1
|
Belmonte T, Benitez ID, García-Hidalgo MC, Molinero M, Pinilla L, Mínguez O, Vaca R, Aguilà M, Moncusí-Moix A, Torres G, Mediano O, Masa JF, Masdeu MJ, Montero-San-Martín B, Ibarz M, Martinez-Camblor P, Gómez-Carballa A, Salas A, Martinón-Torres F, Barbé F, Sánchez-de-la-Torre M, de Gonzalo-Calvo D. Synergic Integration of the miRNome, Machine Learning and Bioinformatics for the Identification of Potential Disease-Modifying Agents in Obstructive Sleep Apnea. Arch Bronconeumol 2024:S0300-2896(24)00449-6. [PMID: 39709277 DOI: 10.1016/j.arbres.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/28/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
INTRODUCTION Understanding the diverse pathogenetic pathways in obstructive sleep apnea (OSA) is crucial for improving outcomes. microRNA (miRNA) profiling is a promising strategy for elucidating these mechanisms. OBJECTIVE To characterize the pathogenetic pathways linked to OSA through the integration of miRNA profiles, machine learning (ML) and bioinformatics. METHODS This multicenter study involved 525 patients with suspected OSA who underwent polysomnography. Plasma miRNAs were quantified via RNA sequencing in the discovery phase, with validation in two subsequent phases using RT-qPCR. Supervised ML feature selection methods and comprehensive bioinformatic analyses were employed. The associations among miRNA targets, OSA and OSA treatment were further explored using publicly available external datasets. RESULTS Following the discovery and technical validation phases in a subset of patients with and without confirmed OSA (n=53), eleven miRNAs were identified as candidates for the subsequent feature selection process. These miRNAs were then quantified in the remaining population (n=472). Feature selection methods revealed that the miRNAs let-7d-5p, miR-15a-5p and miR-107 were the most informative of OSA. The predominant mechanisms linked to these miRNAs were closely related to cellular events such as cell death, cell differentiation, extracellular remodeling, autophagy and metabolism. One target of let-7d-5p and miR-15a-5p, the TFDP2 gene, exhibited significant differences in gene expression between subjects with and without OSA across three independent databases. CONCLUSION Our study identified three plasma miRNAs that, in conjunction with their target genes, provide new insights into OSA pathogenesis and reveal novel regulators and potential drug targets.
Collapse
Affiliation(s)
- Thalia Belmonte
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Iván D Benitez
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Department of Basic Medical Sciences, University of Lleida, Lleida, Spain
| | - María C García-Hidalgo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Marta Molinero
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Lucía Pinilla
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Precision Medicine in Chronic Diseases, University Hospital Arnau de Vilanova and Santa Maria, IRB Lleida, Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, University of Lleida, Lleida, Spain
| | - Olga Mínguez
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Rafaela Vaca
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Maria Aguilà
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Anna Moncusí-Moix
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Gerard Torres
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Precision Medicine in Chronic Diseases, University Hospital Arnau de Vilanova and Santa Maria, IRB Lleida, Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, University of Lleida, Lleida, Spain
| | - Olga Mediano
- Pneumology Department, University Hospital of Guadalajara, Guadalajara, Spain
| | - Juan F Masa
- San Pedro de Alcantara Hospital, Instituto Universitario de Investigación Biosanitaria de Extremadura, Cáceres, Spain
| | - Maria J Masdeu
- Respiratory and Sleep Department, Parc Taulí University Hospital, Parc Taulí Research and Innovation Institute, Autonomous University of Barcelona, Sabadell, Spain
| | | | - Mercè Ibarz
- Department of Clinical Laboratory, University Hospital Arnau de Vilanova, IRBLleida, Lleida, Spain
| | - Pablo Martinez-Camblor
- Anesthesiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Faculty of Health Sciences, Universidad Autonoma de Chile, Providencia, Chile
| | - Alberto Gómez-Carballa
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706 Santiago de Compostela, Galicia, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC) and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Antonio Salas
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706 Santiago de Compostela, Galicia, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC) and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Federico Martinón-Torres
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706 Santiago de Compostela, Galicia, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Manuel Sánchez-de-la-Torre
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Precision Medicine in Chronic Diseases, University Hospital Arnau de Vilanova and Santa Maria, IRB Lleida, Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, University of Lleida, Lleida, Spain; Group of Precision Medicine in Chronic Diseases, Hospital Nacional de Parapléjicos, IDISCAM, Spain; Department of Nursing, Physiotherapy and Occupational Therapy, Faculty of Physiotherapy and Nursing, University of Castilla-La Mancha, Toledo, Spain.
