1
|
Méndez-Enríquez E, Salomonsson M, Eriksson J, Janson C, Malinovschi A, Sellin ME, Hallgren J. IgE cross-linking induces activation of human and mouse mast cell progenitors. J Allergy Clin Immunol 2021; 149:1458-1463. [PMID: 34492259 DOI: 10.1016/j.jaci.2021.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 06/28/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The concept of innate and adaptive effector cells that are repleted by maturing inert progenitor cell populations is changing. Mast cells develop from rare mast cell progenitors populating peripheral tissues at homeostatic conditions, or as a result of induced recruitment during inflammatory conditions. OBJECTIVE Because FcεRI-expressing mast cell progenitors are the dominating mast cell type during acute allergic lung inflammation in vivo, we hypothesized that they are activated by IgE cross-linking. METHODS Mouse peritoneal and human peripheral blood cells were sensitized and stimulated with antigen, or stimulated with anti-IgE, and the mast cell progenitor population analyzed for signs of activation by flow cytometry. Isolated peritoneal mast cell progenitors were studied before and after anti-IgE stimulation at single-cell level by time-lapse fluorescence microscopy. Lung mast cell progenitors were analyzed for their ability to produce IL-13 by intracellular flow cytometry in a mouse model of ovalbumin-induced allergic airway inflammation. RESULTS Sensitized mouse peritoneal mast cell progenitors demonstrate increased levels of phosphorylation of tyrosines on intracellular proteins (total tyrosine phosphorylation), and spleen tyrosine kinase (Syk) phosphorylation after antigen exposure. Anti-IgE induced cell surface-associated lysomal-associated membrane protein-1 (LAMP-1) in naive mast cell progenitors, and prompted loss of fluorescence signal and altered morphology of isolated cells loaded with lysotracker. In human mast cell progenitors, anti-IgE increased total tyrosine phosphorylation, cell surface-associated LAMP-1, and CD63. Lung mast cell progenitors from mice with ovalbumin-induced allergic airway inflammation produce IL-13. CONCLUSIONS Mast cell progenitors become activated by IgE cross-linking and may contribute to the pathology associated with acute allergic airway inflammation.
Collapse
Affiliation(s)
- Erika Méndez-Enríquez
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| | - Maya Salomonsson
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| | - Jens Eriksson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Andrei Malinovschi
- Department of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Mikael E Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Vadillo E, Taniguchi-Ponciano K, Lopez-Macias C, Carvente-Garcia R, Mayani H, Ferat-Osorio E, Flores-Padilla G, Torres J, Gonzalez-Bonilla CR, Majluf A, Albarran-Sanchez A, Galan JC, Peña-Martínez E, Silva-Román G, Vela-Patiño S, Ferreira-Hermosillo A, Ramirez-Renteria C, Espinoza-Sanchez NA, Pelayo-Camacho R, Bonifaz L, Arriaga-Pizano L, Mata-Lozano C, Andonegui-Elguera S, Wacher N, Blanco-Favela F, De-Lira-Barraza R, Villanueva-Compean H, Esquivel-Pineda A, Ramírez-Montes-de-Oca R, Anda-Garay C, Noyola-García M, Guizar-García L, Cerbulo-Vazquez A, Zamudio-Meza H, Marrero-Rodríguez D, Mercado M. A Shift Towards an Immature Myeloid Profile in Peripheral Blood of Critically Ill COVID-19 Patients. Arch Med Res 2021; 52:311-323. [PMID: 33248817 PMCID: PMC7670924 DOI: 10.1016/j.arcmed.2020.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND SARS-CoV-2, the etiological agent causing COVID-19, has infected more than 27 million people with over 894000 deaths worldwide since its emergence in December 2019. Factors for severe diseases, such as diabetes, hypertension, and obesity have been identified however, the precise pathogenesis is poorly understood. To understand its pathophysiology and to develop effective therapeutic strategies, it is essential to define the prevailing immune cellular subsets. METHODS We performed whole circulating immune cells scRNAseq from five critically ill COVID-19 patients, trajectory and gene ontology analysis. RESULTS Immature myeloid populations, such as promyelocytes-myelocytes, metamyelocytes, band neutrophils, monocytoid precursors, and activated monocytes predominated. The trajectory with pseudotime analysis supported the finding of immature cell states. While the gene ontology showed myeloid cell activation in immune response, DNA and RNA processing, defense response to the virus, and response to type 1 interferon. Lymphoid lineage was scarce. Expression of genes such as C/EBPβ, IRF1and FOSL2 potentially suggests the induction of trained immunity. CONCLUSIONS Our results uncover transcriptomic profiles related to immature myeloid lineages and suggest the potential induction of trained immunity.
