1
|
Kronstein-Wiedemann R, Thiel J, Sürün D, Teichert M, Künzel SR, Zimmermann S, Wagenführ L, Buchholz F, Tonn T. Characterization of immortalized bone marrow erythroid progenitor adult (imBMEP-A)-The first inducible immortalized red blood cell progenitor cell line derived from bone marrow CD71-positive cells. Cytotherapy 2024; 26:1362-1373. [PMID: 39001769 DOI: 10.1016/j.jcyt.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND AIMS Ex vivo production of red blood cells (RBCs) represents a promising alternative for transfusion medicine. Several strategies have been described to generate erythroid cell lines from different sources, including embryonic, induced pluripotent, and hematopoietic stem cells. All these approaches have in common that they require elaborate differentiation cultures whereas the yield of enucleated RBCs is inefficient. METHODS We generated a human immortalized adult erythroid progenitor cell line derived from bone marrow CD71-positive erythroid progenitor cells (immortalized bone marrow erythroid progenitor adult, or imBMEP-A) by an inducible expression system, to shorten differentiation culture necessary for terminal erythroid differentiation. It is the first erythroid cell line that is generated from direct reticulocyte progenitors and demonstrates robust hemoglobin production in the immortalized state. RESULTS Morphologic analysis of the immortalized cells showed that the preferred cell type of the imBMEP-A line corresponds to hemoglobin-producing basophilic erythroblasts. In addition, we were able to generate a stable cell line from a single cell clone with the triple knockout of RhAG, RhDCE and KELL. After removal of doxycycline, part of the cells differentiated into normoblasts and reticulocytes within 5-7 days. CONCLUSIONS Our results demonstrate that the imBMEP-A cell line can serve as a stable and straightforward modifiable platform for RBC engineering in the future.
Collapse
Affiliation(s)
- Romy Kronstein-Wiedemann
- Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Jessica Thiel
- Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Duran Sürün
- UCC, Medical Systems Biology - Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Madeleine Teichert
- German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Stephan R Künzel
- Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Stefan Zimmermann
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Lisa Wagenführ
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | - Frank Buchholz
- UCC, Medical Systems Biology - Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Torsten Tonn
- Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany.
| |
Collapse
|
2
|
Khandros E, Blobel GA. Elevating fetal hemoglobin: recently discovered regulators and mechanisms. Blood 2024; 144:845-852. [PMID: 38728575 DOI: 10.1182/blood.2023022190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT It has been known for over half a century that throughout ontogeny, humans produce different forms of hemoglobin, a tetramer of α- and β-like hemoglobin chains. The switch from fetal to adult hemoglobin occurs around the time of birth when erythropoiesis shifts from the fetal liver to the bone marrow. Naturally, diseases caused by defective adult β-globin genes, such as sickle cell disease and β-thalassemia, manifest themselves as the production of fetal hemoglobin fades. Reversal of this developmental switch has been a major goal to treat these diseases and has been a driving force to understand its underlying molecular biology. Several review articles have illustrated the long and at times arduous paths that led to the discovery of the first transcriptional regulators involved in this process. Here, we survey recent developments spurred by the discovery of CRISPR tools that enabled for the first time high-throughput genetic screens for new molecules that impact the fetal-to-adult hemoglobin switch. Numerous opportunities for therapeutic intervention have thus come to light, offering hope for effective pharmacologic intervention for patients for whom gene therapy is out of reach.
Collapse
Affiliation(s)
- Eugene Khandros
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gerd A Blobel
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
3
|
Day CJ, Favuzza P, Bielfeld S, Haselhorst T, Seefeldt L, Hauser J, Shewell LK, Flueck C, Poole J, Jen FEC, Schäfer A, Dangy JP, Gilberger TW, França CT, Duraisingh MT, Tamborrini M, Brancucci NMB, Grüring C, Filarsky M, Jennings MP, Pluschke G. The essential malaria protein PfCyRPA targets glycans to invade erythrocytes. Cell Rep 2024; 43:114012. [PMID: 38573856 DOI: 10.1016/j.celrep.2024.114012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/15/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Plasmodium falciparum is a human-adapted apicomplexan parasite that causes the most dangerous form of malaria. P. falciparum cysteine-rich protective antigen (PfCyRPA) is an invasion complex protein essential for erythrocyte invasion. The precise role of PfCyRPA in this process has not been resolved. Here, we show that PfCyRPA is a lectin targeting glycans terminating with α2-6-linked N-acetylneuraminic acid (Neu5Ac). PfCyRPA has a >50-fold binding preference for human, α2-6-linked Neu5Ac over non-human, α2-6-linked N-glycolylneuraminic acid. PfCyRPA lectin sites were predicted by molecular modeling and validated by mutagenesis studies. Transgenic parasite lines expressing endogenous PfCyRPA with single amino acid exchange mutants indicated that the lectin activity of PfCyRPA has an important role in parasite invasion. Blocking PfCyRPA lectin activity with small molecules or with lectin-site-specific monoclonal antibodies can inhibit blood-stage parasite multiplication. Therefore, targeting PfCyRPA lectin activity with drugs, immunotherapy, or a vaccine-primed immune response is a promising strategy to prevent and treat malaria.
