1
|
Cross NCP, Ernst T, Branford S, Cayuela JM, Deininger M, Fabarius A, Kim DDH, Machova Polakova K, Radich JP, Hehlmann R, Hochhaus A, Apperley JF, Soverini S. European LeukemiaNet laboratory recommendations for the diagnosis and management of chronic myeloid leukemia. Leukemia 2023; 37:2150-2167. [PMID: 37794101 PMCID: PMC10624636 DOI: 10.1038/s41375-023-02048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
From the laboratory perspective, effective management of patients with chronic myeloid leukemia (CML) requires accurate diagnosis, assessment of prognostic markers, sequential assessment of levels of residual disease and investigation of possible reasons for resistance, relapse or progression. Our scientific and clinical knowledge underpinning these requirements continues to evolve, as do laboratory methods and technologies. The European LeukemiaNet convened an expert panel to critically consider the current status of genetic laboratory approaches to help diagnose and manage CML patients. Our recommendations focus on current best practice and highlight the strengths and pitfalls of commonly used laboratory tests.
Collapse
Affiliation(s)
| | - Thomas Ernst
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Susan Branford
- Centre for Cancer Biology and SA Pathology, Adelaide, SA, Australia
| | - Jean-Michel Cayuela
- Laboratory of Hematology, University Hospital Saint-Louis, AP-HP and EA3518, Université Paris Cité, Paris, France
| | | | - Alice Fabarius
- III. Medizinische Klinik, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Dennis Dong Hwan Kim
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | | | | | - Rüdiger Hehlmann
- III. Medizinische Klinik, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
- ELN Foundation, Weinheim, Germany
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Jane F Apperley
- Centre for Haematology, Imperial College London, London, UK
- Department of Clinical Haematology, Imperial College Healthcare NHS Trust, London, UK
| | - Simona Soverini
- Department of Medical and Surgical Sciences, Institute of Hematology "Lorenzo e Ariosto Seràgnoli", University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Rodríguez-Agustín A, Casanova V, Grau-Expósito J, Sánchez-Palomino S, Alcamí J, Climent N. Immunomodulatory Activity of the Tyrosine Kinase Inhibitor Dasatinib to Elicit NK Cytotoxicity against Cancer, HIV Infection and Aging. Pharmaceutics 2023; 15:pharmaceutics15030917. [PMID: 36986778 PMCID: PMC10055786 DOI: 10.3390/pharmaceutics15030917] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have been extensively used as a treatment for chronic myeloid leukemia (CML). Dasatinib is a broad-spectrum TKI with off-target effects that give it an immunomodulatory capacity resulting in increased innate immune responses against cancerous cells and viral infected cells. Several studies reported that dasatinib expanded memory-like natural killer (NK) cells and γδ T cells that have been related with increased control of CML after treatment withdrawal. In the HIV infection setting, these innate cells are associated with virus control and protection, suggesting that dasatinib could have a potential role in improving both the CML and HIV outcomes. Moreover, dasatinib could also directly induce apoptosis of senescence cells, being a new potential senolytic drug. Here, we review in depth the current knowledge of virological and immunogenetic factors associated with the development of powerful cytotoxic responses associated with this drug. Besides, we will discuss the potential therapeutic role against CML, HIV infection and aging.
