1
|
Cottle T, Joh L, Posner C, DeCosta A, Kardon JR. An adaptor for feedback regulation of heme biosynthesis by the mitochondrial protease CLPXP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602318. [PMID: 39005287 PMCID: PMC11245108 DOI: 10.1101/2024.07.05.602318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Heme biosynthesis is tightly coordinated such that essential heme functions including oxygen transport, respiration, and catalysis are fully supplied without overproducing toxic heme precursors and depleting cellular iron. The initial heme biosynthetic enzyme, ALA synthase (ALAS), exhibits heme-induced degradation that is dependent on the mitochondrial AAA+ protease complex CLPXP, but the mechanism for this negative feedback regulation had not been elucidated. By biochemical reconstitution, we have discovered that POLDIP2 serves as a heme-sensing adaptor protein to deliver ALAS for degradation. Similarly, loss of POLDIP2 strongly impairs ALAS turnover in cells. POLDIP2 directly recognizes heme-bound ALAS to drive assembly of the degradation complex. The C-terminal element of ALAS, truncation of which leads to a form of porphyria (XLDPP), is dispensable for interaction with POLDIP2 but necessary for degradation. Our findings establish the molecular basis for heme-induced degradation of ALAS by CLPXP, establish POLDIP2 as a substrate adaptor for CLPXP, and provide mechanistic insight into two forms of erythropoietic protoporphyria linked to CLPX and ALAS.
Collapse
|
2
|
Taylor J, Ayres-Galhardo PH, Brown BL. Elucidating the Role of Human ALAS2 C-terminal Mutations Resulting in Loss of Function and Disease. Biochemistry 2024; 63:1636-1646. [PMID: 38888931 PMCID: PMC11223264 DOI: 10.1021/acs.biochem.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
The conserved enzyme aminolevulinic acid synthase (ALAS) initiates heme biosynthesis in certain bacteria and eukaryotes by catalyzing the condensation of glycine and succinyl-CoA to yield aminolevulinic acid. In humans, the ALAS isoform responsible for heme production during red blood cell development is the erythroid-specific ALAS2 isoform. Owing to its essential role in erythropoiesis, changes in human ALAS2 (hALAS2) function can lead to two different blood disorders. X-linked sideroblastic anemia results from loss of ALAS2 function, while X-linked protoporphyria results from gain of ALAS2 function. Interestingly, mutations in the ALAS2 C-terminal extension can be implicated in both diseases. Here, we investigate the molecular basis for enzyme dysfunction mediated by two previously reported C-terminal loss-of-function variants, hALAS2 V562A and M567I. We show that the mutations do not result in gross structural perturbations, but the enzyme stability for V562A is decreased. Additionally, we show that enzyme stability moderately increases with the addition of the pyridoxal 5'-phosphate (PLP) cofactor for both variants. The variants display differential binding to PLP and the individual substrates compared to wild-type hALAS2. Although hALAS2 V562A is a more active enzyme in vitro, it is less efficient concerning succinyl-CoA binding. In contrast, the M567I mutation significantly alters the cooperativity of substrate binding. In combination with previously reported cell-based studies, our work reveals the molecular basis by which hALAS2 C-terminal mutations negatively affect ALA production necessary for proper heme biosynthesis.
Collapse
Affiliation(s)
- Jessica
L. Taylor
- Department
of Biochemistry, Center for Structural Biology, Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| | - Pedro H. Ayres-Galhardo
- Department
of Biochemistry, Center for Structural Biology, Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| | - Breann L. Brown
- Department
of Biochemistry, Center for Structural Biology, Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
3
|
Suzuki K, Kubota Y, Kaneko K, Kamata CC, Furuyama K. CLPX regulates mitochondrial fatty acid β-oxidation in liver cells. J Biol Chem 2023; 299:105210. [PMID: 37660922 PMCID: PMC10556790 DOI: 10.1016/j.jbc.2023.105210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023] Open
Abstract
Mitochondrial fatty acid oxidation (β-oxidation) is an essential metabolic process for energy production in eukaryotic cells, but the regulatory mechanisms of this pathway are largely unknown. In the present study, we found that several enzymes involved in β-oxidation are associated with CLPX, the AAA+ unfoldase that is a component of the mitochondrial matrix protease ClpXP. The suppression of CLPX expression increased β-oxidation activity in the HepG2 cell line and in primary human hepatocytes without glucagon treatment. However, the protein levels of enzymes involved in β-oxidation did not significantly increase in CLPX-deleted HepG2 cells (CLPX-KO cells). Coimmunoprecipitation experiments revealed that the protein level in the immunoprecipitates of each antibody changed after the treatment of WT cells with glucagon, and a part of these changes was also observed in the comparison of WT and CLPX-KO cells without glucagon treatment. Although the exogenous expression of WT or ATP-hydrolysis mutant CLPX suppressed β-oxidation activity in CLPX-KO cells, glucagon treatment induced β-oxidation activity only in CLPX-KO cells expressing WT CLPX. These results suggest that the dissociation of CLPX from its target proteins is essential for the induction of β-oxidation in HepG2 cells. Moreover, specific phosphorylation of AMP-activated protein kinase and a decrease in the expression of acetyl-CoA carboxylase 2 were observed in CLPX-KO cells, suggesting that CLPX might participate in the regulation of the cytosolic signaling pathway for β-oxidation. The mechanism for AMP-activated protein kinase phosphorylation remains elusive; however, our results uncovered the hitherto unknown role of CLPX in mitochondrial β-oxidation in human liver cells.