Collapse
Affiliation(s)
- Christopher J Day
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Paola Favuzza
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Sabrina Bielfeld
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany; Department of Biology, University of Hamburg, Hamburg, Germany
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Leonie Seefeldt
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Julia Hauser
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Lucy K Shewell
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Christian Flueck
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Jessica Poole
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Freda E-C Jen
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Anja Schäfer
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Jean-Pierre Dangy
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Tim-W Gilberger
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany; Department of Biology, University of Hamburg, Hamburg, Germany; Department of Cellular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Camila Tenorio França
- Department of Immunology & Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology & Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Marco Tamborrini
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Nicolas M B Brancucci
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Christof Grüring
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Michael Filarsky
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany; Department of Biology, University of Hamburg, Hamburg, Germany
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| |
Collapse
|
4
|
Yan M, Yong F, Ji W, Zhang L, Zhao S, Gao Y. Construction and Characterization of Immortalized Fibroblast Cell Line from Bactrian Camel. Life (Basel) 2023; 13:1337. [PMID: 37374120 PMCID: PMC10302944 DOI: 10.3390/life13061337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Immortalized cell lines with many advantages are widely used in various experimental contexts by many different labs. However, the absence of available cell lines poses difficulties for research in some species, such as camels. To establish an immortalized Bactrian camel fibroblast (iBCF) cell line and understand its biological characteristics, primary fibroblast cells from Bactrian camels were isolated and purified using enzymatic digestion in this study, and telomerase reverse transcriptase (hTERT) vectors were introduced into primary BCF (pBCF) for continuous passage to 80 generations after screening with G418. The cell morphology of different generations was examined under a microscope. Cell cycle and viability were evaluated by flow cytometry and CCK-8 assay, respectively. Cellular genes expression was monitored by qPCR, immunofluorescence, and Western blot, respectively. Chromosomes were determined by karyotyping. The results showed that like most other cells, both pBCF and iBCF were sensitive to nutrient concentrations and adapted to culture in the medium with 4.5 g/L glucose and 10% fetal bovine serum (FBS) concentration. hTERT gene was introduced and stably expressed in iBCF cells, which promoted BCF cell immortalization. The fibroblast specific marker vimentin (VIM) is expressed in both pBCF and iBCF, but epithelial marker cytokeratin18 (CK18) expression is weak in BCF cells. Proliferation and viability detection showed that hTERT-induced iBCF exhibits faster growth rates and higher viability than pBCF. Karyotyping showed that iBCF maintained the same number and morphology of chromosomes as the pBCF. This study demonstrated that we have successfully constructed an immortalized Bactrian camel fibroblast cell line, which was named BCF23. The establishment of the BCF23 cell line provides a foundation for expanding camel-related research.