Collapse
Affiliation(s)
| | - Víctor Casanova
- HIV Unit, Hospital Clínic-IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Judith Grau-Expósito
- HIV Unit, Hospital Clínic-IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Sonsoles Sánchez-Palomino
- HIV Unit, Hospital Clínic-IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
- CIBER of Infectious Diseases (CIBERINFEC), 28029 Madrid, Spain
| | - José Alcamí
- CIBER of Infectious Diseases (CIBERINFEC), 28029 Madrid, Spain
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Núria Climent
- HIV Unit, Hospital Clínic-IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
- CIBER of Infectious Diseases (CIBERINFEC), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-93-2275400 (ext. 3144); Fax: +34-93-2271775
| |
Collapse
|
3
|
Closa L, Xicoy B, Zamora L, Estrada N, Colomer D, Herrero MJ, Vidal F, Alvarez-Larrán A, Caro JL. Natural Killer cell receptors and ligand variants modulate response to tyrosine kinase inhibitors in patients with chronic myeloid leukemia. HLA 2021; 99:93-104. [PMID: 34921518 DOI: 10.1111/tan.14515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/01/2022]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm treated with tyrosine kinase inhibitors (TKIs). Although survival rates have improved, response to these treatments is highly heterogeneous. Variations in response rates may be due to different causes such as, treatment adherence, mutations in the BCR-ABL1 gene, clonal evolution and amplification of the BCR-ABL1 gene, but innate immune response is also considered to play a very important role and, specifically, NK cell activity through their receptors and ligands, could be determinant. The aim of this retrospective study was to explore the role of different activating and inhibiting KIR genes as well as the activating NKG2D receptor, present in NK cells, and also their respective ligands, HLA-A, -B, -C, -G, -F, MICA and MICB, in the progression of 190 patients with CML and treated at two hospitals from Barcelona between 2000 and 2019. Early molecular response (EMR), major molecular response (MMR) or MR3.0 and deep molecular response (DMR) or MR4.0 were correlated. As control samples, healthy donors from the Barcelona Blood Bank were analyzed. The presence of KIR2DL2/KIR2DS2 was associated with the achievement of EMR, MR3.0 and MR4.0. Carriers of the higher expression NKG2D variant and MICA*009:01 were also likely to achieve molecular response (MR). The most remarkable difference between CML patients and controls was a higher frequency of the lower expression NKG2D variant in CML patients. In summary, our results showed that activating NK receptor phenotypes might help to achieve MR and DMR in CML patients treated with TKIs although confirmatory studies are necessary. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Laia Closa
- Histocompatibility and Immunogenetics Laboratory, Blood and Tissue Bank, Barcelona, Spain.,Transfusional Medicine Group, Vall d'Hebron Research Institute- Autonomous University of Barcelona (VHIR-UAB), Barcelona, Spain
| | - Blanca Xicoy
- Department of hematology, Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Lurdes Zamora
- Department of hematology, Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Natalia Estrada
- Department of hematology, Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Dolors Colomer
- Hematopathology Section, Hospital Clinic, IDIBAPS, CIBERONC, Barcelona
| | - Maria J Herrero
- Histocompatibility and Immunogenetics Laboratory, Blood and Tissue Bank, Barcelona, Spain
| | - Francisco Vidal
- Transfusional Medicine Group, Vall d'Hebron Research Institute- Autonomous University of Barcelona (VHIR-UAB), Barcelona, Spain.,Congenital Coagulopathy Laboratory, Blood and Tissue Bank, Barcelona, Spain.,CIBER of Cardiovascular Diseases, Spain
| | - Alberto Alvarez-Larrán
- Hematology Department, Hospital Clinic, Institut de Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Jose L Caro
- Transfusional Medicine Group, Vall d'Hebron Research Institute- Autonomous University of Barcelona (VHIR-UAB), Barcelona, Spain.,Department of Immunology, Hospital Clínic, Barcelona, Spain
| |
Collapse
|
4
|
Xu Y, Wang L, Li W, Chen B, Liu Y, Wang H, Zhao S, Ye L, He Y, Zhou C. Killer immunoglobulin-like receptors/human leukocyte antigen class-I, a crucial immune pathway in cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:244. [PMID: 32309391 PMCID: PMC7154421 DOI: 10.21037/atm.2020.01.84] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Natural killer cells (NK cells) play a crucial role in tumor immunity. The function of the NK cells is regulated by various receptors expressed on the surface. Among them, the killer immunoglobulin-like receptor (KIR) is one of the most important. The ligand of KIR is major histocompatibility complex class-I (MHC class-I), which is also called human leukocyte antigen class-I (HLA class-I). The combination of HLA class-I and inhibitory KIRs could inhibit NK cells and induce autoimmune tolerance. Inhibitory KIRs were highly expressed on malignant tumor patients, which were related to poor prognosis. KIR/HLA class-I pathway affected the clinical outcomes of cancer through several mechanisms, and inhibitory KIRs could be an ideal target of immunotherapy strategy.