Collapse
Affiliation(s)
- Eduardo Vadillo
- Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Keiko Taniguchi-Ponciano
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Constantino Lopez-Macias
- Unidad de Investigación Médica en Inmunoquimica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Roberto Carvente-Garcia
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México; Analitek S.A. de C.V, Ciudad de México, México
| | - Hector Mayani
- Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Eduardo Ferat-Osorio
- Division de Investigacion en Salud, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Guillermo Flores-Padilla
- Servicio de Medicina Interna, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Cesar Raul Gonzalez-Bonilla
- Coordinación de Investigación en Salud, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Abraham Majluf
- Unidad de Investigación Médica en trombosis, hemostasia y aterogenesis, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Alejandra Albarran-Sanchez
- Servicio de Medicina Interna, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Juan Carlos Galan
- Servicio de Medicina Interna, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Eduardo Peña-Martínez
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Gloria Silva-Román
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Sandra Vela-Patiño
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Aldo Ferreira-Hermosillo
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Claudia Ramirez-Renteria
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Nancy Adriana Espinoza-Sanchez
- Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Rosana Pelayo-Camacho
- Centro de Investigación Biomedica de Oriente, Instituto Mexicano del Seguro Social, Puebla, México
| | - Laura Bonifaz
- Unidad de Investigación Médica en Inmunoquimica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Lourdes Arriaga-Pizano
- Unidad de Investigación Médica en Inmunoquimica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Carlos Mata-Lozano
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México; Analitek S.A. de C.V, Ciudad de México, México
| | - Sergio Andonegui-Elguera
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Niels Wacher
- Unidad de Investigación Médica en Epidemiologia Clinica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Francisco Blanco-Favela
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Roberto De-Lira-Barraza
- Servicio de Medicina Interna, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Humberto Villanueva-Compean
- Servicio de Medicina Interna, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Alejandra Esquivel-Pineda
- Servicio de Medicina Interna, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Rubén Ramírez-Montes-de-Oca
- Servicio de Medicina Interna, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Carlos Anda-Garay
- Servicio de Medicina Interna, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Maura Noyola-García
- Servicio de Medicina Interna, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Luis Guizar-García
- Servicio de Medicina Interna, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Arturo Cerbulo-Vazquez
- Unidad de Investigación Médica en Inmunoquimica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Horacio Zamudio-Meza
- Unidad de Investigación Médica en Inmunoquimica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Daniel Marrero-Rodríguez
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México.
| | - Moises Mercado
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México.
| |
Collapse
|
3
|
Pomicter AD, Clair PM, Yan D, Heaton WL, Eiring AM, Anderson MB, Richards SM, Gililland J, O'Hare T, Deininger MW. Femoral Heads from Total Hip Arthroplasty as a Source of Adult Hematopoietic Cells. Acta Haematol 2021; 144:458-464. [PMID: 33412552 DOI: 10.1159/000511953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
Abstract
Normal human bone marrow cells are critical for studies of hematopoiesis and as controls to assess toxicity. As cells from commercial vendors are expensive, many laboratories resort to cancer-free bone marrow specimens obtained during staging or to umbilical cord blood cells, which may be abnormal or reflect a much younger age group compared to the disease samples under study. We piloted the use of femoral heads as an alternative and inexpensive source of normal bone marrow. Femoral heads were obtained from 21 successive patients undergoing elective hip arthroplasty. Mononuclear cells (MNCs) were purified with Ficoll, and CD3+, CD14+, and CD34+ cells were purified with antibody-coated microbeads. The median yield of MNCs was 8.95 × 107 (range, 1.62 × 105-2.52 × 108), and the median yield of CD34+ cells was 1.40 × 106 (range, 3.60 × 105-9.90 × 106). Results of downstream applications including qRT-PCR, colony-forming assays, and ex vivo proliferation analysis were of high quality and comparable to those obtained with standard bone marrow aspirates. We conclude that femoral heads currently discarded as medical waste are a cost-efficient source of bone marrow cells for research use.