Collapse
Affiliation(s)
- Meilin Yan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Fang Yong
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Wangye Ji
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Lili Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuqin Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yuan Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
5
|
Cervellera CF, Mazziotta C, Di Mauro G, Iaquinta MR, Mazzoni E, Torreggiani E, Tognon M, Martini F, Rotondo JC. Immortalized erythroid cells as a novel frontier for in vitro blood production: current approaches and potential clinical application. Stem Cell Res Ther 2023; 14:139. [PMID: 37226267 PMCID: PMC10210309 DOI: 10.1186/s13287-023-03367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Blood transfusions represent common medical procedures, which provide essential supportive therapy. However, these procedures are notoriously expensive for healthcare services and not without risk. The potential threat of transfusion-related complications, such as the development of pathogenic infections and the occurring of alloimmunization events, alongside the donor's dependence, strongly limits the availability of transfusion units and represents significant concerns in transfusion medicine. Moreover, a further increase in the demand for donated blood and blood transfusion, combined with a reduction in blood donors, is expected as a consequence of the decrease in birth rates and increase in life expectancy in industrialized countries. MAIN BODY An emerging and alternative strategy preferred over blood transfusion is the in vitro production of blood cells from immortalized erythroid cells. The high survival capacity alongside the stable and longest proliferation time of immortalized erythroid cells could allow the generation of a large number of cells over time, which are able to differentiate into blood cells. However, a large-scale, cost-effective production of blood cells is not yet a routine clinical procedure, as being dependent on the optimization of culture conditions of immortalized erythroid cells. CONCLUSION In our review, we provide an overview of the most recent erythroid cell immortalization approaches, while also describing and discussing related advancements of establishing immortalized erythroid cell lines.
Collapse
Affiliation(s)
- Christian Felice Cervellera
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Department of Medical Sciences, Center for Studies on Gender Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Giulia Di Mauro
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Department of Medical Sciences, Center for Studies on Gender Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences-DOCPAS, University of Ferrara, 44121, Ferrara, Italy
| | - Elena Torreggiani
- Department of Chemical, Pharmaceutical and Agricultural Sciences-DOCPAS, University of Ferrara, 44121, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
- Department of Medical Sciences, Center for Studies on Gender Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121, Ferrara, Italy.
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
- Department of Medical Sciences, Center for Studies on Gender Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
| |
Collapse
|
6
|
Kim S, Jo KW, Park JM, Shin A, Kurita R, Nakamura Y, Kweon S, Baek EJ. Irradiation is not sufficient to eradicate residual immortalized erythroid cells in in vitro-generated red blood cell products. Transfusion 2023. [PMID: 37154531 DOI: 10.1111/trf.17394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND The generation of immortalized erythroid progenitor cell lines capable of producing enough red blood cells (RBCs) for blood transfusion typically requires the overexpression of oncogenes in stem cells or progenitor cells to permanently proliferate immature cells. It is essential that any live oncogene-expressing cells are eliminated from the final RBC products for clinical use. STUDY DESIGN AND METHODS It is believed that safety issues may be resolved by using a leukoreduction filter or by irradiating the final products, as is conventionally done in blood banks; however, this has never been proven to be effective. Therefore, to investigate whether immortalized erythroblasts can be completely removed using γ-ray irradiation, we irradiated the erythroblast cell line, HiDEP, and the erythroleukemic cell line, K562 that overexpress HPV16 E6/E7. We then analyzed the extent of cell death using flow cytometry and polymerase chain reaction (PCR). The cells were also subjected to leukoreduction filters. RESULTS Using γ-ray irradiation at 25 Gy, 90.4% of HiDEP cells, 91.6% of K562-HPV16 E6/E7 cells, and 93.5% of non-transduced K562 cells were dead. In addition, 5.58 × 107 HiDEP cells were passed through a leukoreduction filter, and 38 intact cells were harvested, revealing a filter removal efficiency of 99.9999%. However, both intact cells and oncogene DNA were still detected. DISCUSSION Irradiation cannot induce total cell death of oncogene-expressing erythroblasts and leukocyte filter efficiency is not 100%. Therefore, our findings imply that for clinical applications, safer methods should be developed to completely remove residual nucleated cells from cell line-derived RBC products.