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Dinsart G, Leprovots M, Lefort A, Libert F, Quesnel Y, Veithen A, Vassart G, Huysseune S, Parmentier M, Garcia MI. The olfactory receptor Olfr78 promotes differentiation of enterochromaffin cells in the mouse colon. EMBO Rep 2024; 25:304-333. [PMID: 38177905 PMCID: PMC10897383 DOI: 10.1038/s44319-023-00013-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024] Open
Abstract
The gastrointestinal epithelium constitutes a chemosensory system for microbiota-derived metabolites such as short-chain fatty acids (SCFA). Here, we investigate the spatial distribution of Olfr78, one of the SCFA receptors, in the mouse intestine and study the transcriptome of colon enteroendocrine cells expressing Olfr78. The receptor is predominantly detected in the enterochromaffin and L subtypes in the proximal and distal colon, respectively. Using the Olfr78-GFP and VilCre/Olfr78flox transgenic mouse lines, we show that loss of epithelial Olfr78 results in impaired enterochromaffin cell differentiation, blocking cells in an undefined secretory lineage state. This is accompanied by a reduced defense response to bacteria in colon crypts and slight dysbiosis. Using organoid cultures, we further show that maintenance of enterochromaffin cells involves activation of the Olfr78 receptor via the SCFA ligand acetate. Taken together, our work provides evidence that Olfr78 contributes to colon homeostasis by promoting enterochromaffin cell differentiation.
Collapse
Affiliation(s)
- Gilles Dinsart
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, 1070, Brussels, Belgium
- Chemcom, Route de Lennik 802, 1070, Brussels, Belgium
| | - Morgane Leprovots
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, 1070, Brussels, Belgium
| | - Anne Lefort
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, 1070, Brussels, Belgium
- BRIGHTcore Facility, IRIBHM, Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, 1070, Brussels, Belgium
| | - Frédérick Libert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, 1070, Brussels, Belgium
- BRIGHTcore Facility, IRIBHM, Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, 1070, Brussels, Belgium
| | - Yannick Quesnel
- Chemcom, Route de Lennik 802, 1070, Brussels, Belgium
- Inchinn Therapeutics, Rue Auguste Piccard 48, 6041, Gosselies, Belgium
| | - Alex Veithen
- Chemcom, Route de Lennik 802, 1070, Brussels, Belgium
| | - Gilbert Vassart
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, 1070, Brussels, Belgium
| | | | - Marc Parmentier
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, 1070, Brussels, Belgium
| | - Marie-Isabelle Garcia
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, 1070, Brussels, Belgium.
| |
Collapse
|
3
|
Zhang Z, Freeman M, Zhang Y, El-Nachef D, Davenport G, Williams A, MacLellan WR. Hippo signaling and histone methylation control cardiomyocyte cell cycle re-entry through distinct transcriptional pathways. PLoS One 2023; 18:e0281610. [PMID: 36780463 PMCID: PMC9925018 DOI: 10.1371/journal.pone.0281610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/26/2023] [Indexed: 02/15/2023] Open
Abstract
AIMS Accumulating data demonstrates that new adult cardiomyocytes (CMs) are generated throughout life from pre-existing CMs, although the absolute magnitude of CM self-renewal is very low. Modifying epigenetic histone modifications or activating the Hippo-Yap pathway have been shown to promote adult CM cycling and proliferation. Whether these interventions work through common pathways or act independently is unknown. For the first time we have determined whether lysine demethylase 4D (KDM4D)-mediated CM-specific H3K9 demethylation and Hippo pathways inhibition have additive or redundant roles in promoting CM cell cycle re-entry. METHODS AND RESULTS We found that activating Yap1 in cultured neonatal rat ventricular myocytes (NRVM) through overexpressing Hippo pathway inhibitor, miR-199, preferentially increased S-phase CMs, while H3K9me3 demethylase KDM4D preferentially increased G2/M markers in CMs. Together KDM4D and miR-199 further increased total cell number of NRVMs in culture. Inhibition of Hippo signaling via knock-down of Salvador Family WW Domain Containing Protein 1 (Sav1) also led to S-phase reactivation and additional cell cycle re-entry was seen when combined with KDM4D overexpression. Inducible activating KDM4D (iKDM4D) in adult transgenic mice together with shRNA mediated knock-down of Sav1 (iKDM4D+Sav1-sh) resulted in a significant increase in cycling CMs compared to either intervention alone. KDM4D preferentially induced expression of genes regulating late (G2/M) phases of the cell cycle, while miR-199 and si-Sav1 preferentially up-regulated genes involved in G1/S phase. KDM4D upregulated E2F1 and FoxM1 expression, whereas miR-199 and si-Sav1 induced Myc. Using transgenic mice over-expressing KDM4D together with Myc, we demonstrated that KDM4D/Myc significantly increased CM cell cycling but did not affect cardiac function. CONCLUSIONS KDM4D effects on CM cell cycle activity are additive with the Hippo-Yap1 pathway and appear to preferentially regulate different cell cycle regulators. This may have important implications for strategies that target cardiac regeneration in treating heart disease.
