1
|
Sommerfeld S, Mundim AV, Silva RR, Queiroz JS, Rios MP, Notário FO, Medeiros Ronchi AA, Beletti ME, Franco RR, Espindola FS, Goulart LR, Fonseca BB. Physiological Changes in Chicken Embryos Inoculated with Drugs and Viruses Highlight the Need for More Standardization of this Animal Model. Animals (Basel) 2022; 12:1156. [PMID: 35565581 PMCID: PMC9099557 DOI: 10.3390/ani12091156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 01/01/2023] Open
Abstract
Several studies have been developed using the Gallus gallus embryo as an experimental model to study the toxicity of drugs and infections. Studies that seek to standardize the evaluated parameters are needed to better understand and identify the viability of CEs as an experimental model. Therefore, we sought to verify whether macroscopic, histopathological, blood count, metabolites and/or enzymes changes and oxidative stress in CE of different ages are specific to the model. To achieve this goal, in ovo assays were performed by injecting a virus (Gammacoronavirus) and two drugs (filgrastim and dexamethasone) that cause known changes in adult animals. Although congestion and inflammatory infiltrate were visible in the case of viral infections, the white blood cell count and inflammation biomarkers did not change. Filgrastim (FG) testing did not increase granulocytes as we expected. On the other hand, CE weight and red blood cell count were lower with dexamethasone (DX), whereas white blood cell count and biomarkers varied depended on the stage of CE development. Our work reinforces the importance of standardization and correct use of the model so that the results of infection, toxicity and pharmacokinetics are reproducible.
Collapse
Affiliation(s)
- Simone Sommerfeld
- School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (A.V.M.); (R.R.S.); (J.S.Q.); (M.P.R.); (F.O.N.); (A.A.M.R.); (B.B.F.)
| | - Antonio Vicente Mundim
- School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (A.V.M.); (R.R.S.); (J.S.Q.); (M.P.R.); (F.O.N.); (A.A.M.R.); (B.B.F.)
| | - Rogério Reis Silva
- School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (A.V.M.); (R.R.S.); (J.S.Q.); (M.P.R.); (F.O.N.); (A.A.M.R.); (B.B.F.)
| | - Jéssica Santos Queiroz
- School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (A.V.M.); (R.R.S.); (J.S.Q.); (M.P.R.); (F.O.N.); (A.A.M.R.); (B.B.F.)
| | - Maisa Paschoal Rios
- School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (A.V.M.); (R.R.S.); (J.S.Q.); (M.P.R.); (F.O.N.); (A.A.M.R.); (B.B.F.)
| | - Fabiana Oliveira Notário
- School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (A.V.M.); (R.R.S.); (J.S.Q.); (M.P.R.); (F.O.N.); (A.A.M.R.); (B.B.F.)
| | - Alessandra Aparecida Medeiros Ronchi
- School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (A.V.M.); (R.R.S.); (J.S.Q.); (M.P.R.); (F.O.N.); (A.A.M.R.); (B.B.F.)
| | - Marcelo Emílio Beletti
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405-319, Brazil;
| | - Rodrigo Rodrigues Franco
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38405-319, Brazil; (R.R.F.); (F.S.E.); (L.R.G.)
| | - Foued Salmen Espindola
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38405-319, Brazil; (R.R.F.); (F.S.E.); (L.R.G.)
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38405-319, Brazil; (R.R.F.); (F.S.E.); (L.R.G.)
| | - Belchiolina Beatriz Fonseca
- School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (A.V.M.); (R.R.S.); (J.S.Q.); (M.P.R.); (F.O.N.); (A.A.M.R.); (B.B.F.)
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38405-319, Brazil; (R.R.F.); (F.S.E.); (L.R.G.)