Collapse
Affiliation(s)
- Yi Xu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China.,Tongji University, Shanghai 200433, China
| | - Lei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Wei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Bin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Yu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China.,Tongji University, Shanghai 200433, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China.,Tongji University, Shanghai 200433, China
| | - Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Lingyun Ye
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
5
|
Ureshino H, Shindo T, Kimura S. Role of cancer immunology in chronic myelogenous leukemia. Leuk Res 2019; 88:106273. [PMID: 31765938 DOI: 10.1016/j.leukres.2019.106273] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023]
Abstract
Chronic myelogenous leukemia (CML) is caused by the BCR-ABL chimeric tyrosine kinase, which is derived from the reciprocal translocation, t(9;22)(q34;q11). BCR-ABL tyrosine kinase inhibitors (TKIs) can provide prolonged overall survival in CML patients, resulting in life expectancy nearly to general population, and now approximately half of patients who achieved deep molecular response (DMR) can sustain durable molecular remission after discontinuation TKIs. However, residual leukemic cells still detected in the patients who sustained in molecular remission after discontinuation TKIs with the sensitive BCL-ABL1 transcript detection method. Given the fact that residual leukemic cells can exist in these patients, host immune systems can protect the patients to develop CML progression derived from residual leukemic cells. The human immune system is generally composed by innate and adaptive immune systems, corresponding to their functional diversities. Natural killer (NK) cells are major components of the innate immune system, while T lymphocytes (T cells) are major components of the adaptive immune system, and both NK cell and T cell mediate immune responses have an important role in CML. Myeloid-derived suppressor cells (MDSCs) that promote expansion of regulatory T cells (Tregs), leading to host immune suppression, are also important. Although regulation mechanism of these immune system has not been fully elucidated, tumor antigen (e.g. Wilms tumor-1), and surface receptors (e.g. killer immunoglobulin-like receptor and natural killer group 2) on NK cells, are pivotal role in these immune system regulations. Hence, we reviewed the current the immunological analysis, especially T cell and NK cell immunity in CML.
Collapse
Affiliation(s)
- Hiroshi Ureshino
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan; Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine Saga University, Saga, Japan.
| | - Takero Shindo
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan; Department of Hematology/Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan; Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine Saga University, Saga, Japan
| |
Collapse
|
6
|
Climent N, Plana M. Immunomodulatory Activity of Tyrosine Kinase Inhibitors to Elicit Cytotoxicity Against Cancer and Viral Infection. Front Pharmacol 2019; 10:1232. [PMID: 31680987 PMCID: PMC6813222 DOI: 10.3389/fphar.2019.01232] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/27/2019] [Indexed: 12/23/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) of aberrant tyrosine kinase (TK) activity have been widely used to treat chronic myeloid leukemia (CML) for decades in clinic. An area of growing interest is the reported ability of TKIs to induce immunomodulatory effects with anti-tumor and anti-viral activity, which appears to be mediated by directly or indirectly acting on immune cells. In selected cases of patients with CML, TKI treatment may be interrupted and a non-drug remission may be observed. In these patients, an immune mechanism of increased anti-tumor cytotoxic activity induced by chronic administration of TKIs has been suggested. TKIs increase some populations of natural killer (NK), NK-LGL, and T-LGLs cells especially in dasatinib treated CML patients infected with cytomegalovirus (CMV). In addition, dasatinib increases responses against CMV and is able to inhibit HIV replication in vitro. Recent studies suggest that subclinical reactivation of CMV could drive expansion of specific subsets of NK- and T-cells with both anti-tumoral and anti-viral function. Therefore, the underlying mechanisms implicated in the expansion of this increased anti-tumor and anti-viral cytotoxic activity induced by TKIs could be a new therapeutic approach to take into account against cancer and viral infections such as HIV-1 infection. The present review will briefly summarize the immunomodulatory effects of TKIs on T cells, NKs, and B cells. Therapeutic implications for modulating immunity against cancer and viral infections and critical open questions are also discussed.