Collapse
Affiliation(s)
- Zhenhe Zhang
- Cardiology Division, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Miles Freeman
- Cardiology Division, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Yiqiang Zhang
- Cardiology Division, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Anatomy, Biochemistry and Physiology, John A. Burn School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Danny El-Nachef
- Cardiology Division, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - George Davenport
- Cardiology Division, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Allison Williams
- Cardiology Division, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - W. Robb MacLellan
- Cardiology Division, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
4
|
Yin H, Guo R, Zhang H, Liu S, Gong Y, Yuan Y. A Dynamic Transcriptome Map of Different Tissue Microenvironment Cells Identified During Gastric Cancer Development Using Single-Cell RNA Sequencing. Front Immunol 2021; 12:728169. [PMID: 34745098 PMCID: PMC8566821 DOI: 10.3389/fimmu.2021.728169] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer (GC) development trends have identified multiple processes ranging from inflammation to carcinogenesis, however, key pathogenic mechanisms remain unclear. Tissue microenvironment (TME) cells are critical for the progression of malignant tumors. Here, we generated a dynamic transcriptome map of various TME cells during multi-disease stages using single-cell sequencing analysis. We observed a set of key transition markers related to TME cell carcinogenic evolution, and delineated landmark dynamic carcinogenic trajectories of these cells. Of these, macrophages, fibroblasts, and endothelial cells exerted considerable effects toward epithelial cells, suggesting these cells may be key TME factors promoting GC occurrence and development. Our results suggest a phenotypic convergence of different TME cell types toward tumor formation processes in GC. We believe our data would pave the way for early GC detection, diagnosis, and treatment therapies.
Collapse
Affiliation(s)
- Honghao Yin
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Rui Guo
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Huanyu Zhang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Songyi Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yuehua Gong
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Single-cell RNA-seq reveals developmental plasticity with coexisting oncogenic states and immune evasion programs in ETP-ALL. Blood 2021; 137:2463-2480. [PMID: 33227818 DOI: 10.1182/blood.2019004547] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Lineage plasticity and stemness have been invoked as causes of therapy resistance in cancer, because these flexible states allow cancer cells to dedifferentiate and alter their dependencies. We investigated such resistance mechanisms in relapsed/refractory early T-cell progenitor acute lymphoblastic leukemia (ETP-ALL) carrying activating NOTCH1 mutations via full-length single-cell RNA sequencing (scRNA-seq) of malignant and microenvironmental cells. We identified 2 highly distinct stem-like states that critically differed with regard to cell cycle and oncogenic signaling. Fast-cycling stem-like leukemia cells demonstrated Notch activation and were effectively eliminated in patients by Notch inhibition, whereas slow-cycling stem-like cells were Notch independent and rather relied on PI3K signaling, likely explaining the poor efficacy of Notch inhibition in this disease. Remarkably, we found that both stem-like states could differentiate into a more mature leukemia state with prominent immunomodulatory functions, including high expression of the LGALS9 checkpoint molecule. These cells promoted an immunosuppressive leukemia ecosystem with clonal accumulation of dysfunctional CD8+ T cells that expressed HAVCR2, the cognate receptor for LGALS9. Our study identified complex interactions between signaling programs, cellular plasticity, and immune programs that characterize ETP-ALL, illustrating the multidimensionality of tumor heterogeneity. In this scenario, combination therapies targeting diverse oncogenic states and the immune ecosystem seem most promising to successfully eliminate tumor cells that escape treatment through coexisting transcriptional programs.