Collapse
Affiliation(s)
- Ko Suzuki
- Department of Molecular Biochemistry, Iwate Medical University, Yahaba, Iwate, Japan
| | - Yoshiko Kubota
- Department of Molecular Biochemistry, Iwate Medical University, Yahaba, Iwate, Japan
| | - Kiriko Kaneko
- Department of Molecular Biochemistry, Iwate Medical University, Yahaba, Iwate, Japan
| | | | - Kazumichi Furuyama
- Department of Molecular Biochemistry, Iwate Medical University, Yahaba, Iwate, Japan.
| |
Collapse
|
4
|
Tran JU, Brown BL. The yeast ALA synthase C-terminus positively controls enzyme structure and function. Protein Sci 2023; 32:e4600. [PMID: 36807942 PMCID: PMC10031213 DOI: 10.1002/pro.4600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
5-Aminolevulinic acid synthase (ALAS) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the first and rate-limiting step of heme biosynthesis in α-proteobacteria and several non-plant eukaryotes. All ALAS homologs contain a highly conserved catalytic core, but eukaryotes also have a unique C-terminal extension that plays a role in enzyme regulation. Several mutations in this region are implicated in multiple blood disorders in humans. In Saccharomyces cerevisiae ALAS (Hem1), the C-terminal extension wraps around the homodimer core to contact conserved ALAS motifs proximal to the opposite active site. To determine the importance of these Hem1 C-terminal interactions, we determined the crystal structure of S. cerevisiae Hem1 lacking the terminal 14 amino acids (Hem1 ΔCT). With truncation of the C-terminal extension, we show structurally and biochemically that multiple catalytic motifs become flexible, including an antiparallel β-sheet important to Fold-Type I PLP-dependent enzymes. The changes in protein conformation result in an altered cofactor microenvironment, decreased enzyme activity and catalytic efficiency, and ablation of subunit cooperativity. These findings suggest that the eukaryotic ALAS C-terminus has a homolog-specific role in mediating heme biosynthesis, indicating a mechanism for autoregulation that can be exploited to allosterically modulate heme biosynthesis in different organisms.
Collapse
Affiliation(s)
- Jenny U. Tran
- Department of BiochemistryVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Breann L. Brown
- Department of BiochemistryVanderbilt University School of MedicineNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt University School of MedicineNashvilleTennesseeUSA
| |
Collapse
|
5
|
Tran JU, Brown BL. Structural Basis for Allostery in PLP-dependent Enzymes. Front Mol Biosci 2022; 9:884281. [PMID: 35547395 PMCID: PMC9081730 DOI: 10.3389/fmolb.2022.884281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes are found ubiquitously in nature and are involved in a variety of biological pathways, from natural product synthesis to amino acid and glucose metabolism. The first structure of a PLP-dependent enzyme was reported over 40 years ago, and since that time, there is a steady wealth of structural and functional information revealed for a wide array of these enzymes. A functional mechanism that is gaining more appreciation due to its relevance in drug design is that of protein allostery, where binding of a protein or ligand at a distal site influences the structure, organization, and function at the active site. Here, we present a review of current structure-based mechanisms of allostery for select members of each PLP-dependent enzyme family. Knowledge of these mechanisms may have a larger potential for identifying key similarities and differences among enzyme families that can eventually be exploited for therapeutic development.
Collapse
Affiliation(s)
- Jenny U. Tran
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Breann L. Brown
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
6
|
Taylor JL, Brown BL. Structural basis for dysregulation of aminolevulinic acid synthase in human disease. J Biol Chem 2022; 298:101643. [PMID: 35093382 PMCID: PMC8892079 DOI: 10.1016/j.jbc.2022.101643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/19/2023] Open
Abstract
Heme is a critical biomolecule that is synthesized in vivo by several organisms such as plants, animals, and bacteria. Reflecting the importance of this molecule, defects in heme biosynthesis underlie several blood disorders in humans. Aminolevulinic acid synthase (ALAS) initiates heme biosynthesis in α-proteobacteria and nonplant eukaryotes. Debilitating and painful diseases such as X-linked sideroblastic anemia and X-linked protoporphyria can result from one of more than 91 genetic mutations in the human erythroid-specific enzyme ALAS2. This review will focus on recent structure-based insights into human ALAS2 function in health and how it dysfunctions in disease. We will also discuss how certain genetic mutations potentially result in disease-causing structural perturbations. Furthermore, we use thermodynamic and structural information to hypothesize how the mutations affect the human ALAS2 structure and categorize some of the unique human ALAS2 mutations that do not respond to typical treatments, that have paradoxical in vitro activity, or that are highly intolerable to changes. Finally, we will examine where future structure-based insights into the family of ALA synthases are needed to develop additional enzyme therapeutics.