Collapse
Affiliation(s)
- Núria Climent
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Montserrat Plana
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Dumas PY, Bérard E, Bréal C, Dulucq S, Réa D, Nicolini F, Forcade E, Dufossée M, Pasquet JM, Turcq B, Bidet A, Milpied N, Déchanet-Merville J, Lafarge X, Etienne G, Mahon FX. Killer immunoglobulin-like receptor genotypes and chronic myeloid leukemia outcomes after imatinib cessation for treatment-free remission. Cancer Med 2019; 8:4976-4985. [PMID: 31287239 PMCID: PMC6718597 DOI: 10.1002/cam4.2371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/26/2022] Open
Abstract
Background Natural Killer (NK) cells are innate lymphoid cells that can be cytotoxic toward a large panel of solid tumors and hematological malignancies including chronic myeloid leukemia (CML). Such a cytotoxicity depends on various receptors. Killer immunoglobulin‐like receptors (KIR) belong to these receptors and are involved in maturation process, then in the activation abilities of NK cells. Methods: We investigated the prognostic impact of the KIR2DL5B genotype in 240 CML patients included in two clinical trials investigating tyrosine kinase inhibitors (TKI) discontinuation: STIM and STIM2. Results: After adjustment for standard risk factors in CML, we found that the inhibitory receptor KIR2DL5B‐positive genotype was independently related to a delayed second deep molecular remission (HR 0.54, 95% CI [0.32‐0.91], P = 0.02) after TKI rechallenge but not to time to first deep molecular remission or treatment‐free remission rates. Conclusion: These results suggest that KIR2DL5B could carry a role in lymphocyte‐mediated control of leukemic residual disease control in patient with CML relapse.
Collapse
Affiliation(s)
- Pierre-Yves Dumas
- Service d'Hématologie Clinique et Thérapie Cellulaire, CHU Bordeaux, F-33000, Bordeaux, France.,Institut National de la Santé et de la Recherche Médicale INSERM U1035, Bordeaux, France
| | - Emilie Bérard
- Service d'Epidémiologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,UMR 1027, INSERM-Université de Toulouse III, Toulouse, France
| | - Claire Bréal
- Service d'Hématologie Clinique et Thérapie Cellulaire, CHU Bordeaux, F-33000, Bordeaux, France.,Institut National de la Santé et de la Recherche Médicale INSERM U1035, Bordeaux, France
| | - Stéphanie Dulucq
- Laboratoire d'Hématologie, CHU Bordeaux, F-33000, Bordeaux, France
| | - Delphine Réa
- Service d'Hématologie, Hôpital Saint Louis, Paris, France
| | - Franck Nicolini
- Service d'Hématologie and INSERM U590, CRCL, Centre Léon Bérard, Lyon, France
| | - Edouard Forcade
- Service d'Hématologie Clinique et Thérapie Cellulaire, CHU Bordeaux, F-33000, Bordeaux, France
| | - Melody Dufossée
- Institut National de la Santé et de la Recherche Médicale INSERM U1035, Bordeaux, France
| | - Jean-Max Pasquet
- Institut National de la Santé et de la Recherche Médicale INSERM U1035, Bordeaux, France
| | - Béatrice Turcq
- Institut National de la Santé et de la Recherche Médicale INSERM U1218, Bordeaux, France
| | - Audrey Bidet
- Laboratoire d'Hématologie, CHU Bordeaux, F-33000, Bordeaux, France
| | - Noel Milpied
- Service d'Hématologie Clinique et Thérapie Cellulaire, CHU Bordeaux, F-33000, Bordeaux, France.,Institut National de la Santé et de la Recherche Médicale INSERM U1035, Bordeaux, France
| | | | - Xavier Lafarge
- Institut National de la Santé et de la Recherche Médicale INSERM U1035, Bordeaux, France.,Laboratoire d'Immunogénétique, Etablissement Français du Sang, Bordeaux, France
| | - Gabriel Etienne
- Institut National de la Santé et de la Recherche Médicale INSERM U1218, Bordeaux, France.,Centre de Lutte contre le Cancer, Institute Bergonié, Bordeaux, France
| | - François-Xavier Mahon
- Institut National de la Santé et de la Recherche Médicale INSERM U1218, Bordeaux, France.,Centre de Lutte contre le Cancer, Institute Bergonié, Bordeaux, France
| | | |
Collapse
|
8
|
Damele L, Montaldo E, Moretta L, Vitale C, Mingari MC. Effect of Tyrosin Kinase Inhibitors on NK Cell and ILC3 Development and Function. Front Immunol 2018; 9:2433. [PMID: 30405627 PMCID: PMC6207002 DOI: 10.3389/fimmu.2018.02433] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/02/2018] [Indexed: 12/25/2022] Open
Abstract