Collapse
|
6
|
Kotawong K, Chajaroenkul W, Roytrakul S, Phaonakrop N, Na-Bangchang K. The Proteomics and Metabolomics Analysis for Screening the Molecular Targets of Action of β-Eudesmol in Cholangiocarcinoma. Asian Pac J Cancer Prev 2021; 22:909-918. [PMID: 33773557 PMCID: PMC8286696 DOI: 10.31557/apjcp.2021.22.3.909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE β-eudesmol is the active compound isolated from Atractylodes lancea (Thunb) D.C. The actions of this compound against cholangiocarcinoma (CCA) cells include anti-angiogenesis and anti-cell proliferation and growth. For more understanding of the molecular targets of action of β-eudesmol, the CCA cells (CL-6) were exposed to β-eudesmol for 24 and 48 hours. METHODS Proteins and metabolites from the intra- and extra-cellular components of the CL-6 cells were extracted and identified by LC-MS/MS. Protein analysis was performed using the Venn diagram (protein grouping), PANTHER (gene ontology), and STITCH software (protein-protein interaction). Metabolite analysis including their interactions with proteins, was performed using MetaboAnalyst software. RESULTS The analysis showed that the actions of β-eudesmol were associated with various biological processes particularly apoptosis and cell cycle. These included blood coagulation, wound healing, DNA repair, PI3K-Akt signaling pathway, immune system process, MAPK cascade, urea cycle, purine metabolism, ammonia recycling, and methionine metabolism. CONCLUSION Possible molecular targets of action of β-eudesmol against CL-6 for cell apoptosis induction were TNFRSf6, cytochrome C, BAX3, DHCR24, CD29, and ATP. On the other hand, possible targets for cell cycle arrest induction were CDKN2B, MLF1, TFDP2, CDK11-p110, and nicotinamide.
Collapse
Affiliation(s)
- Kanawut Kotawong
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klonglung, Pathumthani Thailand
| | - Wanna Chajaroenkul
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klonglung, Pathumthani Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Paholyothin Road, Klonglung, Pathumthani Thailand
| | - Sittiruk Roytrakul
- Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Narumon Phaonakrop
- Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klonglung, Pathumthani Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Paholyothin Road, Klonglung, Pathumthani Thailand
| |
Collapse
|
7
|
Wu L, Rong C, Zhou Q, Zhao X, Zhuansun XM, Wan S, Sun MM, Wang SL. Bone Marrow Mesenchymal Stem Cells Ameliorate Cisplatin-Induced Renal Fibrosis via miR-146a-5p/Tfdp2 Axis in Renal Tubular Epithelial Cells. Front Immunol 2021; 11:623693. [PMID: 33664736 PMCID: PMC7921314 DOI: 10.3389/fimmu.2020.623693] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have regenerative properties in acute kidney injury (AKI). However, the potential function of MSCs in chronic kidney disease remains elusive. Renal fibrosis is the common endpoint of chronic progressive kidney diseases and causes a considerable health burden worldwide. In this study, the protective effects of bone marrow mesenchymal stem cells (BM-MSCs) were assessed in repeated administration of low-dose cisplatin-induced renal fibrosis mouse model in vivo as well as a TGF-β1-induced fibrotic model in vitro. Differentially expressed miRNAs in mouse renal tubular epithelial cells (mRTECs) regulated by BM-MSCs were screened by high-throughput sequencing. We found microRNA (miR)-146a-5p was the most significant up-regulated miRNA in mRTECs. In addition, the gene Tfdp2 was identified as one target gene of miR-146a-5p by bioinformatics analysis. The expression of Tfdp2 in the treatment of BM-MSCs on cisplatin-induced renal injury was evaluated by immunohistochemistry analysis. Our results indicate that BM-MSC attenuates cisplatin-induced renal fibrosis by regulating the miR-146a-5p/Tfdp2 axis in mRTECs.