Collapse
Affiliation(s)
- Jessica L Taylor
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Breann L Brown
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
7
|
Di Pierro E, Granata F, De Canio M, Rossi M, Ricci A, Marcacci M, De Luca G, Sarno L, Barbieri L, Ventura P, Graziadei G. Recognized and Emerging Features of Erythropoietic and X-Linked Protoporphyria. Diagnostics (Basel) 2022; 12:diagnostics12010151. [PMID: 35054318 PMCID: PMC8775248 DOI: 10.3390/diagnostics12010151] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Erythropoietic protoporphyria (EPP) and X-linked protoporphyria (XLP) are inherited disorders resulting from defects in two different enzymes of the heme biosynthetic pathway, i.e., ferrochelatase (FECH) and delta-aminolevulinic acid synthase-2 (ALAS2), respectively. The ubiquitous FECH catalyzes the insertion of iron into the protoporphyrin ring to generate the final product, heme. After hemoglobinization, FECH can utilize other metals like zinc to bind the remainder of the protoporphyrin molecules, leading to the formation of zinc protoporphyrin. Therefore, FECH deficiency in EPP limits the formation of both heme and zinc protoporphyrin molecules. The erythroid-specific ALAS2 catalyses the synthesis of delta-aminolevulinic acid (ALA), from the union of glycine and succinyl-coenzyme A, in the first step of the pathway in the erythron. In XLP, ALAS2 activity increases, resulting in the amplified formation of ALA, and iron becomes the rate-limiting factor for heme synthesis in the erythroid tissue. Both EPP and XLP lead to the systemic accumulation of protoporphyrin IX (PPIX) in blood, erythrocytes, and tissues causing the major symptom of cutaneous photosensitivity and several other less recognized signs that need to be considered. Although significant advances have been made in our understanding of EPP and XLP in recent years, a complete understanding of the factors governing the variability in clinical expression and the severity (progression) of the disease remains elusive. The present review provides an overview of both well-established facts and the latest findings regarding these rare diseases.
Collapse
Affiliation(s)
- Elena Di Pierro
- Dipartimento di Medicina Interna, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.G.); (G.D.L.); (G.G.)
- Correspondence: or ; Tel.: +39-0255036155
| | - Francesca Granata
- Dipartimento di Medicina Interna, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.G.); (G.D.L.); (G.G.)
| | - Michele De Canio
- Porphyria and Rare Diseases Centre, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy; (M.D.C.); (L.B.)
| | - Mariateresa Rossi
- Department of Dermatology, ASST Spedali Civili di Brescia, University of Brescia, 25123 Brescia, Italy; (M.R.); (L.S.)
| | - Andrea Ricci
- Internal Medicine Unit, Department of Medical and Surgical Science for Children and Adults, University of Modena e Reggio Emilia, 41124 Modena, Italy; (A.R.); (M.M.); (P.V.)
| | - Matteo Marcacci
- Internal Medicine Unit, Department of Medical and Surgical Science for Children and Adults, University of Modena e Reggio Emilia, 41124 Modena, Italy; (A.R.); (M.M.); (P.V.)
| | - Giacomo De Luca
- Dipartimento di Medicina Interna, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.G.); (G.D.L.); (G.G.)
| | - Luisa Sarno
- Department of Dermatology, ASST Spedali Civili di Brescia, University of Brescia, 25123 Brescia, Italy; (M.R.); (L.S.)
| | - Luca Barbieri
- Porphyria and Rare Diseases Centre, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy; (M.D.C.); (L.B.)
| | - Paolo Ventura
- Internal Medicine Unit, Department of Medical and Surgical Science for Children and Adults, University of Modena e Reggio Emilia, 41124 Modena, Italy; (A.R.); (M.M.); (P.V.)
| | - Giovanna Graziadei
- Dipartimento di Medicina Interna, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.G.); (G.D.L.); (G.G.)
| |
Collapse
|
8
|
Bailey HJ, Bezerra GA, Marcero JR, Padhi S, Foster WR, Rembeza E, Roy A, Bishop DF, Desnick RJ, Bulusu G, Dailey HA, Yue WW. Human aminolevulinate synthase structure reveals a eukaryotic-specific autoinhibitory loop regulating substrate binding and product release. Nat Commun 2020; 11:2813. [PMID: 32499479 PMCID: PMC7272653 DOI: 10.1038/s41467-020-16586-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
5'-aminolevulinate synthase (ALAS) catalyzes the first step in heme biosynthesis, generating 5'-aminolevulinate from glycine and succinyl-CoA. Inherited frameshift indel mutations of human erythroid-specific isozyme ALAS2, within a C-terminal (Ct) extension of its catalytic core that is only present in higher eukaryotes, lead to gain-of-function X-linked protoporphyria (XLP). Here, we report the human ALAS2 crystal structure, revealing that its Ct-extension folds onto the catalytic core, sits atop the active site, and precludes binding of substrate succinyl-CoA. The Ct-extension is therefore an autoinhibitory element that must re-orient during catalysis, as supported by molecular dynamics simulations. Our data explain how Ct deletions in XLP alleviate autoinhibition and increase enzyme activity. Crystallography-based fragment screening reveals a binding hotspot around the Ct-extension, where fragments interfere with the Ct conformational dynamics and inhibit ALAS2 activity. These fragments represent a starting point to develop ALAS2 inhibitors as substrate reduction therapy for porphyria disorders that accumulate toxic heme intermediates.
