCID: PMC10366613 DOI: 10.3389/fimmu.2023.1163012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023] Open
Abstract
Dysregulation of the bone marrow niche resulting from the direct and indirect effects of HIV infection contributes to haematological abnormalities observed in HIV patients. The bone marrow niche is a complex, multicellular environment which functions primarily in the maintenance of haematopoietic stem/progenitor cells (HSPCs). These adult stem cells are responsible for replacing blood and immune cells over the course of a lifetime. Cells of the bone marrow niche support HSPCs and help to orchestrate the quiescence, self-renewal and differentiation of HSPCs through chemical and molecular signals and cell-cell interactions. This narrative review discusses the HIV-associated dysregulation of the bone marrow niche, as well as the susceptibility of HSPCs to infection by HIV.
Collapse
|
3
|
O'Reilly E, Zeinabad HA, Szegezdi E. Hematopoietic versus leukemic stem cell quiescence: Challenges and therapeutic opportunities. Blood Rev 2021; 50:100850. [PMID: 34049731 DOI: 10.1016/j.blre.2021.100850] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/22/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem cells (HSC) are responsible for the production of mature blood cells. To ensure that the HSC pool does not get exhausted over the lifetime of an individual, most HSCs are in a state of quiescence with only a small proportion of HSCs dividing at any one time. HSC quiescence is carefully controlled by both intrinsic and extrinsic, niche-driven mechanisms. In acute myeloid leukemia (AML), the leukemic cells overtake the hematopoietic bone marrow niche where they acquire a quiescent state. These dormant AML cells are resistant to chemotherapeutics. Because they can re-establish the disease after therapy, they are often termed as quiescent leukemic stem cells (LSC) or leukemia-initiating cells. While advancements are being made to target particular driver mutations in AML, there is less focus on how to tackle the drug resistance of quiescent LSCs. This review summarises the current knowledge on the biochemical characteristics of quiescent HSCs and LSCs, the intracellular signaling pathways and the niche-driven mechanisms that control quiescence and the key differences between HSC- and LSC-quiescence that may be exploited for therapy.
Collapse
Affiliation(s)
- Eimear O'Reilly
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Hojjat Alizadeh Zeinabad
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Eva Szegezdi
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
4
|
Yoon YM, Storm KJ, Kamimae-Lanning AN, Goloviznina NA, Kurre P. Endogenous DNA Damage Leads to p53-Independent Deficits in Replicative Fitness in Fetal Murine Fancd2 -/- Hematopoietic Stem and Progenitor Cells. Stem Cell Reports 2016; 7:840-853. [PMID: 27720904 PMCID: PMC5106485 DOI: 10.1016/j.stemcr.2016.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 11/30/2022] Open
Abstract
Our mechanistic understanding of Fanconi anemia (FA) pathway function in hematopoietic stem and progenitor cells (HSPCs) owes much to their role in experimentally induced DNA crosslink lesion repair. In bone marrow HSPCs, unresolved stress confers p53-dependent apoptosis and progressive cell attrition. The role of FA proteins during hematopoietic development, in the face of physiological replicative demand, remains elusive. Here, we reveal a fetal HSPC pool in Fancd2−/− mice with compromised clonogenicity and repopulation. Without experimental manipulation, fetal Fancd2−/− HSPCs spontaneously accumulate DNA strand breaks and RAD51 foci, associated with a broad transcriptional DNA-damage response, and constitutive activation of ATM as well as p38 stress kinase. Remarkably, the unresolved stress during rapid HSPC pool expansion does not trigger p53 activation and apoptosis; rather, it constrains proliferation. Collectively our studies point to a role for the FA pathway during hematopoietic development and provide a new model for studying the physiological function of FA proteins. Fancd2−/− fetal HSPCs show spontaneous deficits on replicative stress in development Fancd2−/− FL HSPCs show activated DNA-damage responses and strand-break accumulation Fancd2−/− FL deficits occur without apoptosis and independent of p53 activation MAPK (p38) inhibition rescues Fancd2−/− progenitor defects in vitro and in vivo