Tyrosin kinase inhibitors (TKI) sharply improved the prognosis of Chronic Myeloid Leukemia (CML) and of Philadelphia+ Acute Lymphoblastic Leukemia (Ph+ALL) patients. However, TKI are not curative because of the development of resistance and lack of complete molecular remission in the majority of patients. Clinical evidences would support the notion that patient's immune system may play a key role in preventing relapses. In particular, increased proportions of terminally differentiated CD56+CD16+CD57+ NK cells have been reported to be associated with successful Imatinib therapy discontinuation or with a deep molecular response in Dasatinib-treated patients. In view of the potential role of NK cells in immune-response against CML, it is important to study whether any TKI have an effect on the NK cell development and identify possible molecular mechanism(s) by which continuous exposure to in vitro TKI may influence NK cell development and repertoire. To this end, CD34+ hematopoietic stem cells (HSC) were cultured in the absence or in the presence of Imatinib, Nilotinib, or Dasatinib. We show that all compounds exert an inhibitory effect on CD56+ cell recovery. In addition, Dasatinib sharply skewed the repertoire of CD56+ cell population, leading to an impaired recovery of CD56+CD117-CD16+CD94/NKG2A+EOMES+ mature cytotoxic NK cells, while the recovery of CD56+CD117+CD94/NKG2A-RORγt+ IL-22-producing ILC3 was not affected. This effect appears to involve the Dasatinib-mediated inhibition of Src kinases and, indirectly, of STAT5-signaling activation in CD34+ cells during first days of culture. Our studies, reveal a possible mechanism by which Dasatinib may interfere with the proliferation and maturation of fully competent NK cells, i.e., by targeting signaling pathways required for differentiation and survival of NK cells but not of ILC3.
Collapse
Affiliation(s)
- Laura Damele
- Dipartimento Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
- Centre of Excellence for Biomedical Research, Università degli Studi di Genova, Genova, Italy
| | | | - Lorenzo Moretta
- Immunology Area Lab, Pediatric Hospital Bambino Gesù, Rome, Italy
| | - Chiara Vitale
- Dipartimento Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
- UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Maria Cristina Mingari
- Dipartimento Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
- Centre of Excellence for Biomedical Research, Università degli Studi di Genova, Genova, Italy
- UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
9
|
Hara R, Onizuka M, Matsusita E, Kikkawa E, Nakamura Y, Matsushita H, Ohgiya D, Murayama H, Machida S, Ohmachi K, Shirasugi Y, Ogawa Y, Kawada H, Ando K. NKG2D gene polymorphisms are associated with disease control of chronic myeloid leukemia by dasatinib. Int J Hematol 2017; 106:666-674. [DOI: 10.1007/s12185-017-2294-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/11/2022]
|
10
|
Osman AE, AlJuryyan A, Alharthi H, Almoshary M. Association between the killer cell immunoglobulin-like receptor a haplotype and childhood acute lymphoblastic leukemia. Hum Immunol 2017; 78:510-514. [DOI: 10.1016/j.humimm.2017.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/30/2017] [Accepted: 05/12/2017] [Indexed: 01/27/2023]
|
11
|
Leone P, De Re V, Vacca A, Dammacco F, Racanelli V. Cancer treatment and the KIR-HLA system: an overview. Clin Exp Med 2017; 17:419-429. [PMID: 28188495 DOI: 10.1007/s10238-017-0455-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/29/2017] [Indexed: 12/18/2022]
Abstract
Accumulating evidence indicates that the success of cancer therapy depends not only on a combination of adequate procedures (surgery, chemotherapy and radiotherapy) that aim to eliminate all tumor cells, but also on the functional state of the host immune system. HLA and KIR molecules, in particular, are critical to the interactions between tumor cells and both innate and adaptive immune cells such as NK cells and T cells. Different KIR-HLA gene combinations as well as different HLA expression levels on tumor cells associate with variable tumor prognosis and response to treatment. On the other hand, different therapies have different effects on HLA molecules and immune cell functions regulated by these molecules. Here, we provide an overview of the KIR-HLA system, a description of its alterations with clinical relevance in diverse tumor types, and an analysis of the consequences that conventional cancer therapies may have on it. We also discuss how this knowledge can be exploited to identify potential immunological biomarkers that can help to select patients for tailored therapy.