Collapse
Affiliation(s)
- Henry J Bailey
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Gustavo A Bezerra
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Jason R Marcero
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Siladitya Padhi
- TCS Innovation Labs-Hyderabad (Life Sciences Division), Tata Consultancy Services Ltd, Hyderabad, 500081, India
| | - William R Foster
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Elzbieta Rembeza
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Arijit Roy
- TCS Innovation Labs-Hyderabad (Life Sciences Division), Tata Consultancy Services Ltd, Hyderabad, 500081, India
| | - David F Bishop
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert J Desnick
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gopalakrishnan Bulusu
- TCS Innovation Labs-Hyderabad (Life Sciences Division), Tata Consultancy Services Ltd, Hyderabad, 500081, India
| | - Harry A Dailey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Wyatt W Yue
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
9
|
Molecular expression, characterization and mechanism of ALAS2 gain-of-function mutants. Mol Med 2019; 25:4. [PMID: 30678654 PMCID: PMC6344999 DOI: 10.1186/s10020-019-0070-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/02/2019] [Indexed: 11/13/2022] Open
Abstract
Background X-linked protoporphyria (XLP) (MIM 300752) is an erythropoietic porphyria due to gain-of-function mutations in the last exon (Ducamp et al., Hum Mol Genet 22:1280-88, 2013) of the erythroid-specific aminolevulinate synthase gene (ALAS2). Five ALAS2 exon 11 variants identified by the NHBLI Exome sequencing project (p.R559H, p.E565D, p.R572C, p.S573F and p.Y586F) were expressed, purified and characterized in order to assess their possible contribution to XLP. To further characterize the XLP gain-of-function region, five novel ALAS2 truncation mutations (p.P561X, p.V562X, p.H563X, p.E569X and p.F575X) were also expressed and studied. Methods Site-directed mutagenesis was used to generate ALAS2 mutant clones and all were prokaryotically expressed, purified to near homogeneity and characterized by protein and enzyme kinetic assays. Standard deviations were calculated for 3 or more assay replicates. Results The five ALAS2 single nucleotide variants had from 1.3- to 1.9-fold increases in succinyl-CoA Vmax and 2- to 3-fold increases in thermostability suggesting that most could be gain-of-function modifiers of porphyria instead of causes. One SNP (p.R559H) had markedly low purification yield indicating enzyme instability as the likely cause for XLSA in an elderly patient with x-linked sideroblastic anemia. The five novel ALAS2 truncation mutations had increased Vmax values for both succinyl-CoA and glycine substrates (1.4 to 5.6-fold over wild-type), while the Kms for both substrates were only modestly changed. Of interest, the thermostabilities of the truncated ALAS2 mutants were significantly lower than wild-type, with an inverse relationship to Vmax fold-increase. Conclusions Patients with porphyrias should always be assessed for the presence of the ALAS2 gain-of-function modifier variants identified here. A key region of the ALAS2 carboxyterminal region is identified by the truncation mutations studied here and the correlation of increased thermolability with activity suggests that increased molecular flexibility/active site openness is the mechanism of enhanced function of mutations in this region providing further insights into the role of the carboxyl-terminal region of ALAS2 in the regulation of erythroid heme synthesis. Electronic supplementary material The online version of this article (10.1186/s10020-019-0070-9) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Fujiwara T, Fukuhara N, Ichikawa S, Kobayashi M, Okitsu Y, Onishi Y, Furuyama K, Harigae H. A novel heterozygous ALAS2 mutation in a female with macrocytic sideroblastic anemia resembling myelodysplastic syndrome with ring sideroblasts: a case report and literature review. Ann Hematol 2017; 96:1955-1957. [PMID: 28840292 DOI: 10.1007/s00277-017-3106-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 08/12/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Tohru Fujiwara
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Noriko Fukuhara
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Satoshi Ichikawa
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Masahiro Kobayashi
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Yoko Okitsu
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Yasushi Onishi
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Kazumichi Furuyama
- Department of Molecular Biochemistry, Iwate Medical University School of Medicine, Morioka, Japan
| | - Hideo Harigae
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan.
| |
Collapse
|
11
|
Kubota Y, Nomura K, Katoh Y, Yamashita R, Kaneko K, Furuyama K. Novel Mechanisms for Heme-dependent Degradation of ALAS1 Protein as a Component of Negative Feedback Regulation of Heme Biosynthesis. J Biol Chem 2016; 291:20516-29. [PMID: 27496948 DOI: 10.1074/jbc.m116.719161] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 12/30/2022] Open
Abstract
In eukaryotic cells, heme production is tightly controlled by heme itself through negative feedback-mediated regulation of nonspecific 5-aminolevulinate synthase (ALAS1), which is a rate-limiting enzyme for heme biosynthesis. However, the mechanism driving the heme-dependent degradation of the ALAS1 protein in mitochondria is largely unknown. In the current study, we provide evidence that the mitochondrial ATP-dependent protease ClpXP, which is a heteromultimer of CLPX and CLPP, is involved in the heme-dependent degradation of ALAS1 in mitochondria. We found that ALAS1 forms a complex with ClpXP in a heme-dependent manner and that siRNA-mediated suppression of either CLPX or CLPP expression induced ALAS1 accumulation in the HepG2 human hepatic cell line. We also found that a specific heme-binding motif on ALAS1, located at the N-terminal end of the mature protein, is required for the heme-dependent formation of this protein complex. Moreover, hemin-mediated oxidative modification of ALAS1 resulted in the recruitment of LONP1, another ATP-dependent protease in the mitochondrial matrix, into the ALAS1 protein complex. Notably, the heme-binding site in the N-terminal region of the mature ALAS1 protein is also necessary for the heme-dependent oxidation of ALAS1. These results suggest that ALAS1 undergoes a conformational change following the association of heme to the heme-binding motif on this protein. This change in the structure of ALAS1 may enhance the formation of complexes between ALAS1 and ATP-dependent proteases in the mitochondria, thereby accelerating the degradation of ALAS1 protein to maintain appropriate intracellular heme levels.
