1
|
King AJ, Songdej D, Downes DJ, Beagrie RA, Liu S, Buckley M, Hua P, Suciu MC, Marieke Oudelaar A, Hanssen LLP, Jeziorska D, Roberts N, Carpenter SJ, Francis H, Telenius J, Olijnik AA, Sharpe JA, Sloane-Stanley J, Eglinton J, Kassouf MT, Orkin SH, Pennacchio LA, Davies JOJ, Hughes JR, Higgs DR, Babbs C. Reactivation of a developmentally silenced embryonic globin gene. Nat Commun 2021; 12:4439. [PMID: 34290235 PMCID: PMC8295333 DOI: 10.1038/s41467-021-24402-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 06/12/2021] [Indexed: 12/26/2022] Open
Abstract
The α- and β-globin loci harbor developmentally expressed genes, which are silenced throughout post-natal life. Reactivation of these genes may offer therapeutic approaches for the hemoglobinopathies, the most common single gene disorders. Here, we address mechanisms regulating the embryonically expressed α-like globin, termed ζ-globin. We show that in embryonic erythroid cells, the ζ-gene lies within a ~65 kb sub-TAD (topologically associating domain) of open, acetylated chromatin and interacts with the α-globin super-enhancer. By contrast, in adult erythroid cells, the ζ-gene is packaged within a small (~10 kb) sub-domain of hypoacetylated, facultative heterochromatin within the acetylated sub-TAD and that it no longer interacts with its enhancers. The ζ-gene can be partially re-activated by acetylation and inhibition of histone de-acetylases. In addition to suggesting therapies for severe α-thalassemia, these findings illustrate the general principles by which reactivation of developmental genes may rescue abnormalities arising from mutations in their adult paralogues.
Collapse
Affiliation(s)
- Andrew J King
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Duantida Songdej
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Division of Hematology/Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Damien J Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Robert A Beagrie
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Siyu Liu
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Megan Buckley
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Peng Hua
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Maria C Suciu
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Lars L P Hanssen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Danuta Jeziorska
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nigel Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Stephanie J Carpenter
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Helena Francis
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jelena Telenius
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Aude-Anais Olijnik
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jacqueline A Sharpe
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jacqueline Sloane-Stanley
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jennifer Eglinton
- National Haemoglobinopathy Reference Laboratory, Department of Haematology, Level 4, John Radcliffe Hospital, Oxford, UK
| | - Mira T Kassouf
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Stuart H Orkin
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, USA
| | - Len A Pennacchio
- Functional Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, USA
| | - James O J Davies
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | - Christian Babbs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
When basic science reaches into rational therapeutic design: from historical to novel leads for the treatment of β-globinopathies. Curr Opin Hematol 2021; 27:141-148. [PMID: 32167946 DOI: 10.1097/moh.0000000000000577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW β-hemoglobinopathies, such as β-Thalassemias (β-Thal) and sickle cell disease (SCD) are among the most common inherited genetic disorders in humans worldwide. These disorders are characterized by a quantitative (β-Thal) or qualitative (SCD) defects in adult hemoglobin production, leading to anemia, ineffective erythropoiesis and severe secondary complications. Reactivation of the fetal globin genes (γ-globin), making-up fetal hemoglobin (HbF), which are normally silenced in adults, represents a major strategy to ameliorate anemia and disease severity. RECENT FINDINGS Following the identification of the first 'switching factors' for the reactivation of fetal globin gene expression more than 10 years ago, a multitude of novel leads have recently been uncovered. SUMMARY Recent findings provided invaluable functional insights into the genetic and molecular networks controlling globin genes expression, revealing that complex repression systems evolved in erythroid cells to maintain HbF silencing in adults. This review summarizes these unique and exciting discoveries of the regulatory factors controlling the globin switch. New insights and novel leads for therapeutic strategies based on the pharmacological induction of HbF are discussed. This represents a major breakthrough for rational drug design in the treatment of β-Thal and SCD.
Collapse
|
3
|
Abstract
Fetal hemoglobin (HbF) can blunt the pathophysiology, temper the clinical course, and offer prospects for curative therapy of sickle cell disease. This review focuses on (1) HbF quantitative trait loci and the geography of β-globin gene haplotypes, especially those found in the Middle East; (2) how HbF might differentially impact the pathophysiology and many subphenotypes of sickle cell disease; (3) clinical implications of person-to-person variation in the distribution of HbF among HbF-containing erythrocytes; and (4) reactivation of HbF gene expression using both pharmacologic and cell-based therapeutic approaches. A confluence of detailed understanding of the molecular basis of HbF gene expression, coupled with the ability to precisely target by genomic editing most areas of the genome, is producing important preliminary therapeutic results that could provide new options for cell-based therapeutics with curative intent.
Collapse
Affiliation(s)
- Martin H Steinberg
- Division of Hematology/Oncology, Department of Medicine, Center of Excellence for Sickle Cell Disease, Center for Regenerative Medicine, Genome Science Institute, Boston University School of Medicine and Boston Medical Center, Boston, MA
| |
Collapse
|
4
|
Papayannopoulou T. Control of fetal globin expression in man: new opportunities to challenge past discoveries. Exp Hematol 2020; 92:43-50. [PMID: 32976950 DOI: 10.1016/j.exphem.2020.09.195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 01/01/2023]
Abstract
Decades-old findings supporting origin of F cells in adult life from adult-type progenitors and the in vitro and in vivo enhancement of fetal globin under stress conditions have been juxtaposed against recent mechanistic underpinnings. An updated molecular interrogation did not debunk prior conclusions on the origin of F cells. Although fetal globin reactivation by widely diverse approaches in vitro and in response to anemic stresses in vivo is a work in progress, accumulating evidence converges toward an integrated stress response pathway. The newly uncovered developmental regulators of globin gene switching not only have provided answers to the long-awaited quest of transregulation of switching, they are also reaching a clinical threshold. Although the effect of fetal globin silencers has been robustly validated in adult cells, the response of cells at earlier developmental stages has been unclear and inadequately studied.