Collapse
Affiliation(s)
- Suyeon Kim
- Department of Research and Development, ArtBlood Inc., Seoul, Korea
| | - Kyeong Won Jo
- Department of Research and Development, ArtBlood Inc., Seoul, Korea
| | - Ju Mi Park
- Department of Research and Development, ArtBlood Inc., Seoul, Korea
| | - Arim Shin
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Soonho Kweon
- Department of Research and Development, ArtBlood Inc., Seoul, Korea
| | - Eun Jung Baek
- Department of Research and Development, ArtBlood Inc., Seoul, Korea
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
- Department of Laboratory Medicine, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Jiang X, Yang H, Jing Q, He X. A “selective secondary tissue attachment” method for isolation and purification of mammary epithelial cells. Acta Histochem 2022; 124:151972. [DOI: 10.1016/j.acthis.2022.151972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/01/2022]
|
8
|
Satchwell TJ. Generation of red blood cells from stem cells: Achievements, opportunities and perspectives for malaria research. Front Cell Infect Microbiol 2022; 12:1039520. [PMID: 36452302 PMCID: PMC9702814 DOI: 10.3389/fcimb.2022.1039520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/21/2022] [Indexed: 06/22/2024] Open
Abstract
Parasites of the genus Plasmodium that cause malaria survive within humans by invasion of, and proliferation within, the most abundant cell type in the body, the red blood cell. As obligate, intracellular parasites, interactions between parasite and host red blood cell components are crucial to multiple aspects of the blood stage malaria parasite lifecycle. The requirement for, and involvement of, an array of red blood cell proteins in parasite invasion and intracellular development is well established. Nevertheless, detailed mechanistic understanding of host cell protein contributions to these processes are hampered by the genetic intractability of the anucleate red blood cell. The advent of stem cell technology and more specifically development of methods that recapitulate in vitro the process of red blood cell development known as erythropoiesis has enabled the generation of erythroid cell stages previously inaccessible in large numbers for malaria studies. What is more, the capacity for genetic manipulation of nucleated erythroid precursors that can be differentiated to generate modified red blood cells has opened new horizons for malaria research. This review summarises current methodologies that harness in vitro erythroid differentiation of stem cells for generation of cells that are susceptible to malaria parasite invasion; discusses existing and emerging approaches to generate novel red blood cell phenotypes and explores the exciting potential of in vitro derived red blood cells for improved understanding the broad role of host red blood cell proteins in malaria pathogenesis.
Collapse
|
9
|
Soboleva S, Miharada K. Induction of enucleation in primary and immortalized erythroid cells. Int J Hematol 2022; 116:192-198. [PMID: 35610497 DOI: 10.1007/s12185-022-03386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Enucleation is a crucial event during the erythropoiesis, implicating drastic morphologic and transcriptomic/proteomic changes. While many genes deletion lead to failed or impaired enucleation have been identified, directly triggering the erythroid maturation, particularly enucleation, is still challenging. Inducing enucleation at the desired timing is necessary to develop efficient methods to generate mature, fully functional red blood cells in vitro for future transfusion therapies. However, there are considerable differences between primary erythroid cells and cultured cell sources, particularly pluripotent stem cell-derived erythroid cells and immortalized erythroid cell lines. For instance, the difference in the proliferative status between those cell types could be a critical factor, as cell cycle exit is closely connected to the terminal maturation of primary. In this review, we will discuss previous findings on the enucleation machinery and current challengings to trigger the enucleation of infinite erythroid cell sources.
Collapse
Affiliation(s)
- Svetlana Soboleva
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Kenichi Miharada
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden. .,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
10
|
Industrially Compatible Transfusable iPSC-Derived RBCs: Progress, Challenges and Prospective Solutions. Int J Mol Sci 2021; 22:ijms22189808. [PMID: 34575977 PMCID: PMC8472628 DOI: 10.3390/ijms22189808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Amidst the global shortfalls in blood supply, storage limitations of donor blood and the availability of potential blood substitutes for transfusion applications, society has pivoted towards in vitro generation of red blood cells (RBCs) as a means to solve these issues. Many conventional research studies over the past few decades have found success in differentiating hematopoietic stem and progenitor cells (HSPCs) from cord blood, adult bone marrow and peripheral blood sources. More recently, techniques that involve immortalization of erythroblast sources have also gained traction in tackling this problem. However, the RBCs generated from human induced pluripotent stem cells (hiPSCs) still remain as the most favorable solution due to many of its added advantages. In this review, we focus on the breakthroughs for high-density cultures of hiPSC-derived RBCs, and highlight the major challenges and prospective solutions throughout the whole process of erythropoiesis for hiPSC-derived RBCs. Furthermore, we elaborate on the recent advances and techniques used to achieve cost-effective, high-density cultures of GMP-compliant RBCs, and on their relevant novel applications after downstream processing and purification.