Collapse
Affiliation(s)
- Yoshiko Kubota
- From the Department of Molecular Biochemistry, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694 and
| | - Kazumi Nomura
- From the Department of Molecular Biochemistry, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694 and
| | - Yasutake Katoh
- the Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Rina Yamashita
- From the Department of Molecular Biochemistry, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694 and
| | - Kiriko Kaneko
- From the Department of Molecular Biochemistry, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694 and
| | - Kazumichi Furuyama
- From the Department of Molecular Biochemistry, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694 and
| |
Collapse
|
12
|
Stojanovski BM, Ferreira GC. Murine erythroid 5-aminolevulinate synthase: Adenosyl-binding site Lys221 modulates substrate binding and catalysis. FEBS Open Bio 2015; 5:824-31. [PMID: 26605136 PMCID: PMC4615937 DOI: 10.1016/j.fob.2015.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/04/2022] Open
Abstract
Succinyl-CoA binding to ALAS is facilitated by the CoA moiety of the molecule. The KdSCoA and KmSCoA values of ALAS are significantly different. A 23-fold increase in the KmSCoA value was observed with the K221V variant. The increased KmSCoA of K221V is not due to a weakened succinyl-CoA binding affinity. The K221V substitution reduced the rate of quinonoid intermediate formation.
5-Aminolevulinate synthase (ALAS) catalyzes the initial step of mammalian heme biosynthesis, the condensation between glycine and succinyl-CoA to produce CoA, CO2, and 5-aminolevulinate. The crystal structure of Rhodobacter capsulatus ALAS indicates that the adenosyl moiety of succinyl-CoA is positioned in a mainly hydrophobic pocket, where the ribose group forms a putative hydrogen bond with Lys156. Loss-of-function mutations in the analogous lysine of human erythroid ALAS (ALAS2) cause X-linked sideroblastic anemia. To characterize the contribution of this residue toward catalysis, the equivalent lysine in murine ALAS2 was substituted with valine, eliminating the possibility of a hydrogen bond. The K221V substitution produced a 23-fold increase in the KmSCoA and a 97% decrease in kcat/KmSCoA. This reduction in the specificity constant does not stem from lower affinity toward succinyl-CoA, since the KdSCoA of K221V is lower than that of wild-type ALAS. For both enzymes, the KdSCoA value is significantly different from the KmSCoA. That K221V has stronger binding affinity for succinyl-CoA was further deduced from substrate protection studies, as K221V achieved maximal protection at lower succinyl-CoA concentration than wild-type ALAS. Moreover, it is the CoA, rather than the succinyl moiety, that facilitates binding of succinyl-CoA to wild-type ALAS, as evident from identical KdSCoA and KdCoA values. Transient kinetic analyses of the K221V-catalyzed reaction revealed that the mutation reduced the rates of quinonoid intermediate II formation and decay. Altogether, the results imply that the adenosyl-binding site Lys221 contributes to binding and orientation of succinyl-CoA for effective catalysis.
Collapse
Affiliation(s)
- Bosko M Stojanovski
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Gloria C Ferreira
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States ; Department of Chemistry, University of South Florida, Tampa, FL 33612, United States
| |
Collapse
|
13
|
Fratz EJ, Clayton J, Hunter GA, Ducamp S, Breydo L, Uversky VN, Deybach JC, Gouya L, Puy H, Ferreira GC. Human Erythroid 5-Aminolevulinate Synthase Mutations Associated with X-Linked Protoporphyria Disrupt the Conformational Equilibrium and Enhance Product Release. Biochemistry 2015; 54:5617-31. [PMID: 26300302 PMCID: PMC4573335 DOI: 10.1021/acs.biochem.5b00407] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulation of 5-aminolevulinate synthase (ALAS) is at the origin of balanced heme production in mammals. Mutations in the C-terminal region of human erythroid-specific ALAS (hALAS2) are associated with X-linked protoporphyria (XLPP), a disease characterized by extreme photosensitivity, with elevated blood concentrations of free protoporphyrin IX and zinc protoporphyrin. To investigate the molecular basis for this disease, recombinant hALAS2 and variants of the enzyme harboring the gain-of-function XLPP mutations were constructed, purified, and analyzed kinetically, spectroscopically, and thermodynamically. Enhanced activities of the XLPP variants resulted from increases in the rate at which the product 5-aminolevulinate (ALA) was released from the enzyme. Circular dichroism spectroscopy revealed that the XLPP mutations altered the microenvironment of the pyridoxal 5'-phosphate cofactor, which underwent further and specific alterations upon succinyl-CoA binding. Transient kinetic analyses of the variant-catalyzed reactions and protein fluorescence quenching upon binding of ALA to the XLPP variants demonstrated that the protein conformational transition step associated with product release was predominantly affected. Of relevance is the fact that XLPP could also be modeled in cell culture. We propose that (1) the XLPP mutations destabilize the succinyl-CoA-induced hALAS2 closed conformation and thus accelerate ALA release, (2) the extended C-terminus of wild-type mammalian ALAS2 provides a regulatory role that allows for allosteric modulation of activity, thereby controlling the rate of erythroid heme biosynthesis, and (3) this control is disrupted in XLPP, resulting in porphyrin accumulation.