Collapse
Affiliation(s)
- Anthony D Pomicter
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Phillip M Clair
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Dongqing Yan
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - William L Heaton
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Anna M Eiring
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Michael B Anderson
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Stephen M Richards
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Jeremy Gililland
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Thomas O'Hare
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, Utah, USA
| | - Michael W Deininger
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA,
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, Utah, USA,
| |
Collapse
|
4
|
Ramírez-Ramírez D, Padilla-Castañeda S, Galán-Enríquez CS, Vadillo E, Prieto-Chávez JL, Jiménez-Hernández E, Vilchis-Ordóñez A, Sandoval A, Balandrán JC, Pérez-Tapia SM, Ortiz-Navarrete V, Pelayo R. CRTAM + NK cells endowed with suppressor properties arise in leukemic bone marrow. J Leukoc Biol 2019; 105:999-1013. [PMID: 30791148 DOI: 10.1002/jlb.ma0618-231r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/07/2019] [Accepted: 02/04/2019] [Indexed: 12/19/2022] Open
Abstract
Due to their increasing rates of morbidity and mortality, childhood malignancies are considered a global health priority, with acute lymphoblastic leukemias (ALLs) showing the highest incidence worldwide. Control of malignant clone emergence and the subsequent normal-leukemic hematopoietic cell out-competition require antitumor monitoring mechanisms. Investigation of cancer surveillance innate cells may be critical to understand the mechanisms contributing in either disease progression or relapse, and to promote displacement of leukemic hematopoiesis by the normal counterpart. We report here that NK cell production is less and low hematopoietic progenitor numbers contribute to this defect. By investigating the expression of the activation molecule class I restricted T-cell associated molecule (CRTAM) along the hematopoietic lineage differentiation pathway, we have identified lymphoid precursor populations coexpressing CD34, CD56/CD3/CD19, and CRTAM as the earliest developmental stage where activation may take place in specialized niches that display the ligand nectin-like-2. Of note, bone marrow (BM) from patients with ALL revealed high contents of preactivated CD56high NK cells expressing CRTAM and endowed with an exhaustion-like phenotype and the functional capability of producing IL-10 and TGF-β in vitro. Our findings suggest, for the first time, that the tumor microenvironment in ALL directly contribute to exhaustion of NK cell functions by the CRTAM/Necl-2 interaction, and that the potential regulatory role of exhausted-like NK cells may favor malignant progression at the expense of anti-tumor responses. Phenotypic and functional identity of this unique suppressor-like NK cell population within the leukemic BM would be of special interest for the pathobiology of ALL and development of targeting strategies.
Collapse
Affiliation(s)
- Dalia Ramírez-Ramírez
- Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital Oncología, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico.,National School of Biological Sciences ENCB, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Sandra Padilla-Castañeda
- Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital Oncología, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico.,Departament of Molecular Biomedicine, CINVESTAV, IPN. Av. Instituto Politecnico Nacional 2508, Mexico City, Mexico
| | - Carlos Samuel Galán-Enríquez
- Departament of Molecular Biomedicine, CINVESTAV, IPN. Av. Instituto Politecnico Nacional 2508, Mexico City, Mexico
| | - Eduardo Vadillo
- Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital Oncología, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Departament of Molecular Biomedicine, CINVESTAV, IPN. Av. Instituto Politecnico Nacional 2508, Mexico City, Mexico
| | - Jessica Lakshmi Prieto-Chávez
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Elva Jiménez-Hernández
- Hospital Pediátrico Moctezuma, Secretaria de Salud, Calle Oriente 158-189, Mexico City, Mexico
| | | | - Antonio Sandoval
- Hospital para el Niño, Instituto Materno Infantil del Estado de México, Toluca, State of Mexico, Mexico
| | - Juan Carlos Balandrán
- Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital Oncología, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Sonia Mayra Pérez-Tapia
- National School of Biological Sciences ENCB, Instituto Politécnico Nacional (IPN), Mexico City, Mexico.,Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI) and Unidad de Investigación, Desarrollo e Innovación Médica y Biotecnológica (UDIMEB), National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Mexico City, Mexico
| | - Vianney Ortiz-Navarrete
- Departament of Molecular Biomedicine, CINVESTAV, IPN. Av. Instituto Politecnico Nacional 2508, Mexico City, Mexico
| | - Rosana Pelayo
- Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital Oncología, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico
| |
Collapse
|
5
|