Collapse
Affiliation(s)
- Patrizia Leone
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Policlinico - 11, Piazza G. Cesare, 70124, Bari, Italy
| | - Valli De Re
- Bio-Proteomics Facility, Department of Translational Research, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, Italy
| | - Angelo Vacca
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Policlinico - 11, Piazza G. Cesare, 70124, Bari, Italy
| | - Franco Dammacco
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Policlinico - 11, Piazza G. Cesare, 70124, Bari, Italy
| | - Vito Racanelli
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Policlinico - 11, Piazza G. Cesare, 70124, Bari, Italy.
| |
Collapse
|
12
|
Keskin D, Sadri S, Eskazan AE. Dasatinib for the treatment of chronic myeloid leukemia: patient selection and special considerations. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3355-3361. [PMID: 27784993 PMCID: PMC5066856 DOI: 10.2147/dddt.s85050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dasatinib is one of the second-generation tyrosine kinase inhibitors used in imatinib resistance and/or intolerance, as well as in the frontline setting in patients with chronic myeloid leukemia-chronic phase, and also in patients with advanced disease. It is also utilized in Philadelphia chromosome-positive acute lymphocytic leukemia. While choosing the appropriate tyrosine kinase inhibitor (ie, dasatinib) for each individual patient, comorbidities and BCR-ABL1 kinase domain mutations should always be taken into consideration, among other things. This review mainly focuses on patient selection prior to dasatinib administration in the treatment of chronic myeloid leukemia.
Collapse
Affiliation(s)
- Dilek Keskin
- Department of Internal Medicine, Division of Hematology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sevil Sadri
- Department of Internal Medicine, Division of Hematology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ahmet Emre Eskazan
- Department of Internal Medicine, Division of Hematology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
13
|
Killer immunoglobulin-like receptors can predict TKI treatment-free remission in chronic myeloid leukemia patients. Exp Hematol 2015; 43:1015-1018.e1. [PMID: 26306453 DOI: 10.1016/j.exphem.2015.08.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/04/2015] [Accepted: 08/08/2015] [Indexed: 11/21/2022]
Abstract
Several factors are predictive of treatment-free remission (TFR) in chronic myeloid leukemia (CML), but few data exist on the role of natural killer (NK) cells and their killer-cell immunoglobulin-like receptors (KIRs). KIR and human leukocyte antigen (HLA) genotypes were investigated in 36 CML patients who discontinued tyrosine kinase inhibitor (TKI) treatment after achieving deep molecular response (MR(4.5)). Cumulative TFR was significantly higher in patients homozygous for KIR A haplotype (85.7% vs. 45.5%; p = 0.029). Younger age, Bx haplotype, and the combination KIR3DS1/KIR3DL1 present/HLA-Bw4 present were significantly associated with relapse. KIR genotypes could prove useful in identifying patients that are likely to maintain MR(4.5) after discontinuing TKI treatment.
Collapse
|
14
|
Abstract
Chronic myeloid leukemia (CML) is a clonal bone marrow stem cell neoplasia known to be responsive to immunotherapy. Despite the success of tyrosine kinase inhibitors (TKIs) targeting the BCR-ABL1 oncokinase, patients are not considered to be cured with the current therapy modalities. However, there have been recent advancements in understanding the immunobiology of the disease (such as tumor specific antigens and immunostimulatory agents), and this may lead to the development of novel, curative treatment strategies. Already there are promising results showing that a small proportion of CML patients are able to discontinue the therapy although they have a minimal amount of residual leukemia cells left. This implies that the immune system is able to restrain the tumor cell expansion. In this review, we aim to give a brief update of the novel aspects of the immune system in CML patients and of the developing strategies for controlling CML by the means of immunotherapy.
Collapse
|
15
|
López-Botet M, Muntasell A, Vilches C. The CD94/NKG2C+ NK-cell subset on the edge of innate and adaptive immunity to human cytomegalovirus infection. Semin Immunol 2014; 26:145-51. [DOI: 10.1016/j.smim.2014.03.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/12/2014] [Accepted: 03/03/2014] [Indexed: 11/16/2022]
|
16
|
Paydas S. Dasatinib, large granular lymphocytosis, and pleural effusion: useful or adverse effect? Crit Rev Oncol Hematol 2013; 89:242-7. [PMID: 24210599 DOI: 10.1016/j.critrevonc.2013.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 09/20/2013] [Accepted: 10/02/2013] [Indexed: 12/16/2022] Open
Abstract
Dasatinib is a second generation tyrosine kinase inhibitor approved for clinical use in first line and imatinib-resistant chronic myeloid leukemia and Philadelphia positive (Ph+) acute lymphoblastic leukemia. In addition to BCR-ABL1, dasatinib inhibits TEC kinases and SRC family kinases and is more potent than imatinib in the treatment of Ph+ leukemias. In the last 3 years, increases in cytotoxic T and natural-killer cells in peripheral blood samples have been reported in cases treated by dasatinib. The awareness of the clonal expansion of large granular lymphocytes and beneficial effect of these clonal cells increased the interest to dasatinib in cases receiving this drug. Clonal expansion of large granular lymphocytes is an important effect of dasatinib therapy, shown to be an off-target phenomenon associated with pleural effusion and better clinical response. The benefit of dasatinib-induced lymphocytosis and its underlying mechanism of this are important points for clinicians working in hematology and oncology.