Collapse
Affiliation(s)
- Erica J. Fratz
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| | - Jerome Clayton
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| | - Gregory A. Hunter
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| | - Sarah Ducamp
- Assistance Publique-Hôpitaux de Paris, Centre Français des Porphyries, Hôpital Louis Mourier, 178 rue des Renouillers, 92701 Colombes CEDEX, France
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l’inflammation, 16 rue Henri Huchard, 75018, Université Paris Diderot, Site Bichat, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France
| | - Leonid Breydo
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| | - Jean-Charles Deybach
- Assistance Publique-Hôpitaux de Paris, Centre Français des Porphyries, Hôpital Louis Mourier, 178 rue des Renouillers, 92701 Colombes CEDEX, France
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l’inflammation, 16 rue Henri Huchard, 75018, Université Paris Diderot, Site Bichat, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France
| | - Laurent Gouya
- Assistance Publique-Hôpitaux de Paris, Centre Français des Porphyries, Hôpital Louis Mourier, 178 rue des Renouillers, 92701 Colombes CEDEX, France
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l’inflammation, 16 rue Henri Huchard, 75018, Université Paris Diderot, Site Bichat, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France
| | - Hervé Puy
- Assistance Publique-Hôpitaux de Paris, Centre Français des Porphyries, Hôpital Louis Mourier, 178 rue des Renouillers, 92701 Colombes CEDEX, France
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l’inflammation, 16 rue Henri Huchard, 75018, Université Paris Diderot, Site Bichat, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France
| | - Gloria C. Ferreira
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
- Department of Chemistry, University of South Florida, Tampa, Florida, 33612, USA
| |
Collapse
|
14
|
Chung J, Anderson SA, Gwynn B, Deck KM, Chen MJ, Langer NB, Shaw GC, Huston NC, Boyer LF, Datta S, Paradkar PN, Li L, Wei Z, Lambert AJ, Sahr K, Wittig JG, Chen W, Lu W, Galy B, Schlaeger TM, Hentze MW, Ward DM, Kaplan J, Eisenstein RS, Peters LL, Paw BH. Iron regulatory protein-1 protects against mitoferrin-1-deficient porphyria. J Biol Chem 2014; 289:7835-43. [PMID: 24509859 DOI: 10.1074/jbc.m114.547778] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial iron is essential for the biosynthesis of heme and iron-sulfur ([Fe-S]) clusters in mammalian cells. In developing erythrocytes, iron is imported into the mitochondria by MFRN1 (mitoferrin-1, SLC25A37). Although loss of MFRN1 in zebrafish and mice leads to profound anemia, mutant animals showed no overt signs of porphyria, suggesting that mitochondrial iron deficiency does not result in an accumulation of protoporphyrins. Here, we developed a gene trap model to provide in vitro and in vivo evidence that iron regulatory protein-1 (IRP1) inhibits protoporphyrin accumulation. Mfrn1(+/gt);Irp1(-/-) erythroid cells exhibit a significant increase in protoporphyrin levels. IRP1 attenuates protoporphyrin biosynthesis by binding to the 5'-iron response element (IRE) of alas2 mRNA, inhibiting its translation. Ectopic expression of alas2 harboring a mutant IRE, preventing IRP1 binding, in Mfrn1(gt/gt) cells mimics Irp1 deficiency. Together, our data support a model whereby impaired mitochondrial [Fe-S] cluster biogenesis in Mfrn1(gt/gt) cells results in elevated IRP1 RNA-binding that attenuates ALAS2 mRNA translation and protoporphyrin accumulation.
Collapse
Affiliation(s)
- Jacky Chung
- From the Division of Hematology, Brigham and Women's Hospital; Division of Hematology-Oncology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kaneko K, Furuyama K, Fujiwara T, Kobayashi R, Ishida H, Harigae H, Shibahara S. Identification of a novel erythroid-specific enhancer for the ALAS2 gene and its loss-of-function mutation which is associated with congenital sideroblastic anemia. Haematologica 2013; 99:252-61. [PMID: 23935018 DOI: 10.3324/haematol.2013.085449] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Erythroid-specific 5-aminolevulinate synthase (ALAS2) is the rate-limiting enzyme for heme biosynthesis in erythroid cells, and a missense mutation of the ALAS2 gene is associated with congenital sideroblastic anemia. However, the gene responsible for this form of anemia remains unclear in about 40% of patients. Here, we identify a novel erythroid-specific enhancer of 130 base pairs in the first intron of the ALAS2 gene. The newly identified enhancer contains a cis-acting element that is bound by the erythroid-specific transcription factor GATA1, as confirmed by chromatin immunoprecipitation analysis in vivo and by electrophoretic mobility shift assay in vitro. A promoter activity assay in K562 human erythroleukemia cells revealed that the presence of this 130-base pair region increased the promoter activity of the ALAS2 gene by 10-15-fold. Importantly, two mutations, each of which disrupts the GATA-binding site in the enhancer, were identified in unrelated male patients with congenital sideroblastic anemia, and the lower expression level of ALAS2 mRNA in bone marrow erythroblasts was confirmed in one of these patients. Moreover, GATA1 failed to bind to each mutant sequence at the GATA-binding site, and each mutation abolished the enhancer function on ALAS2 promoter activity in K562 cells. Thus, a mutation at the GATA-binding site in this enhancer may cause congenital sideroblastic anemia. These results suggest that the newly identified intronic enhancer is essential for the expression of the ALAS2 gene in erythroid cells. We propose that the 130-base pair enhancer region located in the first intron of the ALAS2 gene should be examined in patients with congenital sideroblastic anemia in whom the gene responsible is unknown.