Collapse
Affiliation(s)
- Young Me Yoon
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA; Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA; Pediatric Cancer Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kelsie J Storm
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA; Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA; Pediatric Cancer Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ashley N Kamimae-Lanning
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA; Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA; Pediatric Cancer Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Natalya A Goloviznina
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA; Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA; Pediatric Cancer Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Peter Kurre
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA; Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA; Pediatric Cancer Biology Program, Oregon Health & Science University, Portland, OR 97239, USA; OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
5
|
Vlaski-Lafarge M, Ivanovic Z. Reliability of ROS and RNS detection in hematopoietic stem cells − potential issues with probes and target cell population. J Cell Sci 2015; 128:3849-60. [DOI: 10.1242/jcs.171496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
Many studies have provided evidence for the crucial role of the reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the regulation of differentiation and/or self-renewal, and the balance between quiescence and proliferation of hematopoietic stem cells (HSCs). Several metabolic regulators have been implicated in the maintenance of HSC redox homeostasis; however, the mechanisms that are regulated by ROS and RNS, as well as their downstream signaling are still elusive. This is partially owing to a lack of suitable methods that allow unequivocal and specific detection of ROS and RNS. In this Opinion, we first discuss the limitations of the commonly used techniques for detection of ROS and RNS, and the problem of heterogeneity of the cell population used in redox studies, which, together, can result in inaccurate conclusions regarding the redox biology of HSCs. We then propose approaches that are based on single-cell analysis followed by a functional test to examine ROS and RNS levels specifically in HSCs, as well as methods that might be used in vivo to overcome these drawbacks, and provide a better understanding of ROS and RNS function in stem cells.
Collapse
Affiliation(s)
- Marija Vlaski-Lafarge
- Etablissement Français du Sang Aquitaine-Limousin, 33075 Bordeaux, France
- UMR 5164 CNRS/Université Bordeaux Segalen, 33000 Bordeaux, France
| | - Zoran Ivanovic
- Etablissement Français du Sang Aquitaine-Limousin, 33075 Bordeaux, France
- UMR 5164 CNRS/Université Bordeaux Segalen, 33000 Bordeaux, France
| |
Collapse
|
6
|
Holloway JK, Sun X, Yokoo R, Villeneuve AM, Cohen PE. Mammalian CNTD1 is critical for meiotic crossover maturation and deselection of excess precrossover sites. ACTA ACUST UNITED AC 2014; 205:633-41. [PMID: 24891606 PMCID: PMC4050721 DOI: 10.1083/jcb.201401122] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Meiotic crossovers (COs) are crucial for ensuring accurate homologous chromosome segregation during meiosis I. Because the double-strand breaks (DSBs) that initiate meiotic recombination greatly outnumber eventual COs, this process requires exquisite regulation to narrow down the pool of DSB intermediates that may form COs. In this paper, we identify a cyclin-related protein, CNTD1, as a critical mediator of this process. Disruption of Cntd1 results in failure to localize CO-specific factors MutLγ and HEI10 at designated CO sites and also leads to prolonged high levels of pre-CO intermediates marked by MutSγ and RNF212. These data show that maturation of COs is intimately coupled to deselection of excess pre-CO sites to yield a limited number of COs and that CNTD1 coordinates these processes by regulating the association between the RING finger proteins HEI10 and RNF212 and components of the CO machinery.