Collapse
|
11
|
Daniels DE, Ferguson DCJ, Griffiths RE, Trakarnsanga K, Cogan N, MacInnes KA, Mordue KE, Andrienko T, Ferrer-Vicens I, Ramos Jiménez D, Lewis PA, Wilson MC, Canham MA, Kurita R, Nakamura Y, Anstee DJ, Frayne J. Reproducible immortalization of erythroblasts from multiple stem cell sources provides approach for sustainable RBC therapeutics. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:26-39. [PMID: 34485592 PMCID: PMC8390520 DOI: 10.1016/j.omtm.2021.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 06/01/2021] [Indexed: 12/01/2022]
Abstract
Developing robust methodology for the sustainable production of red blood cells in vitro is essential for providing an alternative source of clinical-quality blood, particularly for individuals with rare blood group phenotypes. Immortalized erythroid progenitor cell lines are the most promising emergent technology for achieving this goal. We previously created the erythroid cell line BEL-A from bone marrow CD34+ cells that had improved differentiation and enucleation potential compared to other lines reported. In this study we show that our immortalization approach is reproducible for erythroid cells differentiated from bone marrow and also from far more accessible peripheral and cord blood CD34+ cells, consistently generating lines with similar improved erythroid performance. Extensive characterization of the lines shows them to accurately recapitulate their primary cell equivalents and provides a molecular signature for immortalization. In addition, we show that only cells at a specific stage of erythropoiesis, predominantly proerythroblasts, are amenable to immortalization. Our methodology provides a step forward in the drive for a sustainable supply of red cells for clinical use and for the generation of model cellular systems for the study of erythropoiesis in health and disease, with the added benefit of an indefinite expansion window for manipulation of molecular targets.
Collapse
Affiliation(s)
- Deborah E Daniels
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.,NIHR Blood and Transplant Research Unit, University of Bristol, Bristol BS8 1TD, UK
| | | | | | - Kongtana Trakarnsanga
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nicola Cogan
- NIHR Blood and Transplant Research Unit, University of Bristol, Bristol BS8 1TD, UK.,Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Bristol BS34 7QH, UK
| | - Katherine A MacInnes
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.,NIHR Blood and Transplant Research Unit, University of Bristol, Bristol BS8 1TD, UK
| | - Kathryn E Mordue
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | - Phillip A Lewis
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | | | - Maurice A Canham
- Tissues, Cells & Advanced Therapeutics, Scottish National Blood Transfusion Service, The Jack Copland Centre, 52 Research Avenue North, Edinburgh, EH14 4BE, UK
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - David J Anstee
- NIHR Blood and Transplant Research Unit, University of Bristol, Bristol BS8 1TD, UK.,Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Bristol BS34 7QH, UK
| | - Jan Frayne
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.,NIHR Blood and Transplant Research Unit, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
12
|
Bagchi A, Nath A, Thamodaran V, Ijee S, Palani D, Rajendiran V, Venkatesan V, Datari P, Pai AA, Janet NB, Balasubramanian P, Nakamura Y, Srivastava A, Mohankumar KM, Thangavel S, Velayudhan SR. Direct Generation of Immortalized Erythroid Progenitor Cell Lines from Peripheral Blood Mononuclear Cells. Cells 2021; 10:523. [PMID: 33804564 PMCID: PMC7999632 DOI: 10.3390/cells10030523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 02/04/2023] Open
Abstract
Reliable human erythroid progenitor cell (EPC) lines that can differentiate to the later stages of erythropoiesis are important cellular models for studying molecular mechanisms of human erythropoiesis in normal and pathological conditions. Two immortalized erythroid progenitor cells (iEPCs), HUDEP-2 and BEL-A, generated from CD34+ hematopoietic progenitors by the doxycycline (dox) inducible expression of human papillomavirus E6 and E7 (HEE) genes, are currently being used extensively to study transcriptional regulation of human erythropoiesis and identify novel therapeutic targets for red cell diseases. However, the generation of iEPCs from patients with red cell diseases is challenging as obtaining a sufficient number of CD34+ cells require bone marrow aspiration or their mobilization to peripheral blood using drugs. This study established a protocol for culturing early-stage EPCs from peripheral blood (PB) and their immortalization by expressing HEE genes. We generated two iEPCs, PBiEPC-1 and PBiEPC-2, from the peripheral blood mononuclear cells (PBMNCs) of two healthy donors. These cell lines showed stable doubling times with the properties of erythroid progenitors. PBiEPC-1 showed robust terminal differentiation with high enucleation efficiency, and it could be successfully gene manipulated by gene knockdown and knockout strategies with high efficiencies without affecting its differentiation. This protocol is suitable for generating a bank of iEPCs from patients with rare red cell genetic disorders for studying disease mechanisms and drug discovery.