Collapse
|
16
|
Balwani M, Doheny D, Bishop DF, Nazarenko I, Yasuda M, Dailey HA, Anderson KE, Bissell DM, Bloomer J, Bonkovsky HL, Phillips JD, Liu L, Desnick RJ. Loss-of-function ferrochelatase and gain-of-function erythroid-specific 5-aminolevulinate synthase mutations causing erythropoietic protoporphyria and x-linked protoporphyria in North American patients reveal novel mutations and a high prevalence of X-linked protoporphyria. Mol Med 2013; 19:26-35. [PMID: 23364466 DOI: 10.2119/molmed.2012.00340] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/23/2013] [Indexed: 01/08/2023] Open
Abstract
Erythropoietic protoporphyria (EPP) and X-linked protoporphyria (XLP) are inborn errors of heme biosynthesis with the same phenotype but resulting from autosomal recessive loss-of-function mutations in the ferrochelatase (FECH) gene and gain-of-function mutations in the X-linked erythroid-specific 5-aminolevulinate synthase (ALAS2) gene, respectively. The EPP phenotype is characterized by acute, painful, cutaneous photosensitivity and elevated erythrocyte protoporphyrin levels. We report the FECH and ALAS2 mutations in 155 unrelated North American patients with the EPP phenotype. FECH sequencing and dosage analyses identified 140 patients with EPP: 134 with one loss-of-function allele and the common IVS3-48T>C low expression allele, three with two loss-of-function mutations and three with one loss-of-function mutation and two low expression alleles. There were 48 previously reported and 23 novel FECH mutations. The remaining 15 probands had ALAS2 gain-of-function mutations causing XLP: 13 with the previously reported deletion, c.1706_1709delAGTG, and two with novel mutations, c.1734delG and c.1642C>T(p.Q548X). Notably, XLP represented ~10% of EPP phenotype patients in North America, two to five times more than in Western Europe. XLP males had twofold higher erythrocyte protoporphyrin levels than EPP patients, predisposing to more severe photosensitivity and liver disease. Identification of XLP patients permits accurate diagnosis and counseling of at-risk relatives and asymptomatic heterozygotes.
Collapse
Affiliation(s)
- Manisha Balwani
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bishop DF, Tchaikovskii V, Nazarenko I, Desnick RJ. Molecular expression and characterization of erythroid-specific 5-aminolevulinate synthase gain-of-function mutations causing X-linked protoporphyria. Mol Med 2013; 19:18-25. [PMID: 23348515 DOI: 10.2119/molmed.2013.00003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 01/15/2013] [Indexed: 11/06/2022] Open
Abstract
X-linked protoporphyria (XLP) (MIM 300752) is a recently recognized erythropoietic porphyria due to gain-of-function mutations in the erythroid-specific aminolevulinate synthase gene (ALAS2). Previously, two exon 11 small deletions, c.1699_1670ΔAT (ΔAT) and c.1706_1709ΔAGTG (ΔAGTG), that prematurely truncated or elongated the ALAS2 polypeptide, were reported to increase enzymatic activity 20- to 40-fold, causing the erythroid accumulation of protoporphyrins, cutaneous photosensitivity and liver disease. The mutant ΔAT and ΔAGTG ALAS2 enzymes, two novel mutations, c.1734ΔG (ΔG) and c.1642C>T (p.Q548X), and an engineered deletion c.1670-1671TC>GA p.F557X were expressed, and their purified enzymes were characterized. Wild-type and ΔAGTG enzymes exhibited similar amounts of 54- and 52-kDa polypeptides on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), whereas the ΔAT and p.F557X had only 52-kDa polypeptides. Compared to the purified wild-type enzyme, ΔAT, ΔAGTG and Q548X enzymes had increased specific activities that were only 1.8-, 3.1- and 1.6-fold, respectively. Interestingly, binding studies demonstrated that the increased activity Q548X enzyme did not bind to succinyl-CoA synthetase. The elongated ΔG enzyme had wild-type specific activity, kinetics and thermostability; twice the wild-type purification yield (56 versus 25%); and was primarily a 54-kDa form, suggesting greater stability in vivo. On the basis of studies of mutant enzymes, the maximal gain-of function region spanned 57 amino acids between 533 and 580. Thus, these ALAS2 gain-of-function mutations increased the specific activity (ΔAT, ΔAGTG and p.Q548X) or stability (ΔG) of the enzyme, thereby leading to the increased erythroid protoporphyrin accumulation causing XLP.