| |
Collapse
|
2
|
Sharma S, Shinde SS, Teekas L, Vijay N. Evidence for the loss of plasminogen receptor KT gene in chicken. Immunogenetics 2020; 72:507-515. [PMID: 33247773 DOI: 10.1007/s00251-020-01186-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022]
Abstract
The loss of conserved genes has the potential to alter phenotypes drastically. Screening of vertebrate genomes for lineage-specific gene loss events has identified numerous natural knockouts associated with specific phenotypes. We provide evidence for the loss of a multi-exonic plasminogen receptor KT (PLGRKT) protein-encoding gene located on the Z chromosome in chicken. Exons 1 and 2 are entirely missing; remnants of exon 3 and a mostly intact exon 4 are identified in an assembly gap-free region in chicken with conserved synteny across species and verified using transcriptome and genome sequencing. PLGRKT gene disrupting changes are present in representative species from all five galliform families. In contrast to this, the presence of an intact transcriptionally active PLGRKT gene in species such as mallard, swan goose, and Anolis lizard suggests that gene loss occurred in the galliform lineage sometime between 68 and 80 Mya. The presence of galliform specific chicken repeat 1 (CR1) insertion at the erstwhile exon 2 of PLGRKT gene suggests repeat insertion-mediated loss. However, at least nine other independent PLGRKT coding frame disrupting changes in other bird species are supported by genome sequencing and indicate a role for relaxed purifying selection before CR1 insertion. The recurrent loss of a conserved gene with a role in the regulation of macrophage migration, efferocytosis, and blood coagulation is intriguing. Hence, we propose potential candidate genes that might be compensating the function of PLGRKT based on the presence of a C-terminal lysine residue, transmembrane domains, and gene expression patterns.
Collapse
Affiliation(s)
- Sandhya Sharma
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Sagar Sharad Shinde
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Lokdeep Teekas
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India.
| |
Collapse
|
3
|
LPS-induced inflammation disorders bone modeling and remodeling by inhibiting angiogenesis and disordering osteogenesis in chickens. Inflamm Res 2020; 69:765-777. [PMID: 32444883 DOI: 10.1007/s00011-020-01361-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 02/08/2023] Open
Abstract
Inflammation plays a negative role in the growth and development of bone. However, the underlining mechanisms of inflammation caused abnormal bone development and even bone disease are still poorly understood, especially in chickens. In this study, we explored the influence of inflammation on bone formation in broilers for the first time by using lipopolysaccharide (LPS) to establish systemic inflammatory models in chickens with tibia as the research object. The measurements of production and tibial parameters showed an inefficient production performance and lower growth rate in LPS group. We also found a large amount of platelets, inflammatory cells in chickens' blood and higher levels of inflammatory factors in serum after LPS injection, meanwhile, increase in thrombus, chondrocyte nucleolysis, and osteoclasts and a reduction in blood vessels were observed in growth plate through histological observation. The qPCR analysis showed that the mRNA expression levels of NF-κB, TLR4, TF, TPO, and its receptor C-MPL enhanced, while VEGFA was inhibited in LPS group. In addition, in OPG/RANKL system, OPG was decreased while RANKL enhanced. It was also observed that the mRNA levels of MMP-9 and its inducing factor CD147 enhanced in LPS group. The western blot results were basically in consistent with mRNA test. Thus, we infer that inflammation can inhibit bone modeling and remodeling by affecting angiogenesis and osteogenesis, and result in negative effect on bone formation furtherly.
Collapse
|
4
|
Abstract
Humoral regulation by ligand/receptor interactions is a fundamental feature of vertebrate hematopoiesis. Zebrafish are an established vertebrate animal model of hematopoiesis, sharing with mammals conserved genetic, molecular and cell biological regulatory mechanisms. This comprehensive review considers zebrafish hematopoiesis from the perspective of the hematopoietic growth factors (HGFs), their receptors and their actions. Zebrafish possess multiple HGFs: CSF1 (M-CSF) and CSF3 (G-CSF), kit ligand (KL, SCF), erythropoietin (EPO), thrombopoietin (THPO/TPO), and the interleukins IL6, IL11, and IL34. Some ligands and/or receptor components have been duplicated by various mechanisms including the teleost whole genome duplication, adding complexity to the ligand/receptor interactions possible, but also providing examples of several different outcomes of ligand and receptor subfunctionalization or neofunctionalization. CSF2 (GM-CSF), IL3 and IL5 and their receptors are absent from zebrafish. Overall the humoral regulation of hematopoiesis in zebrafish displays considerable similarity with mammals, which can be applied in biological and disease modelling research.