Dantoft W, Martínez-Vicente P, Jafali J, Pérez-Martínez L, Martin K, Kotzamanis K, Craigon M, Auer M, Young NT, Walsh P, Marchant A, Angulo A, Forster T, Ghazal P. Genomic Programming of Human Neonatal Dendritic Cells in Congenital Systemic and In Vitro Cytomegalovirus Infection Reveal Plastic and Robust Immune Pathway Biology Responses. Front Immunol 2017; 8:1146. [PMID: 28993767 PMCID: PMC5622154 DOI: 10.3389/fimmu.2017.01146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022] Open
Abstract
Neonates and especially premature infants are highly susceptible to infection but still can have a remarkable resilience that is poorly understood. The view that neonates have an incomplete or deficient immune system is changing. Human neonatal studies are challenging, and elucidating host protective responses and underlying cognate pathway biology, in the context of viral infection in early life, remains to be fully explored. In both resource rich and poor settings, human cytomegalovirus (HCMV) is the most common cause of congenital infection. By using unbiased systems analyses of transcriptomic resources for HCMV neonatal infection, we find the systemic response of a preterm congenital HCMV infection, involves a focused IFN regulatory response associated with dendritic cells. Further analysis of transcriptional-programming of neonatal dendritic cells in response to HCMV infection in culture revealed an early dominant IFN-chemokine regulatory subnetworks, and at later times the plasticity of pathways implicated in cell-cycle control and lipid metabolism. Further, we identify previously unknown suppressed networks associated with infection, including a select group of GPCRs. Functional siRNA viral growth screen targeting 516-GPCRs and subsequent validation identified novel GPCR-dependent antiviral (ADORA1) and proviral (GPR146, RGS16, PTAFR, SCTR, GPR84, GPR85, NMUR2, FZ10, RDS, CCL17, and SORT1) roles. By contrast a gene family cluster of protocadherins is significantly differentially induced in neonatal cells, suggestive of possible immunomodulatory roles. Unexpectedly, programming responses of adult and neonatal dendritic cells, upon HCMV infection, demonstrated comparable quantitative and qualitative responses showing that functionally, neonatal dendritic cell are not overly compromised. However, a delay in responses of neonatal cells for IFN subnetworks in comparison with adult-derived cells are notable, suggestive of subtle plasticity differences. These findings support a set-point control mechanism rather than immaturity for explaining not only neonatal susceptibility but also resilience to infection. In summary, our findings show that neonatal HCMV infection leads to a highly plastic and functional robust programming of dendritic cells in vivo and in vitro. In comparison with adults, a minimal number of subtle quantitative and temporal differences may contribute to variability in host susceptibility and resilience, in a context dependent manner.
Collapse
Affiliation(s)
- Widad Dantoft
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Pablo Martínez-Vicente
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - James Jafali
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Lara Pérez-Martínez
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Quantitative Proteomics, Institute of Molecular Biology, Mainz, Germany
| | - Kim Martin
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Synexa Life Sciences, Cape Town, South Africa
| | - Konstantinos Kotzamanis
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Marie Craigon
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Manfred Auer
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.,SynthSys-Centre for Synthetic and Systems Biology, School of Engineering, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil T Young
- Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Paul Walsh
- NSilico Life Science and Department of Computing, Institute of Technology, Cork, Ireland
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Thorsten Forster
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Ghazal
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Vadillo E, Dorantes-Acosta E, Pelayo R, Schnoor M. T cell acute lymphoblastic leukemia (T-ALL): New insights into the cellular origins and infiltration mechanisms common and unique among hematologic malignancies. Blood Rev 2017; 32:36-51. [PMID: 28830639 DOI: 10.1016/j.blre.2017.08.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/08/2017] [Accepted: 08/12/2017] [Indexed: 02/06/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) accounts for 15% and 25% of total childhood and adult ALL cases, respectively. During T-ALL, patients are at risk of organ infiltration by leukemic T-cells. Infiltration is a major consequence of disease relapse and correlates with poor prognosis. Transendothelial migration of leukemic cells is required to exit the blood stream into target organs. While mechanisms of normal T-cell transmigration are well known, the mechanisms of leukemic T-cell extravasation remain elusive; but involvement of chemokines, integrins and Notch signaling play critical roles. Here, we summarize current knowledge about molecular mechanisms of leukemic T-cell infiltration with special emphasis on the newly identified subtype early T-cell-progenitor (ETP)-ALL. Furthermore, we compare the extravasation potential of T-ALL cells with that of other hematologic malignancies such as B-ALL and acute myeloid leukemia (AML).
