1
|
Xagorari A, Iskas M, Papadopoulos V, Dimosthenous C, Gavriilaki E, Bougiouklis D, Sakellari I, Sotiropoulos D. Post-transplantation monitoring and quantitation of microparticles in allogeneic hematopoietic cell transplantation. Transpl Immunol 2024; 87:102133. [PMID: 39307436 DOI: 10.1016/j.trim.2024.102133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (allo-HCT) represents a curative treatment for various blood-related disorders, including hematological malignancies and genetic disorders. The success of this procedure hinges on the efficacy of the conditioning regimen and the graft's ability to engraft and function properly. Microparticles (MPs), small vesicles produced from stimulated, apoptotic, or activated cells, are involved in both physiological and pathological processes. However, the impact of MPs on allo-HCT remains poorly understood. OBJECTIVES This study aimed to investigate the presence of MPs from different cell types in grafts and patient plasma after allo-HCT, as well as their association with various parameters. We measured MPs from CD34+, CD56+, CD3+, CD19+, and CD33+ cells in grafts and patient plasma from day 0 to day 60 after transplantation. METHODS 224 blood samples were collected from 19 consecutive allo -HCT recipients at 0, +4, +14,+30 and + 60 day as well as from their grafts. MPs isolated from the plasma and quantified by flow cytometry analysis. RESULTS MP levels varied over time. Notably, CD34+ MP levels were linked to both early and late engraftment of neutrophils and platelets. Furthermore, grafts with high CD34+ and CD56+ MP levels in patient plasma on days 0 and + 4 were associated with late engraftment, whereas high CD33+ MP levels in both graft and patient plasma on day +4 were associated with early engraftment. Conditioning regimen affected CD19+ MP levels at day +14, and the number of CD34+, CD56+, and CD19+ MPs 30 days after transplantation was correlated with acute graft-versus-host disease. CONCLUSION These findings suggest that MPs derived from hematopoietic cells may play a significant role in the clinical course of patients following allo-HCT.
Collapse
Affiliation(s)
- A Xagorari
- Bone Marrow Transplantation Unit, Hematology Department "G.Papanicolaou" Hospital, Thessaloniki, Greece; Public Cord Blood Bank, Hematology Department, "G.Papanicolaou" Hospital, Thessaloniki, Greece.
| | - M Iskas
- Bone Marrow Transplantation Unit, Hematology Department "G.Papanicolaou" Hospital, Thessaloniki, Greece
| | - V Papadopoulos
- General Hospital of Pella - Giannitsa Unit, Giannitsa, Greece
| | - C Dimosthenous
- Bone Marrow Transplantation Unit, Hematology Department "G.Papanicolaou" Hospital, Thessaloniki, Greece
| | - E Gavriilaki
- 2nd Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Greece
| | - D Bougiouklis
- Bone Marrow Transplantation Unit, Hematology Department "G.Papanicolaou" Hospital, Thessaloniki, Greece
| | - I Sakellari
- Bone Marrow Transplantation Unit, Hematology Department "G.Papanicolaou" Hospital, Thessaloniki, Greece
| | - D Sotiropoulos
- Bone Marrow Transplantation Unit, Hematology Department "G.Papanicolaou" Hospital, Thessaloniki, Greece; Public Cord Blood Bank, Hematology Department, "G.Papanicolaou" Hospital, Thessaloniki, Greece
| |
Collapse
|
2
|
Katana Z, Sianidou K, Kaiopoulos G, Deligianni F, Tsetsakos S, Kouvatsi A, Sakellari I, Kritis A, Touraki M, Sotiropoulos D, Xagorari A. Molecular and biochemical evaluation of oxidative effects of cord blood CD34+ MPs on hematopoietic cells. Blood Cells Mol Dis 2024; 108:102871. [PMID: 39013336 DOI: 10.1016/j.bcmd.2024.102871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
A graft source for allogeneic hematopoietic stem cell transplantation is umbilical cord blood, which contains umbilical cord blood mononuclear cells (MNCs and mesenchymal stem cells, both an excellent source of extracellular microparticles (MPs). MPs act as cell communication mediators, which are implicated in reactive oxygen species formation or detoxification depending on their origin. Oxidative stress plays a crucial role in both the development of cancer and its treatment by triggering apoptotic mechanisms, in which CD34+ cells are implicated. The aim of this work is to investigate the oxidative stress status and the apoptosis of HL-60 and mononuclear cells isolated from umbilical cord blood (UCB) following a 24- and 48-hour exposure to CD34 + microparticles (CD34 + MPs). The activity of superoxide dismutase, glutathione reductase, and glutathione S-transferase, as well as lipid peroxidation in the cells, were employed as oxidative stress markers. A 24- and 48-hour exposure of leukemic and mononuclear cells to CD34 + -MPs resulted in a statistically significant increase in the antioxidant activity and lipid peroxidation in both cells types. Moreover, CD34 + MPs affect the expression of BCL2 and FAS and related proteins and downregulate the hematopoietic differentiation program in both HL-60 and mononuclear cells. Our results indicate that MPs through activation of antioxidant enzymes in both homozygous and nonhomozygous cells might serve as a means for graft optimization and enhancement.