Collapse
Affiliation(s)
- Lei Wu
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China.,Collaborative Innovation Center of Clinical Immunology, Sihong People's Hospital, Soochow University, Suzhou, China
| | - Chao Rong
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Qing Zhou
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xin Zhao
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xue-Mei Zhuansun
- Laboratory Animal Research Center, Medical College of Soochow University, Suzhou, China
| | - Shan Wan
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Mao-Min Sun
- Laboratory Animal Research Center, Medical College of Soochow University, Suzhou, China
| | - Shou-Li Wang
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China.,Collaborative Innovation Center of Clinical Immunology, Sihong People's Hospital, Soochow University, Suzhou, China
| |
Collapse
|
8
|
Xie Y, Gao L, Xu C, Chu L, Gao L, Wu R, Liu Y, Liu T, Sun XJ, Ren R, Tang J, Zheng Y, Zhou Y, Shen S. ARHGEF12 regulates erythropoiesis and is involved in erythroid regeneration after chemotherapy in acute lymphoblastic leukemia patients. Haematologica 2019; 105:925-936. [PMID: 31467124 PMCID: PMC7109745 DOI: 10.3324/haematol.2018.210286] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 08/22/2019] [Indexed: 12/04/2022] Open
Abstract
Hematopoiesis is a finely regulated process in vertebrates under both homeostatic and stress conditions. By whole exome sequencing, we studied the genomics of acute lymphoblastic leukemia (ALL) patients who needed multiple red blood cell (RBC) transfusions after intensive chemotherapy treatment. ARHGEF12, encoding a RhoA guanine nucleotide exchange factor, was found to be associated with chemotherapy-induced anemia by genome-wide association study analyses. A single nucleotide polymorphism (SNP) of ARHGEF12 located in an intron predicted to be a GATA1 binding site, rs10892563, is significantly associated with patients who need RBC transfusion (P=3.469E-03, odds ratio 5.864). A luciferase reporter assay revealed that this SNP impairs GATA1-mediated trans-regulation of ARHGEF12, and quantitative polymerase chain reaction studies confirmed that the homozygotes status is associated with an approximately 61% reduction in ARHGEF12 expression (P=0.0088). Consequently, erythropoiesis was affected at the pro-erythroblast phases. The role of ARHGEF12 and its homologs in erythroid differentiation was confirmed in human K562 cells, mouse 32D cells and primary murine bone marrow cells. We further demonstrated in zebrafish by morpholino-mediated knockdown and CRISPR/Cas9-mediated knockout of arhgef12 that its reduction resulted in erythropoiesis defects. The p38 kinase pathway was affected by the ARHGEF12-RhoA signaling in K562 cells, and consistently, the Arhgef12-RhoA-p38 pathway was also shown to be important for erythroid differentiation in zebrafish as active RhoA or p38 readily rescued the impaired erythropoiesis caused by arhgef12 knockdown. Finally, ARHGEF12-mediated p38 activity also appeared to be involved in phenotypes of patients of the rs10892563 homozygous genotype. Our findings present a novel SNP of ARHGEF12 that may involve ARHGEF12-RhoA-p38 signaling in erythroid regeneration in ALL patients after chemotherapy.
Collapse
Affiliation(s)
- Yangyang Xie
- Key Lab of Pediatrics Hematology/Oncology, Ministry of Health, Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, Shanghai, China
| | - Li Gao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Chunhui Xu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liming Chu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei Gao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Beijing, China
| | - Ruichi Wu
- Key Lab of Pediatrics Hematology/Oncology, Ministry of Health, Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Liu
- Key Lab of Pediatrics Hematology/Oncology, Ministry of Health, Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Liu
- Key Lab of Pediatrics Hematology/Oncology, Ministry of Health, Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Jian Sun
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai, China
| | - Ruibao Ren
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai, China
| | - Jingyan Tang
- Key Lab of Pediatrics Hematology/Oncology, Ministry of Health, Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - Yong Zhou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shuhong Shen
- Key Lab of Pediatrics Hematology/Oncology, Ministry of Health, Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Hewitt KJ, Katsumura KR, Matson DR, Devadas P, Tanimura N, Hebert AS, Coon JJ, Kim JS, Dewey CN, Keles S, Hao S, Paulson RF, Bresnick EH. GATA Factor-Regulated Samd14 Enhancer Confers Red Blood Cell Regeneration and Survival in Severe Anemia. Dev Cell 2017; 42:213-225.e4. [PMID: 28787589 DOI: 10.1016/j.devcel.2017.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/05/2017] [Accepted: 07/11/2017] [Indexed: 12/31/2022]
Abstract
An enhancer with amalgamated E-box and GATA motifs (+9.5) controls expression of the regulator of hematopoiesis GATA-2. While similar GATA-2-occupied elements are common in the genome, occupancy does not predict function, and GATA-2-dependent genetic networks are incompletely defined. A "+9.5-like" element resides in an intron of Samd14 (Samd14-Enh) encoding a sterile alpha motif (SAM) domain protein. Deletion of Samd14-Enh in mice strongly decreased Samd14 expression in bone marrow and spleen. Although steady-state hematopoiesis was normal, Samd14-Enh-/- mice died in response to severe anemia. Samd14-Enh stimulated stem cell factor/c-Kit signaling, which promotes erythrocyte regeneration. Anemia activated Samd14-Enh by inducing enhancer components and enhancer chromatin accessibility. Thus, a GATA-2/anemia-regulated enhancer controls expression of an SAM domain protein that confers survival in anemia. We propose that Samd14-Enh and an ensemble of anemia-responsive enhancers are essential for erythrocyte regeneration in stress erythropoiesis, a vital process in pathologies, including β-thalassemia, myelodysplastic syndrome, and viral infection.