Collapse
Affiliation(s)
- Eduardo Vadillo
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), 07360 Mexico City, Mexico.
| | - Elisa Dorantes-Acosta
- Leukemia Clinic, Children's Hospital of Mexico Federico Gómez, 06720 Mexico City, Mexico
| | - Rosana Pelayo
- Oncology Research Unit, National Medical Center, Mexican Institute for Social Security, 06720 Mexico City, Mexico
| | - Michael Schnoor
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), 07360 Mexico City, Mexico.
| |
Collapse
|
7
|
Early Differentiation of Human CD11c +NK Cells with γδ T Cell Activation Properties Is Promoted by Dialyzable Leukocyte Extracts. J Immunol Res 2016; 2016:4097642. [PMID: 27847830 PMCID: PMC5099461 DOI: 10.1155/2016/4097642] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/19/2022] Open
Abstract
Reconstitution of the hematopoietic system during immune responses and immunological and neoplastic diseases or upon transplantation depends on the emergent differentiation of hematopoietic stem/progenitor cells within the bone marrow. Although in the last decade the use of dialyzable leukocyte extracts (DLE) as supportive therapy in both infectious and malignant settings has increased, its activity on the earliest stages of human hematopoietic development remains poorly understood. Here, we have examined the ability of DLE to promote replenishment of functional lymphoid lineages from CD34+ cells. Our findings suggest that DLE increases their differentiation toward a conspicuous CD56+CD16+CD11c+ NK-like cell population endowed with properties such as IFNy production, tumor cell cytotoxicity, and the capability of inducing γδ T lymphocyte proliferation. Of note, long-term coculture controlled systems showed the bystander effect of DLE-stromal cells by providing NK progenitors with signals to overproduce this cell subset. Thus, by direct effect on progenitor cells and through activation and remodeling of the supporting hematopoietic microenvironment, DLE may contribute a robust innate immune response by promoting the emerging lymphopoiesis of functional CD11c+ NK cells in a partially TLR-related manner. Unraveling the identity and mechanisms of the involved DLE components may be fundamental to advance the NK cell-based therapy field.
Collapse
|
8
|
Enciso J, Mayani H, Mendoza L, Pelayo R. Modeling the Pro-inflammatory Tumor Microenvironment in Acute Lymphoblastic Leukemia Predicts a Breakdown of Hematopoietic-Mesenchymal Communication Networks. Front Physiol 2016; 7:349. [PMID: 27594840 PMCID: PMC4990565 DOI: 10.3389/fphys.2016.00349] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/02/2016] [Indexed: 01/10/2023] Open
Abstract
Lineage fate decisions of hematopoietic cells depend on intrinsic factors and extrinsic signals provided by the bone marrow microenvironment, where they reside. Abnormalities in composition and function of hematopoietic niches have been proposed as key contributors of acute lymphoblastic leukemia (ALL) progression. Our previous experimental findings strongly suggest that pro-inflammatory cues contribute to mesenchymal niche abnormalities that result in maintenance of ALL precursor cells at the expense of normal hematopoiesis. Here, we propose a molecular regulatory network interconnecting the major communication pathways between hematopoietic stem and progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs) within the BM. Dynamical analysis of the network as a Boolean model reveals two stationary states that can be interpreted as the intercellular contact status. Furthermore, simulations describe the molecular patterns observed during experimental proliferation and activation. Importantly, our model predicts instability in the CXCR4/CXCL12 and VLA4/VCAM1 interactions following microenvironmental perturbation due by temporal signaling from Toll like receptors (TLRs) ligation. Therefore, aberrant expression of NF-κB induced by intrinsic or extrinsic factors may contribute to create a tumor microenvironment where a negative feedback loop inhibiting CXCR4/CXCL12 and VLA4/VCAM1 cellular communication axes allows for the maintenance of malignant cells.