Collapse
|
5
|
King AJ, Higgs DR. Potential new approaches to the management of the Hb Bart's hydrops fetalis syndrome: the most severe form of α-thalassemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:353-360. [PMID: 30504332 PMCID: PMC6246003 DOI: 10.1182/asheducation-2018.1.353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The α-thalassemia trait, associated with deletions removing both α-globin genes from 1 chromosome (genotype ζ αα/ζ--), is common throughout Southeast Asia. Consequently, many pregnancies in couples of Southeast Asian origin carry a 1 in 4 risk of producing a fetus inheriting no functional α-globin genes (ζ--/ζ--), leading to hemoglobin (Hb) Bart's hydrops fetalis syndrome (BHFS). Expression of the embryonic α-globin genes (ζ-globin) is normally limited to the early stages of primitive erythropoiesis, and so when the ζ-globin genes are silenced, at ∼6 weeks of gestation, there should be no α-like globin chains to pair with the fetal γ-globin chains of Hb, which consequently form nonfunctional tetramers (γ4) known as Hb Bart's. When deletions leave the ζ-globin gene intact, a low level of ζ-globin gene expression continues in definitive erythroid cells, producing small amounts of Hb Portland (ζ2γ2), a functional form of Hb that allows the fetus to survive up to the second or third trimester. Untreated, all affected individuals die at these stages of development. Prevention is therefore of paramount importance. With improvements in early diagnosis, intrauterine transfusion, and advanced perinatal care, there are now a small number of individuals with BHFS who have survived, with variable outcomes. A deeper understanding of the mechanism underlying the switch from ζ- to α-globin expression could enable persistence or reactivation of embryonic globin synthesis in definitive cells, thereby providing new therapeutic options for such patients.
Collapse
Affiliation(s)
- Andrew J King
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Douglas R Higgs
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
6
|
Jagadeeswaran R, Rivers A. Evolving treatment paradigms in sickle cell disease. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:440-446. [PMID: 29222291 PMCID: PMC6142561 DOI: 10.1182/asheducation-2017.1.440] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Sickle cell disease (SCD) is an inheritable hemoglobinopathy characterized by polymerization of hemoglobin S in red blood cells resulting in chronic hemolytic anemia, vaso-occlusive painful crisis, and multiorgan damage. In SCD, an increased reactive oxygen species (ROS) generation occurs both inside the red blood cells and inside the vascular lumen, which augment hemolysis and cellular adhesion. This review discusses the evolving body of literature on the role of ROS in the pathophysiology of SCD as well as some emerging therapeutic approaches to SCD with a focus on the reduction of ROS.
Collapse
Affiliation(s)
- Ramasamy Jagadeeswaran
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL; and
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL
| | - Angela Rivers
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL; and
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL
| |
Collapse
|
7
|
Hirsch RE, Sibmooh N, Fucharoen S, Friedman JM. HbE/β-Thalassemia and Oxidative Stress: The Key to Pathophysiological Mechanisms and Novel Therapeutics. Antioxid Redox Signal 2017; 26:794-813. [PMID: 27650096 PMCID: PMC5421591 DOI: 10.1089/ars.2016.6806] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/16/2016] [Indexed: 01/19/2023]
Abstract
SIGNIFICANCE Oxidative stress and generation of free radicals are fundamental in initiating pathophysiological mechanisms leading to an inflammatory cascade resulting in high rates of morbidity and death from many inherited point mutation-derived hemoglobinopathies. Hemoglobin (Hb)E is the most common point mutation worldwide. The βE-globin gene is found in greatest frequency in Southeast Asia, including Thailand, Malaysia, Indonesia, Vietnam, Cambodia, and Laos. With the wave of worldwide migration, it is entering the gene pool of diverse populations with greater consequences than expected. CRITICAL ISSUES While HbE by itself presents as a mild anemia and a single gene for β-thalassemia is not serious, it remains unexplained why HbE/β-thalassemia (HbE/β-thal) is a grave disease with high morbidity and mortality. Patients often exhibit defective physical development, severe chronic anemia, and often die of cardiovascular disease and severe infections. Recent Advances: This article presents an overview of HbE/β-thal disease with an emphasis on new findings pointing to pathophysiological mechanisms derived from and initiated by the dysfunctional property of HbE as a reduced nitrite reductase concomitant with excess α-chains exacerbating unstable HbE, leading to a combination of nitric oxide imbalance, oxidative stress, and proinflammatory events. FUTURE DIRECTIONS Additionally, we present new therapeutic strategies that are based on the emerging molecular-level understanding of the pathophysiology of this and other hemoglobinopathies. These strategies are designed to short-circuit the inflammatory cascade leading to devastating chronic morbidity and fatal consequences. Antioxid. Redox Signal. 26, 794-813.
Collapse
Affiliation(s)
- Rhoda Elison Hirsch
- Department of Medicine (Hematology), Albert Einstein College of Medicine, Bronx, New York
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Nathawut Sibmooh
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, Thailand
| | - Joel M. Friedman
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|