Collapse
Affiliation(s)
- Abhirup Bagchi
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Aneesha Nath
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Vasanth Thamodaran
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Smitha Ijee
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Dhavapriya Palani
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Vignesh Rajendiran
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Vigneshwaran Venkatesan
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Phaneendra Datari
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Aswin Anand Pai
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Nancy Beryl Janet
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Poonkuzhali Balasubramanian
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki 3050074, Japan;
| | - Alok Srivastava
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Kumarasamypet Murugesan Mohankumar
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Saravanabhavan Thangavel
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Shaji R. Velayudhan
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| |
Collapse
|
13
|
Liu S, Wu M, Lancelot M, Deng J, Gao Y, Roback JD, Chen T, Cheng L. BMI1 enables extensive expansion of functional erythroblasts from human peripheral blood mononuclear cells. Mol Ther 2021; 29:1918-1932. [PMID: 33484967 PMCID: PMC8116606 DOI: 10.1016/j.ymthe.2021.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/26/2020] [Accepted: 01/12/2021] [Indexed: 01/06/2023] Open
Abstract
Transfusion of red blood cells (RBCs) from ABO-matched but genetically unrelated donors is commonly used for treating anemia and acute blood loss. Increasing demand and insufficient supply for donor RBCs, especially those of universal blood types or free of known and unknown pathogens, has called for ex vivo generation of functional RBCs by large-scale cell culture. However, generating physiological numbers of transfusable cultured RBCs (cRBCs) ex vivo remains challenging, due to our inability to either extensively expand primary RBC precursors (erythroblasts) or achieve efficient enucleation once erythroblasts have been expanded and induced to differentiation and maturation. Here, we report that ectopic expression of the human BMI1 gene confers extensive expansion of human erythroblasts, which can be derived readily from adult peripheral blood mononuclear cells of either healthy donors or sickle cell patients. These extensively expanded erythroblasts (E3s) are able to proliferate exponentially (>1 trillion-fold in 2 months) in a defined culture medium. Expanded E3 cells are karyotypically normal and capable of terminal maturation with approximately 50% enucleation. Additionally, E3-derived cRBCs can circulate in a mouse model following transfusion similar to primary human RBCs. Therefore, we provide a facile approach of generating physiological numbers of human functional erythroblasts ex vivo.
Collapse
Affiliation(s)
- Senquan Liu
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China; Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mengyao Wu
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Division of Hematology, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Moira Lancelot
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jiusheng Deng
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yongxing Gao
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John D Roback
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Tong Chen
- Division of Hematology, Huashan Hospital of Fudan University, Shanghai 200040, China.
| | - Linzhao Cheng
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China; Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
Valid Presumption of Shiga Toxin-Mediated Damage of Developing Erythrocytes in EHEC-Associated Hemolytic Uremic Syndrome. Toxins (Basel) 2020; 12:toxins12060373. [PMID: 32512916 PMCID: PMC7354503 DOI: 10.3390/toxins12060373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
The global emergence of clinical diseases caused by enterohemorrhagic Escherichia coli (EHEC) is an issue of great concern. EHEC release Shiga toxins (Stxs) as their key virulence factors, and investigations on the cell-damaging mechanisms toward target cells are inevitable for the development of novel mitigation strategies. Stx-mediated hemolytic uremic syndrome (HUS), characterized by the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal injury, is the most severe outcome of an EHEC infection. Hemolytic anemia during HUS is defined as the loss of erythrocytes by mechanical disruption when passing through narrowed microvessels. The formation of thrombi in the microvasculature is considered an indirect effect of Stx-mediated injury mainly of the renal microvascular endothelial cells, resulting in obstructions of vessels. In this review, we summarize and discuss recent data providing evidence that HUS-associated hemolytic anemia may arise not only from intravascular rupture of erythrocytes, but also from the extravascular impairment of erythropoiesis, the development of red blood cells in the bone marrow, via direct Stx-mediated damage of maturing erythrocytes, leading to “non-hemolytic” anemia.