Collapse
Affiliation(s)
- Kyle J Hewitt
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Koichi R Katsumura
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Daniel R Matson
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Prithvia Devadas
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nobuyuki Tanimura
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Joshua J Coon
- Department of Chemistry, UW-Madison, Madison, WI, USA; Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science and Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, South Korea
| | - Colin N Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Siyang Hao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Robert F Paulson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
10
|
E2F-2 Promotes Nuclear Condensation and Enucleation of Terminally Differentiated Erythroblasts. Mol Cell Biol 2016; 37:MCB.00274-16. [PMID: 27795297 PMCID: PMC5192079 DOI: 10.1128/mcb.00274-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/04/2016] [Indexed: 12/31/2022] Open
Abstract
E2F-2 is a retinoblastoma (Rb)-regulated transcription factor induced during terminal erythroid maturation. Cyclin E-mediated Rb hyperphosphorylation induces E2F transcriptional activator functions. We previously reported that deregulated cyclin E activity causes defective terminal maturation of nucleated erythroblasts in vivo Here, we found that these defects are normalized by E2F-2 deletion; however, anemia in mice with deregulated cyclin E is not improved by E2F-2-loss, which itself causes reduced peripheral red blood cell (RBC) counts without altering relative abundances of erythroblast subpopulations. To determine how E2F-2 regulates RBC production, we comprehensively studied erythropoiesis using knockout mice and hematopoietic progenitors. We found that efficient stress erythropoiesis in vivo requires E2F-2, and we also identified an unappreciated role for E2F-2 in erythroblast enucleation. In particular, E2F-2 deletion impairs nuclear condensation, a morphological feature of maturing erythroblasts. Transcriptome profiling of E2F-2-null, mature erythroblasts demonstrated widespread changes in gene expression. Notably, we identified citron Rho-interacting kinase (CRIK), which has known functions in mitosis and cytokinesis, as induced in erythroblasts in an E2F-2-dependent manner, and we found that CRIK activity promotes efficient erythroblast enucleation and nuclear condensation. Together, our data reveal novel, lineage-specific functions for E2F-2 and suggest that some mitotic kinases have specialized roles supporting enucleation of maturing erythroblasts.
Collapse
|
11
|
Zhang J, Loyd MR, Randall MS, Morris JJ, Shah JG, Ney PA. Repression by RB1 characterizes genes involved in the penultimate stage of erythroid development. Cell Cycle 2016; 14:3441-53. [PMID: 26397180 DOI: 10.1080/15384101.2015.1090067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Retinoblastoma-1 (RB1), and the RB1-related proteins p107 and p130, are key regulators of the cell cycle. Although RB1 is required for normal erythroid development in vitro, it is largely dispensable for erythropoiesis in vivo. The modest phenotype caused by RB1 deficiency in mice raises questions about redundancy within the RB1 family, and the role of RB1 in erythroid differentiation. Here we show that RB1 is the major pocket protein that regulates terminal erythroid differentiation. Erythroid cells lacking all pocket proteins exhibit the same cell cycle defects as those deficient for RB1 alone. RB1 has broad repressive effects on gene transcription in erythroid cells. As a group, RB1-repressed genes are generally well expressed but downregulated at the final stage of erythroid development. Repression correlates with E2F binding, implicating E2Fs in the recruitment of RB1 to repressed genes. Merging differential and time-dependent changes in expression, we define a group of approximately 800 RB1-repressed genes. Bioinformatics analysis shows that this list is enriched for terms related to the cell cycle, but also for terms related to terminal differentiation. Some of these have not been previously linked to RB1. These results expand the range of processes potentially regulated by RB1, and suggest that a principal role of RB1 in development is coordinating the events required for terminal differentiation.