Collapse
Affiliation(s)
- Vahid Pazhakh
- a Australian Regenerative Medicine Institute, Monash University , Clayton , Australia
| | - Graham J Lieschke
- a Australian Regenerative Medicine Institute, Monash University , Clayton , Australia
| |
Collapse
|
5
|
Katzenback BA, Katakura F, Belosevic M. Goldfish (Carassius auratus L.) as a model system to study the growth factors, receptors and transcription factors that govern myelopoiesis in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:68-85. [PMID: 26546240 DOI: 10.1016/j.dci.2015.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
The process of myeloid cell development (myelopoiesis) in fish has mainly been studied in three cyprinid species: zebrafish (Danio rerio), ginbuna carp (Carassius auratus langsdorfii) and goldfish (C. auratus, L.). Our studies on goldfish myelopoiesis have utilized in vitro generated primary kidney macrophage (PKM) cultures and isolated primary kidney neutrophils (PKNs) cultured overnight to study the process of macrophage (monopoiesis) and neutrophil (granulopoiesis) development and the key growth factors, receptors, and transcription factors that govern this process in vitro. The PKM culture system is unique in that all three subpopulations of macrophage development, namely progenitor cells, monocytes, and mature macrophages, are simultaneously present in culture unlike mammalian systems, allowing for the elucidation of the complex mixture of cytokines that regulate progressive and selective macrophage development from progenitor cells to fully functional mature macrophages in vitro. Furthermore, we have been able to extend our investigations to include the development of erythrocytes (erythropoiesis) and thrombocytes (thrombopoiesis) through studies focusing on the progenitor cell population isolated from the goldfish kidney. Herein, we review the in vitro goldfish model systems focusing on the characteristics of cell sub-populations, growth factors and their receptors, and transcription factors that regulate goldfish myelopoiesis.
Collapse
Affiliation(s)
- Barbara A Katzenback
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Fumihiko Katakura
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
6
|
Tanizaki Y, Ichisugi M, Obuchi-Shimoji M, Ishida-Iwata T, Tahara-Mogi A, Meguro-Ishikawa M, Kato T. Thrombopoietin induces production of nucleated thrombocytes from liver cells in Xenopus laevis. Sci Rep 2015; 5:18519. [PMID: 26687619 PMCID: PMC4685256 DOI: 10.1038/srep18519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/06/2015] [Indexed: 12/29/2022] Open
Abstract
The development of mammalian megakaryocytes (MKs) and platelets, which are thought to be absent in non-mammals, is primarily regulated by the thrombopoietin (TPO)/Mpl system. Although non-mammals possess nucleated thrombocytes instead of platelets, the features of nucleated thrombocyte progenitors remain to be clarified. Here, we provide the general features of TPO using Xenopus laevis TPO (xlTPO). Hepatic and splenic cells were cultured in liquid suspension with recombinant xlTPO. These cells differentiated into large, round, polyploid CD41-expressing cells and were classified as X. laevis MKs, comparable to mammalian MKs. The subsequent culture of MKs after removal of xlTPO produced mature, spindle-shaped thrombocytes that were activated by thrombin, thereby altering their morphology. XlTPO induced MKs in cultured hepatic cells for at least three weeks; however, this was not observed in splenic cells; this result demonstrates the origin of early haematopoietic progenitors in the liver rather than the spleen. Additionally, xlTPO enhanced viability of peripheral thrombocytes, indicating the xlTPO-Mpl pathway stimulates anti-apoptotic in peripheral thrombocytes. The development of thrombocytes from MKs via the TPO-Mpl system in X. laevis plays a crucial role in their development from MKs, comparable to mammalian thrombopoiesis. Thus, our results offer insight into the cellular evolution of platelets/MKs in vertebrates. (200/200).
Collapse
Affiliation(s)
- Yuta Tanizaki
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480, Japan
| | - Megumi Ichisugi
- Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Miyako Obuchi-Shimoji
- Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Takako Ishida-Iwata
- Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Ayaka Tahara-Mogi
- Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Mizue Meguro-Ishikawa
- Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Takashi Kato
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480, Japan
- Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| |
Collapse
|
7
|
Katakura F, Yabu T, Yamaguchi T, Miyamae J, Shirinashihama Y, Nakanishi T, Moritomo T. Exploring erythropoiesis of common carp (Cyprinus carpio) using an in vitro colony assay in the presence of recombinant carp kit ligand A and erythropoietin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:13-22. [PMID: 26111997 DOI: 10.1016/j.dci.2015.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/11/2015] [Accepted: 06/11/2015] [Indexed: 06/04/2023]
Abstract
The use of in vitro colony assays in mammals has contributed to identification of erythroid progenitor cells such as burst-forming unit-erythroid (BFU-E) and colony-forming unit-erythroid (CFU-E) progenitors, and serves to examine functions of erythropoietic growth factors like Erythropoietin (Epo) and Kit ligand. Here, we established an in vitro colony-forming assay capable of investigating erythropoiesis in carp (Cyprinus carpio), cloned and functionally characterized recombinant homologous molecules Epo and Kit ligand A (Kitla), and identified three distinct erythroid progenitor cells in carp. Recombinant carp Epo induced the formation of CFU-E-like and BFU-E-like erythroid colonies, expressing erythroid marker genes, β-globin, epor and gata1. Recombinant carp Kitla alone induced limited colony formation, whereas a combination of Kitla and Epo dramatically enhanced erythroid colony formation and colony cell growth, as well as stimulated the formation of thrombocytic/erythroid colonies expressing not only erythroid markers but also thrombocytic markers, cd41 and c-mpl. Utilizing this colony assay to examine the distribution of distinct erythroid progenitor cells in carp, we demonstrated that carp head and trunk kidney play a primary role in erythropoiesis, while the spleen plays a secondary. Furthermore, we showed that presumably bi-potent thrombocytic/erythroid progenitor cells localize principally in the trunk kidney. Our results indicate that teleost fish possess mechanisms of Epo- and Kitla-dependent erythropoiesis similar to those in other vertebrates, and also help to demonstrate the diversity of erythropoietic sites among vertebrates.