Collapse
Affiliation(s)
- J Kim Holloway
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Xianfei Sun
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Rayka Yokoo
- Department of Developmental Biology and Department of Genetics, Stanford University, Stanford, CA 94305 Department of Developmental Biology and Department of Genetics, Stanford University, Stanford, CA 94305
| | - Anne M Villeneuve
- Department of Developmental Biology and Department of Genetics, Stanford University, Stanford, CA 94305 Department of Developmental Biology and Department of Genetics, Stanford University, Stanford, CA 94305
| | - Paula E Cohen
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
7
|
Abstract
Hematopoietic failure is the predominant clinical manifestation of Fanconi anemia (FA), a rare, recessively inherited disorder. Mutations in 1 of 15 genes that coordinately function in a complex pathway to maintain DNA integrity also predispose patients to constitutional defects in growth and development. The hematologic manifestations have been considered to reflect the progressive loss of stem cells from the postnatal bone marrow microenvironment. Ethical concerns preclude the study of human hematopoiesis in utero. We report significant late gestational lethality and profound quantitative and qualitative deficiencies in the murine Fancc(-/-) fetal liver hematopoietic stem and progenitor cell pool. Fancc(-/-) fetal liver hematopoietic stem and progenitor cells revealed a significant loss of quiescence and decline in serial repopulating capacity, but no substantial difference in apoptosis or levels of reactive oxygen species. Our studies suggest that compromised hematopoiesis in Fancc(-/-) animals is developmentally programmed and does not arise de novo in bone marrow.
Collapse
|
8
|
Barroca V, Mouthon MA, Lewandowski D, Brunet de la Grange P, Gauthier LR, Pflumio F, Boussin FD, Arwert F, Riou L, Allemand I, Romeo PH, Fouchet P. Impaired functionality and homing of Fancg-deficient hematopoietic stem cells. Hum Mol Genet 2011; 21:121-35. [PMID: 21968513 DOI: 10.1093/hmg/ddr447] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fanconi anemia (FA) is a human rare genetic disorder characterized by congenital defects, bone marrow (BM) failure and predisposition to leukemia. The progressive aplastic anemia suggests a defect in the ability of hematopoietic stem cells (HSC) to sustain hematopoieis. We have examined the role of the nuclear FA core complex gene Fancg in the functionality of HSC. In Fancg-/- mice, we observed a decay of long-term HSC and multipotent progenitors that account for the reduction in the LSK compartment containing primitive hematopoietic cells. Fancg-/- lymphoid and myeloid progenitor cells were also affected, and myeloid progenitors show compromised in vitro functionality. HSC from Fancg-/- mice failed to engraft and to reconstitute at short and long term the hematopoiesis in a competitive transplantation assay. Fancg-/- LSK cells showed a loss of quiescence, an impaired migration in vitro in response to the chemokine CXCL12 and a defective homing to the BM after transplantation. Finally, the expression of several key genes involved in self-renewal, quiescence and migration of HSC was dysregulated in Fancg-deficient LSK subset. Collectively, our data reveal that Fancg should play a role in the regulation of physiological functions of HSC.
Collapse
Affiliation(s)
- Vilma Barroca
- Laboratoire de Gamétogenèse Apoptose et Génotoxicite, Institut de Radiobiologie Cellulaire et Moléculaire, Direction des Sciences du Vivant, Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses 92265, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wyss BK, Donnelly AFW, Zhou D, Sinn AL, Pollok KE, Goebel WS. Enhanced homing and engraftment of fresh but not ex vivo cultured murine marrow cells in submyeloablated hosts following CD26 inhibition by Diprotin A. Exp Hematol 2009; 37:814-23. [PMID: 19540435 DOI: 10.1016/j.exphem.2009.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 03/13/2009] [Accepted: 03/16/2009] [Indexed: 11/17/2022]
Abstract
OBJECTIVE We recently reported that murine marrow cultured ex vivo for gamma-retrovirus transduction engrafts approximately 10-fold less well than fresh marrow upon transplantation into submyeloablated hosts. Here, we evaluated homing efficiency as a potential mechanism for this engraftment disparity, and whether CD26 inhibition with the tripeptide Diprotin A (DipA) would enhance engraftment of ex vivo cultured cells in submyeloablated hosts. MATERIALS AND METHODS Homing and engraftment of fresh and ex vivo cultured lineage-negative (lin(-)) marrow cells in submyeloablated congenic hosts with and without DipA treatment was evaluated. Expression of CXCR4 and CD26 on fresh and cultured lin(-) marrow cells was compared. RESULTS Homing of lin(-) cells cultured for gamma-retrovirus transduction was at least threefold less than that of fresh lin(-) cells 20 hours after transplantation into submyeloablated hosts. DipA treatment of fresh lin(-) cells resulted in at least twofold increased homing and engraftment in submyeloablated hosts. DipA treatment, however, did not significantly improve homing or engraftment of cells undergoing a 3-day culture protocol for gamma-retrovirus transduction in submyeloablated hosts. CXCR4 expression on lin(-) cells was significantly decreased following 3 days of culture; CXCR4 expression was not significantly altered following overnight culture. CONCLUSIONS Ex vivo culture of lin(-) cells for gamma-retroviral transduction downregulates CXCR4 expression and markedly impairs homing and engraftment of murine lin(-) marrow in submyeloablated hosts. While inhibition of CD26 activity with DipA increases homing and engraftment of fresh lin(-) cells, DipA treatment does not improve homing and engraftment of cultured lin(-) marrow cells in submyeloablated congenic hosts.