Collapse
Affiliation(s)
- Ji Zhang
- a Department of Biochemistry ; St. Jude Children's Research Hospital ; Memphis , TN USA.,b Current address: Cancer Biology & Genetics; Memorial Sloan-Kettering Cancer Center ; New York , NY USA
| | - Melanie R Loyd
- a Department of Biochemistry ; St. Jude Children's Research Hospital ; Memphis , TN USA.,c Hartwell Center for Bioinformatics and Biotechnology; St. Jude Children's Research Hospital ; Memphis , TN USA
| | - Mindy S Randall
- a Department of Biochemistry ; St. Jude Children's Research Hospital ; Memphis , TN USA
| | - John J Morris
- c Hartwell Center for Bioinformatics and Biotechnology; St. Jude Children's Research Hospital ; Memphis , TN USA
| | - Jayesh G Shah
- d Cell & Molecular Biology; Lindsley F. Kimball Research Institute; New York Blood Center ; New York , NY USA
| | - Paul A Ney
- a Department of Biochemistry ; St. Jude Children's Research Hospital ; Memphis , TN USA.,d Cell & Molecular Biology; Lindsley F. Kimball Research Institute; New York Blood Center ; New York , NY USA.,e Current address: 1735 York Ave., New York , NY USA
| |
Collapse
|
12
|
Litchfield K, Holroyd A, Lloyd A, Broderick P, Nsengimana J, Eeles R, Easton DF, Dudakia D, Bishop DT, Reid A, Huddart RA, Grotmol T, Wiklund F, Shipley J, Houlston RS, Turnbull C. Identification of four new susceptibility loci for testicular germ cell tumour. Nat Commun 2015; 6:8690. [PMID: 26503584 PMCID: PMC4846317 DOI: 10.1038/ncomms9690] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/17/2015] [Indexed: 02/06/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified multiple risk loci for testicular germ cell tumour (TGCT), revealing a polygenic model of disease susceptibility strongly influenced by common variation. To identify additional single-nucleotide polymorphisms (SNPs) associated with TGCT, we conducted a multistage GWAS with a combined data set of >25,000 individuals (6,059 cases and 19,094 controls). We identified new risk loci for TGCT at 3q23 (rs11705932, TFDP2, P=1.5 × 10(-9)), 11q14.1 (rs7107174, GAB2, P=9.7 × 10(-11)), 16p13.13 (rs4561483, GSPT1, P=1.6 × 10(-8)) and 16q24.2 (rs55637647, ZFPM1, P=3.4 × 10(-9)). We additionally present detailed functional analysis of these loci, identifying a statistically significant relationship between rs4561483 risk genotype and increased GSPT1 expression in TGCT patient samples. These findings provide additional support for a polygenic model of TGCT risk and further insight into the biological basis of disease development.
Collapse
Affiliation(s)
- Kevin Litchfield
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Amy Holroyd
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Amy Lloyd
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Peter Broderick
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Jérémie Nsengimana
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, Leeds LS9 7TF, UK
| | - Rosalind Eeles
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, London SM2 5NG, UK
| | - Douglas F Easton
- Cancer Research UK, Genetic Epidemiology Unit, Strangeways Research Laboratory, Cambridge CB1 8RN, UK
| | - Darshna Dudakia
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| | - D. Timothy Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, Leeds LS9 7TF, UK
| | - Alison Reid
- Academic Radiotherapy Unit, Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Robert A. Huddart
- Academic Radiotherapy Unit, Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Tom Grotmol
- Department of Research, Cancer Registry of Norway, 0369 Oslo, Norway
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Janet Shipley
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, UK
| | - Richard S. Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Clare Turnbull
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
- William Harvey Research Institute, Queen Mary University, London EC1M 6BQ, UK
| |
Collapse
|
13
|
Hewitt KJ, Kim DH, Devadas P, Prathibha R, Zuo C, Sanalkumar R, Johnson KD, Kang YA, Kim JS, Dewey CN, Keles S, Bresnick EH. Hematopoietic Signaling Mechanism Revealed from a Stem/Progenitor Cell Cistrome. Mol Cell 2015; 59:62-74. [PMID: 26073540 DOI: 10.1016/j.molcel.2015.05.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/27/2015] [Accepted: 05/07/2015] [Indexed: 11/17/2022]
Abstract
Thousands of cis-elements in genomes are predicted to have vital functions. Although conservation, activity in surrogate assays, polymorphisms, and disease mutations provide functional clues, deletion from endogenous loci constitutes the gold-standard test. A GATA-2-binding, Gata2 intronic cis-element (+9.5) required for hematopoietic stem cell genesis in mice is mutated in a human immunodeficiency syndrome. Because +9.5 is the only cis-element known to mediate stem cell genesis, we devised a strategy to identify functionally comparable enhancers ("+9.5-like") genome-wide. Gene editing revealed +9.5-like activity to mediate GATA-2 occupancy, chromatin opening, and transcriptional activation. A +9.5-like element resided in Samd14, which encodes a protein of unknown function. Samd14 increased hematopoietic progenitor levels/activity and promoted signaling by a pathway vital for hematopoietic stem/progenitor cell regulation (stem cell factor/c-Kit), and c-Kit rescued Samd14 loss-of-function phenotypes. Thus, the hematopoietic stem/progenitor cell cistrome revealed a mediator of a signaling pathway that has broad importance for stem/progenitor cell biology.