Collapse
Affiliation(s)
- Fumihiko Katakura
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan.
| | - Takeshi Yabu
- Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Japan
| | - Takuya Yamaguchi
- Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Japan
| | - Jiro Miyamae
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Yuki Shirinashihama
- Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Japan
| | - Teruyuki Nakanishi
- Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Japan
| | - Tadaaki Moritomo
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
8
|
Origins of the Vertebrate Erythro/Megakaryocytic System. BIOMED RESEARCH INTERNATIONAL 2015; 2015:632171. [PMID: 26557683 PMCID: PMC4628740 DOI: 10.1155/2015/632171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/02/2015] [Indexed: 02/08/2023]
Abstract
Vertebrate erythrocytes and thrombocytes arise from the common bipotent thrombocytic-erythroid progenitors (TEPs). Even though nonmammalian erythrocytes and thrombocytes are phenotypically very similar to each other, mammalian species have developed some key evolutionary improvements in the process of erythroid and thrombocytic differentiation, such as erythroid enucleation, megakaryocyte endoreduplication, and platelet formation. This brings up a few questions that we try to address in this review. Specifically, we describe the ontology of erythro-thrombopoiesis during adult hematopoiesis with focus on the phylogenetic origin of mammalian erythrocytes and thrombocytes (also termed platelets). Although the evolutionary relationship between mammalian and nonmammalian erythroid cells is clear, the appearance of mammalian megakaryocytes is less so. Here, we discuss recent data indicating that nonmammalian thrombocytes and megakaryocytes are homologs. Finally, we hypothesize that erythroid and thrombocytic differentiation evolved from a single ancestral lineage, which would explain the striking similarities between these cells.
Collapse
|
9
|
Katakura F, Katzenback BA, Belosevic M. Recombinant goldfish thrombopoietin up-regulates expression of genes involved in thrombocyte development and synergizes with kit ligand A to promote progenitor cell proliferation and colony formation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:157-169. [PMID: 25450454 DOI: 10.1016/j.dci.2014.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/31/2014] [Accepted: 11/01/2014] [Indexed: 06/04/2023]
Abstract
Thrombopoietin (TPO) is the principal regulator of thrombopoiesis and promotes the proliferation, differentiation and maturation of megakaryocytic progenitor cells in mammals. In this study we report on the molecular and functional characterization of goldfish TPO. Quantitative expression analysis of goldfish tpo revealed the highest mRNA levels in heart, followed by spleen, liver, brain, intestine and kidney tissues. Significant decrease of tpo and c-mpl expressions in goldfish primary kidney macrophage (PKM) cultures, as progenitor to macrophage development progressed, indicates that TPO is not involved in monopoiesis. Recombinant goldfish TPO (rgTPO) alone did not induce significant proliferation of progenitor cells, but TPO in cooperation with recombinant goldfish kit ligand A (rgKITLA) supported proliferation of progenitor cells in a dose-dependent manner. In response to rgTPO or a combination of rgTPO and rgKITLA, the mRNA levels of thrombopoietic markers cd41 and c-mpl as well as thrombo/erythropoietic transcription factors gata1 and lmo2 in sorted progenitor cells were up-regulated, while the mRNA levels of granulopoietic markers (cebpα and gcsfr) and the lymphoid transcription factor gata3 were down-regulated. Furthermore, rgTPO and rgKITLA synergistically stimulated thrombocytic colony-formation. Our results demonstrate that goldfish TPO has similar functions to mammalian TPO as a regulator of thrombopoiesis, and suggests a highly conserved molecular mechanism of thrombocyte development throughout evolution of vertebrates.