Collapse
Affiliation(s)
- Brandon K Wyss
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202-5225,USA
| | | | | | | | | | | |
Collapse
|
10
|
Milsom MD, Lee AW, Zheng Y, Cancelas JA. Fanca-/- hematopoietic stem cells demonstrate a mobilization defect which can be overcome by administration of the Rac inhibitor NSC23766. Haematologica 2009; 94:1011-5. [PMID: 19491337 DOI: 10.3324/haematol.2008.004077] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Fanconi anemia is a severe bone marrow failure syndrome resulting from inactivating mutations of Fanconi anemia pathway genes. Gene and cell therapy trials using hematopoietic stem cells and progenitors have been hampered by poor mobilization of HSC to peripheral blood in response to G-CSF. Using a murine model of Fanconi anemia (Fanca(-/-) mice), we found that the Fanca deficiency was associated with a profound defect in hematopoietic stem cells and progenitors mobilization in response to G-CSF in absence of bone marrow failure, which correlates with the findings of clinical trials in Fanconi anemia patients. This mobilization defect was overcome by co-administration of the Rac inhibitor NSC23766, suggesting that Rac signaling is implicated in the retention of Fanca(-/-) hematopoietic stem cells and progenitors in the bone marrow. In view of these data, we propose that targeting Rac signaling may enhance G-CSF-induced HSC mobilization in Fanconi anemia.
Collapse
Affiliation(s)
- Michael D Milsom
- Division of Experimental Hematology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| | | | | | | |
Collapse
|
11
|
Is hematopoietic stem cell homing deficient in Fanconi anemia? Blood 2009; 113:5361; author reply 5362. [PMID: 19470437 DOI: 10.1182/blood-2008-12-192724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Parmar K, D'Andrea A, Niedernhofer LJ. Mouse models of Fanconi anemia. Mutat Res 2009; 668:133-40. [PMID: 19427003 DOI: 10.1016/j.mrfmmm.2009.03.015] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/18/2009] [Accepted: 03/30/2009] [Indexed: 12/18/2022]
Abstract
Fanconi anemia is a rare inherited disease characterized by congenital anomalies, growth retardation, aplastic anemia and an increased risk of acute myeloid leukemia and squamous cell carcinomas. The disease is caused by mutation in genes encoding proteins required for the Fanconi anemia pathway, a response mechanism to replicative stress, including that caused by genotoxins that cause DNA interstrand crosslinks. Defects in the Fanconi anemia pathway lead to genomic instability and apoptosis of proliferating cells. To date, 13 complementation groups of Fanconi anemia were identified. Five of these genes have been deleted or mutated in the mouse, as well as a sixth key regulatory gene, to create mouse models of Fanconi anemia. This review summarizes the phenotype of each of the Fanconi anemia mouse models and highlights how genetic and interventional studies using the strains have yielded novel insight into therapeutic strategies for Fanconi anemia and into how the Fanconi anemia pathway protects against genomic instability.
Collapse
Affiliation(s)
- Kalindi Parmar
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | | | | |
Collapse
|