Collapse
Affiliation(s)
- Kyle J Hewitt
- Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW-Madison Blood Research Program, Madison, WI 53706, USA
| | - Duk Hyoung Kim
- Institute for Basic Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, South Korea; Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, South Korea
| | - Prithvia Devadas
- Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW-Madison Blood Research Program, Madison, WI 53706, USA
| | - Rajalekshmi Prathibha
- Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW-Madison Blood Research Program, Madison, WI 53706, USA
| | - Chandler Zuo
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Rajendran Sanalkumar
- Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW-Madison Blood Research Program, Madison, WI 53706, USA
| | - Kirby D Johnson
- Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW-Madison Blood Research Program, Madison, WI 53706, USA
| | - Yoon-A Kang
- Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW-Madison Blood Research Program, Madison, WI 53706, USA
| | - Jin-Soo Kim
- Institute for Basic Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, South Korea; Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, South Korea
| | - Colin N Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW-Madison Blood Research Program, Madison, WI 53706, USA.
| |
Collapse
|
14
|
Taimatsu K, Takubo K, Maruyama K, Suda T, Kudo A. Proliferation following tetraploidization regulates the size and number of erythrocytes in the blood flow during medaka development, as revealed by the abnormal karyotype of erythrocytes in the medakaTFDP1mutant. Dev Dyn 2015; 244:651-68. [DOI: 10.1002/dvdy.24259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 01/04/2023] Open
Affiliation(s)
- Kiyohito Taimatsu
- Department of Biological Information; Tokyo Institute of Technology; Yokohama Japan
| | - Keiyo Takubo
- Department of Cell Differentiation; The Sakaguchi Laboratory of Developmental Biology; Keio University School of Medicine; Tokyo Japan
- Department of Stem Cell Biology; Research Institute, National Center for Global Health and Medicine; Tokyo Japan
| | | | - Toshio Suda
- Department of Cell Differentiation; The Sakaguchi Laboratory of Developmental Biology; Keio University School of Medicine; Tokyo Japan
| | - Akira Kudo
- Department of Biological Information; Tokyo Institute of Technology; Yokohama Japan
| |
Collapse
|
15
|
TAF10 Interacts with the GATA1 Transcription Factor and Controls Mouse Erythropoiesis. Mol Cell Biol 2015; 35:2103-18. [PMID: 25870109 DOI: 10.1128/mcb.01370-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/27/2015] [Indexed: 01/21/2023] Open
Abstract
The ordered assembly of a functional preinitiation complex (PIC), composed of general transcription factors (GTFs), is a prerequisite for the transcription of protein-coding genes by RNA polymerase II. TFIID, comprised of the TATA binding protein (TBP) and 13 TBP-associated factors (TAFs), is the GTF that is thought to recognize the promoter sequences allowing site-specific PIC assembly. Transcriptional cofactors, such as SAGA, are also necessary for tightly regulated transcription initiation. The contribution of the two TAF10-containing complexes (TFIID, SAGA) to erythropoiesis remains elusive. By ablating TAF10 specifically in erythroid cells in vivo, we observed a differentiation block accompanied by deregulated GATA1 target genes, including Gata1 itself, suggesting functional cross talk between GATA1 and TAF10. Additionally, we analyzed by mass spectrometry the composition of TFIID and SAGA complexes in mouse and human cells and found that their global integrity is maintained, with minor changes, during erythroid cell differentiation and development. In agreement with our functional data, we show that TAF10 interacts directly with GATA1 and that TAF10 is enriched on the GATA1 locus in human fetal erythroid cells. Thus, our findings demonstrate a cross talk between canonical TFIID and SAGA complexes and cell-specific transcription activators during development and differentiation.
Collapse
|