Collapse
Affiliation(s)
- Fumihiko Katakura
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Barbara A Katzenback
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; School of Public Health, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
10
|
Cellular characterization of thrombocytes in Xenopus laevis with specific monoclonal antibodies. Exp Hematol 2014; 43:125-36. [PMID: 25448492 DOI: 10.1016/j.exphem.2014.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 10/03/2014] [Accepted: 10/07/2014] [Indexed: 01/12/2023]
Abstract
Platelets are produced from megakaryocytes (MKs) in the bone marrow. In contrast, most nonmammalian vertebrates have nucleated and spindle-shaped thrombocytes instead of platelets in their circulatory systems, and the presence of MKs as thrombocyte progenitors has not been verified. In developing a new animal model in adult African clawed frog (Xenopus laevis), we needed to distinguish nucleated thrombocytes and their progenitors from other blood cells, because the cellular morphology of activated thrombocytes resembles lymphocytes and other cells. We initially generated two monoclonal antibodies, T5 and T12, to X. laevis thrombocytes. Whereas T5 recognized both thrombocytes and leukocytes, T12 specifically reacted to spindle-shaped thrombocytes. The T12(+) thrombocytes displayed much higher DNA ploidy than nucleated erythrocytes, and they expressed CD41 and Fli-1. In the presence of CaCl2, adenosine diphosphate, thrombin, or various collagens, T12(+) thrombocytes exhibited aggregation. These thrombocytes were located predominantly in the hepatic sinusoids and the splenic red pulp, suggesting that both organs are the sites of thrombopoiesis. Notably, circulating thrombocytes exhibited lower DNA ploidy than hepatic thrombocytes. Intraperitoneal administration of T12 produced immune thrombocytopenia in frogs, which reached a nadir 4 days postinjection, followed by recovery, suggesting that humoral regulation maintained the number of circulating thrombocytes. Although differences between MKs and thrombocytes in X. laevis remain to be defined, our results provide further insight into MK development and thrombopoiesis in vertebrates.
Collapse
|
11
|
Abstract
In nonmammalian vertebrates, the functional units of hemostasis are thrombocytes. Thrombocytes are thought to arise from bipotent thrombocytic/erythroid progenitors (TEPs). TEPs have been experimentally demonstrated in avian models of hematopoiesis, and mammals possess functional equivalents known as megakaryocyte/erythroid progenitors (MEPs). However, the presence of TEPs in teleosts has only been speculated. To identify and prospectively isolate TEPs, we identified, cloned, and generated recombinant zebrafish thrombopoietin (Tpo). Tpo mRNA expanded itga2b:GFP(+) (cd41:GFP(+)) thrombocytes as well as hematopoietic stem and progenitor cells (HSPCs) in the zebrafish embryo. Utilizing Tpo in clonal methylcellulose assays, we describe for the first time the prospective isolation and characterization of TEPs from transgenic zebrafish. Combinatorial use of zebrafish Tpo, erythropoietin, and granulocyte colony stimulating factor (Gcsf) allowed the investigation of HSPCs responsible for erythro-, myelo-, and thrombo-poietic differentiation. Utilizing these assays allowed the visualization and differentiation of hematopoietic progenitors ex vivo in real-time with time-lapse and high-throughput microscopy, allowing analyses of their clonogenic and proliferative capacity. These studies indicate that the functional role of Tpo in the differentiation of thrombocytes from HSPCs is well conserved among vertebrate organisms, positing the zebrafish as an excellent model to investigate diseases caused by dysregulated erythro- and thrombo-poietic differentiation.
Collapse
|
12
|
Abstract
Abstract
Prophylactic platelet transfusions are the standard of care for patients with hypoproliferative thrombocytopenia after receiving chemotherapy or radiation for the treatment of malignancy, for BM replacement by leukemia or solid tumor, or in preparation for a hematopoietic stem cell transplantation.1 During this time of thrombocytopenia, these patients may receive both prophylactic platelet transfusions, which are given to prevent potentially life-threatening bleeding when a patient's platelet count drops below a predetermined threshold, and therapeutic platelet transfusions, which are given to treat active or recurrent bleeding. In the 1950s, the invention of the plastic blood bag allowed for the production and storage of platelet concentrates,2 and in the 1960s, it was recognized that prophylactic platelet transfusions effectively reduced hemorrhagic death in patients with newly diagnosed leukemia.3,4 In 1962, Gaydos published the paper that is frequently credited with the inception of the 20 000/μL platelet transfusion threshold.5 Despite a half-century of experience with prophylactic platelet transfusions, there are still insufficient data to provide clinicians with evidence-based guidelines specific to pediatric oncology and hematopoietic stem cell transplantation (HSCT) patients.
Collapse
|