Collapse
|
15
|
Scully EJ, Shabani E, Rangel GW, Grüring C, Kanjee U, Clark MA, Chaand M, Kurita R, Nakamura Y, Ferreira MU, Duraisingh MT. Generation of an immortalized erythroid progenitor cell line from peripheral blood: A model system for the functional analysis of Plasmodium spp. invasion. Am J Hematol 2019; 94:963-974. [PMID: 31148215 PMCID: PMC6984401 DOI: 10.1002/ajh.25543] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
Malaria pathogenesis is caused by the replication of Plasmodium parasites within the red blood cells (RBCs) of the vertebrate host. This selective pressure has favored the evolution of protective polymorphisms in erythrocyte proteins, a subset of which serve as cognate receptors for parasite invasion ligands. Recently, the generation of RBCs from immortalized hematopoietic stem cells (HSCs) has offered a more tractable system for genetic manipulation and long-term in vitro culture, enabling elucidation of the functional determinants of host susceptibility in vitro. Here we report the generation of an immortalized erythroid progenitor cell line (EJ cells) from as few as 100 000 peripheral blood mononuclear cells. It offers a robust method for the creation of customized model systems from small volumes of peripheral blood. The EJ cell differentiation mirrored erythropoiesis of primary HSCs, yielding orthochromatic erythroblasts and enucleated RBCs after eight days (ejRBCs). The ejRBCs supported invasion by both P. vivax and P. falciparum. To demonstrate the genetic tractability of this system, we used CRISPR/Cas9 to disrupt the Duffy Antigen/Receptor for Chemokines (DARC) gene, which encodes the canonical receptor of P. vivax in humans. Invasion of P. vivax into this DARC-knockout cell line was strongly inhibited providing direct genetic evidence that P. vivax requires DARC for RBC invasion. Further, genetic complementation of DARC restored P. vivax invasion. Taken together, the peripheral blood immortalization method presented here offers the capacity to generate biologically representative model systems for studies of blood-stage malaria invasion from the peripheral blood of donors harboring unique genetic backgrounds, or rare polymorphisms.
Collapse
Affiliation(s)
- Erik J. Scully
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States of America
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
- Broad Institute, Cambridge, MA, United States of America
| | - Estela Shabani
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Gabriel W. Rangel
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Christof Grüring
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Martha A. Clark
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Mudit Chaand
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, Tokyo 135-8521, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Ibaraki 305-0074, Japan
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, BR 05508-900
| | - Manoj T. Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| |
Collapse
|
16
|
Couch T, Murphy Z, Getman M, Kurita R, Nakamura Y, Steiner LA. Human erythroblasts with c-Kit activating mutations have reduced cell culture costs and remain capable of terminal maturation. Exp Hematol 2019; 74:19-24.e4. [PMID: 31004744 DOI: 10.1016/j.exphem.2019.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 11/16/2022]
Abstract
A major barrier to the in vitro production of red blood cells for transfusion therapy is the cost of culture components, with cytokines making up greater than half of the culture costs. Cell culture cytokines also represent a major expense for in vitro studies of human erythropoiesis. HUDEP-2 cells are an E6/E7 immortalized erythroblast line used for the in vitro study of human erythropoiesis. In contrast to other cell lines used to study human erythropoiesis, such as K562 cells, HUDEP-2 cells are capable of terminal maturation, including hemoglobin accumulation and chromatin condensation. As such, HUDEP-2 cells represent a valuable resource for studies not amenable to primary cell cultures; however, reliance on the cytokines stem cell factor (SCF) and erythropoietin (EPO) make HUDEP-2 cultures very expensive to maintain. To decrease culture costs, we used CRISPR/Cas9 genome editing to introduce a constitutively activating mutation into the SCF receptor gene KIT, with the goal of generating human erythroblasts capable of SCF-independent expansion. Three independent HUDEP-2 lines with unique KIT receptor genotypes were generated and characterized. All three lines were capable of robust expansion in the absence of SCF, decreasing culture costs by approximately half. Importantly, these lines remained capable of terminal maturation. Together, these data suggest that introduction of c-Kit activating mutations into human erythroblasts may help reduce the cost of erythroblast culture, making the in vitro study of erythropoiesis, and the eventual in vitro production of red blood cells, more economically feasible.
Collapse
Affiliation(s)
- Tyler Couch
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY; Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY
| | - Zachary Murphy
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY
| | - Michael Getman
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY
| | - Ryo Kurita
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Laurie A Steiner
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY.
| |
Collapse
|