Collapse
Affiliation(s)
- Semra Paydas
- Cukurova University, Faculty of Medicine, Department of Oncology, Adana, Turkey.
| |
Collapse
|
17
|
La Nasa G, Caocci G, Littera R, Atzeni S, Vacca A, Mulas O, Langiu M, Greco M, Orrù S, Orrù N, Floris A, Carcassi C. Homozygosity for killer immunoglobin-like receptor haplotype A predicts complete molecular response to treatment with tyrosine kinase inhibitors in chronic myeloid leukemia patients. Exp Hematol 2013; 41:424-31. [PMID: 23380384 DOI: 10.1016/j.exphem.2013.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 11/29/2022]
Abstract
Several recent reports suggest a possible role for killer immunoglobulin-like receptors (KIR) in the onset of chronic myeloid leukemia (CML) and response to therapy with tyrosine kinase inhibitors (TKIs). To explore this hypothesis, we studied KIRs and their human leukocyte antigen class I ligands in 59 consecutive patients with chronic-phase CML (mean age, 53 years; range, 23-81 years) and a group of 121 healthy control participants belonging to the same ethnic group as the patients. The 2-year cumulative incidence of complete molecular response, obtained after a median of 27 months (range, 4-52 months), was 51.2%. An increased frequency of the activating receptor KIR2DS1 (pm = 0.05) and a reduced frequency of the KIR-ligand combination KIR2DS2/2DL2 absent/C1 present (pm = 0.001) were significantly associated with CML. Moreover, KIR repertoires in patients appeared to influence response to TKI therapy. Homozygosity for KIR haplotype A (pm = 0.01), a decreased frequency of the inhibitory KIR gene KIR2DL2 (pm = 0.02), and low numbers of inhibitory KIR genes (pm = 0.05) were all significantly associated with achievement of complete molecular remission. These data suggest that a decrease in properly stimulated and activated NK cells might contribute to the occurrence of CML and indicate homozygosity for KIR haplotype A as a promising immunogenetic marker of complete molecular response that could help clinicians decide whether to withdraw treatment in patients with CML.
Collapse
Affiliation(s)
- Giorgio La Nasa
- Bone Marrow Transplant Center, R. Binaghi Hospital - ASL 8, Cagliari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Krieg S, Ullrich E. Novel immune modulators used in hematology: impact on NK cells. Front Immunol 2013; 3:388. [PMID: 23316191 PMCID: PMC3539673 DOI: 10.3389/fimmu.2012.00388] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 12/04/2012] [Indexed: 01/13/2023] Open
Abstract
There is a wide range of important pharmaceuticals used in treatment of cancer. Besides their known effects on tumor cells, there is growing evidence for modulation of the immune system. Immunomodulatory drugs (IMiDs®) play an important role in the treatment of patients with multiple myeloma or myelodysplastic syndrome and have already demonstrated antitumor, anti-angiogenic, and immunostimulating effects, in particular on natural killer (NK) cells. Tyrosine kinase inhibitors are directly targeting different kinases and are known to regulate effector NK cells and expression of NKG2D ligands (NKG2DLs) on tumor cells. Demethylating agents, histone deacetylases, and proteasome inhibitors interfere with the epigenetic regulation and protein degradation of malignant cells. There are first hints that these drugs also sensitize tumor cells to chemotherapy, radiation, and NK cell-mediated cytotoxicity by enhanced expression of TRAIL and NKG2DLs. However, these pharmaceuticals may also impair NK cell function in a dose- and time-dependent manner. In summary, this review provides an update on the effects of different novel molecules on the immune system focusing NK cells.
Collapse
Affiliation(s)
- Stephanie Krieg
- Hematology and Oncology, Department of Internal Medicine 5, University of Erlangen-Nuremberg Erlangen, Germany
| | | |
Collapse
|