Collapse
Affiliation(s)
- David F Bishop
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Mount Sinai Medical Center, New York, New York 10029, USA
| | | | | | | |
Collapse
|
18
|
Ducamp S, Schneider-Yin X, de Rooij F, Clayton J, Fratz EJ, Rudd A, Ostapowicz G, Varigos G, Lefebvre T, Deybach JC, Gouya L, Wilson P, Ferreira GC, Minder EI, Puy H. Molecular and functional analysis of the C-terminal region of human erythroid-specific 5-aminolevulinic synthase associated with X-linked dominant protoporphyria (XLDPP). Hum Mol Genet 2012; 22:1280-8. [PMID: 23263862 DOI: 10.1093/hmg/dds531] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Frameshift mutations in the last coding exon of the 5-aminolevulinate synthase (ALAS) 2 gene were described to activate the enzyme causing increased levels of zinc- and metal-free protoporphyrin in patients with X-linked dominant protoporphyria (XLDPP). Only two such so-called gain-of-function mutations have been reported since the description of XLDPP in 2008. In this study of four newly identified XLDPP families, we identified two novel ALAS2 gene mutations, a nonsense p.Q548X and a frameshift c.1651-1677del26bp, along with a known mutation (delAGTG) found in two unrelated families. Of relevance, a de novo somatic and germinal mosaicism was present in a delAGTG family. Such a phenomenon may explain the high proportion of this mutation in XLDPP worldwide. Enhancements of over 3- and 14-fold in the catalytic rate and specificity constant of purified recombinant XLDPP variants in relation to those of wild-type ALAS2 confirmed the gain of function ascribed to these enzymes. The fact that both p.Q548X and c.1651-1677del26bp are located in close proximity and upstream from the two previously described mutations led us to propose the presence of a large gain-of-function domain within the C-terminus of ALAS2. To test this hypothesis, we generated four additional nonsense mutants (p.A539X, p.G544X, p.G576X and p.V583X) surrounding the human XLDPP mutations and defined an ALAS2 gain-of-function domain with a minimal size of 33 amino acids. The identification of this gain-of-function domain provides important information on the enzymatic activity of ALAS2, which was proposed to be constitutively inhibited, either directly or indirectly, through its own C-terminus.
Collapse
Affiliation(s)
- Sarah Ducamp
- AP-HP, Centre Franc¸ais des Porphyries, Hoˆ pital Louis Mourier, 178 rue des Renouillers, 92701 Colombes Cedex,France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Clinical and genetic characteristics of congenital sideroblastic anemia: comparison with myelodysplastic syndrome with ring sideroblast (MDS-RS). Ann Hematol 2012; 92:1-9. [PMID: 22983749 PMCID: PMC3536986 DOI: 10.1007/s00277-012-1564-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/21/2012] [Indexed: 01/31/2023]
Abstract
Sideroblastic anemia is characterized by anemia with the emergence of ring sideroblasts in the bone marrow. There are two forms of sideroblastic anemia, i.e., congenital sideroblastic anemia (CSA) and acquired sideroblastic anemia. In order to clarify the pathophysiology of sideroblastic anemia, a nationwide survey consisting of clinical and molecular genetic analysis was performed in Japan. As of January 31, 2012, data of 137 cases of sideroblastic anemia, including 72 cases of myelodysplastic syndrome (MDS)–refractory cytopenia with multilineage dysplasia (RCMD), 47 cases of MDS–refractory anemia with ring sideroblasts (RARS), and 18 cases of CSA, have been collected. Hemoglobin and MCV level in CSA are significantly lower than those of MDS, whereas serum iron level in CSA is significantly higher than those of MDS. Of 14 CSA for which DNA was available for genetic analysis, 10 cases were diagnosed as X-linked sideroblastic anemia due to ALAS2 gene mutation. The mutation of SF3B1 gene, which was frequently mutated in MDS-RS, was not detected in CSA patients. Together with the difference of clinical data, it is suggested that genetic background, which is responsible for the development of CSA, is different from that of MDS-RS.
Collapse
|
20
|
Bishop DF, Tchaikovskii V, Hoffbrand AV, Fraser ME, Margolis S. X-linked sideroblastic anemia due to carboxyl-terminal ALAS2 mutations that cause loss of binding to the β-subunit of succinyl-CoA synthetase (SUCLA2). J Biol Chem 2012; 287:28943-55. [PMID: 22740690 PMCID: PMC3436539 DOI: 10.1074/jbc.m111.306423] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Indexed: 11/06/2022] Open
Abstract
Mutations in the erythroid-specific aminolevulinic acid synthase gene (ALAS2) cause X-linked sideroblastic anemia (XLSA) by reducing mitochondrial enzymatic activity. Surprisingly, a patient with the classic XLSA phenotype had a novel exon 11 mutation encoding a recombinant enzyme (p.Met567Val) with normal activity, kinetics, and stability. Similarly, both an expressed adjacent XLSA mutation, p.Ser568Gly, and a mutation (p.Phe557Ter) lacking the 31 carboxyl-terminal residues also had normal or enhanced activity, kinetics, and stability. Because ALAS2 binds to the β subunit of succinyl-CoA synthetase (SUCLA2), the mutant proteins were tested for their ability to bind to this protein. Wild type ALAS2 bound strongly to a SUCLA2 affinity column, but the adjacent XLSA mutant enzymes and the truncated mutant did not bind. In contrast, vitamin B6-responsive XLSA mutations p.Arg452Cys and p.Arg452His, with normal in vitro enzyme activity and stability, did not interfere with binding to SUCLA2 but instead had loss of positive cooperativity for succinyl-CoA binding, an increased K(m) for succinyl-CoA, and reduced vitamin B6 affinity. Consistent with the association of SUCLA2 binding with in vivo ALAS2 activity, the p.Met567GlufsX2 mutant protein that causes X-linked protoporphyria bound strongly to SUCLA2, highlighting the probable role of an ALAS2-succinyl-CoA synthetase complex in the regulation of erythroid heme biosynthesis.
Collapse
Affiliation(s)
- David F. Bishop
- From the Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York 10029
| | - Vassili Tchaikovskii
- From the Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York 10029
| | - A. Victor Hoffbrand
- the Department of Haematology, Royal Free Hospital, London NW3 2QG, United Kingdom, and
| | - Marie E. Fraser
- the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Steven Margolis
- From the Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York 10029
| |
Collapse
|