Collapse
Affiliation(s)
- Jennifer Enciso
- Oncology Research Unit, Mexican Institute for Social SecurityMexico City, Mexico; Biochemistry Sciences Program, Universidad Nacional Autónoma de MexicoMexico City, Mexico
| | - Hector Mayani
- Oncology Research Unit, Mexican Institute for Social Security Mexico City, Mexico
| | - Luis Mendoza
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de Mexico Mexico City, Mexico
| | - Rosana Pelayo
- Oncology Research Unit, Mexican Institute for Social Security Mexico City, Mexico
| |
Collapse
|
9
|
Vilchis-Ordoñez A, Contreras-Quiroz A, Vadillo E, Dorantes-Acosta E, Reyes-López A, Quintela-Nuñez del Prado HM, Venegas-Vázquez J, Mayani H, Ortiz-Navarrete V, López-Martínez B, Pelayo R. Bone Marrow Cells in Acute Lymphoblastic Leukemia Create a Proinflammatory Microenvironment Influencing Normal Hematopoietic Differentiation Fates. BIOMED RESEARCH INTERNATIONAL 2015; 2015:386165. [PMID: 26090405 PMCID: PMC4450234 DOI: 10.1155/2015/386165] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023]
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is a serious public health problem in the pediatric population worldwide, contributing to 85% of deaths from childhood cancers. Understanding the biology of the disease is crucial for its clinical management and the development of therapeutic strategies. In line with that observed in other malignancies, chronic inflammation may contribute to a tumor microenvironment resulting in the damage of normal processes, concomitant to development and maintenance of neoplastic cells. We report here that hematopoietic cells from bone marrow B-ALL have the ability to produce proinflammatory and growth factors, including TNFα, IL-1β, IL-12, and GM-CSF that stimulate proliferation and differentiation of normal stem and progenitor cells. Our findings suggest an apparently distinct CD13(+)CD33(+) population of leukemic cells contributing to a proinflammatory microenvironment that may be detrimental to long-term normal hematopoiesis within B-ALL bone marrow.
Collapse
Affiliation(s)
- Armando Vilchis-Ordoñez
- “Federico Gómez” Children's Hospital, 06720 Mexico City, DF, Mexico
- Oncology Research Unit, Oncology Hospital, Mexican Institute for Social Security, Avenida Cuauhtemoc 330, Colonia Doctores, 06720 Mexico City, DF, Mexico
- Clinical Biochemistry Program, National Autonomous University of Mexico, 04510 Mexico City, DF, Mexico
| | - Adriana Contreras-Quiroz
- Oncology Research Unit, Oncology Hospital, Mexican Institute for Social Security, Avenida Cuauhtemoc 330, Colonia Doctores, 06720 Mexico City, DF, Mexico
- Molecular Biomedicine Department, CINVESTAV, 07360 Mexico City, DF, Mexico
| | - Eduardo Vadillo
- Oncology Research Unit, Oncology Hospital, Mexican Institute for Social Security, Avenida Cuauhtemoc 330, Colonia Doctores, 06720 Mexico City, DF, Mexico
| | | | | | | | - Jorge Venegas-Vázquez
- UMAE “Dr. Victorio de la Fuente Narvaéz”, Mexican Institute for Social Security, 07760 Mexico City, DF, Mexico
| | - Hector Mayani
- Oncology Research Unit, Oncology Hospital, Mexican Institute for Social Security, Avenida Cuauhtemoc 330, Colonia Doctores, 06720 Mexico City, DF, Mexico
| | | | | | - Rosana Pelayo
- Oncology Research Unit, Oncology Hospital, Mexican Institute for Social Security, Avenida Cuauhtemoc 330, Colonia Doctores, 06720 Mexico City, DF, Mexico
| |
Collapse
|
10
|
Anderson G, Maes M, Markus RP, Rodriguez M. Ebola virus: Melatonin as a readily available treatment option. J Med Virol 2015; 87:537-43. [DOI: 10.1002/jmv.24130] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2014] [Indexed: 01/10/2023]
Affiliation(s)
- George Anderson
- CRC Scotland and London; Eccleston Square; London United Kingdom
| | - Michael Maes
- Impact Strategic Treatment Center; Deakin University; Geelong Australia
- Department of Psychiatry; Faculty of Medicine; Chulalongkorn University; Bangkok Thailand
- Health Sciences Graduate Program; Health Sciences Center; State University of Londrina; Brazil
| | - Regina P. Markus
- Lab Chronopharmacology; Department of Physiology; Institute of Bioscience; University de S; ã; o Paulo; Brazil
| | - Moses Rodriguez
- Department of Immunology; Department of Neurology; Mayo Clinic; Rochester New York
| |
Collapse
|