Collapse
Affiliation(s)
- Zoi Katana
- Public Cord Blood Bank, Hematology Department, G.H.G.Papanicolaou, Thessaloniki, Greece; Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kyriaki Sianidou
- Public Cord Blood Bank, Hematology Department, G.H.G.Papanicolaou, Thessaloniki, Greece; Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Gregory Kaiopoulos
- Public Cord Blood Bank, Hematology Department, G.H.G.Papanicolaou, Thessaloniki, Greece; Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fani Deligianni
- Public Cord Blood Bank, Hematology Department, G.H.G.Papanicolaou, Thessaloniki, Greece; Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sarantis Tsetsakos
- Public Cord Blood Bank, Hematology Department, G.H.G.Papanicolaou, Thessaloniki, Greece
| | - Anastasia Kouvatsi
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioanna Sakellari
- Public Cord Blood Bank, Hematology Department, G.H.G.Papanicolaou, Thessaloniki, Greece
| | - Aristeidis Kritis
- Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Touraki
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Damianos Sotiropoulos
- Public Cord Blood Bank, Hematology Department, G.H.G.Papanicolaou, Thessaloniki, Greece
| | - Angeliki Xagorari
- Public Cord Blood Bank, Hematology Department, G.H.G.Papanicolaou, Thessaloniki, Greece.
| |
Collapse
|
3
|
Morganti C, Bonora M, Ito K. Metabolism and HSC fate: what NADPH is made for. Trends Cell Biol 2024:S0962-8924(24)00141-7. [PMID: 39054107 DOI: 10.1016/j.tcb.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Mitochondrial metabolism plays a central role in the regulation of hematopoietic stem cell (HSC) biology. Mitochondrial fatty acid oxidation (FAO) is pivotal in controlling HSC self-renewal and differentiation. Herein, we discuss recent evidence suggesting that NADPH generated in the mitochondria can influence the fate of HSCs. Although NADPH has multiple functions, HSCs show high levels of NADPH that are preferentially used for cholesterol biosynthesis. Endogenous cholesterol supports the biogenesis of extracellular vesicles (EVs), which are essential for maintaining HSC properties. We also highlight the significance of EVs in hematopoiesis through autocrine signaling. Elucidating the mitochondrial NADPH-cholesterol axis as part of the metabolic requirements of healthy HSCs will facilitate the development of new therapies for hematological disorders.
Collapse
Affiliation(s)
- Claudia Morganti
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY 10461, USA.
| | - Massimo Bonora
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY 10461, USA.
| |
Collapse
|
4
|
Pateraki P, Latsoudis H, Papadopoulou A, Gontika I, Fragiadaki I, Mavroudi I, Bizymi N, Batsali A, Klontzas ME, Xagorari A, Michalopoulos E, Sotiropoulos D, Yannaki E, Stavropoulos-Giokas C, Papadaki HA. Perspectives for the Use of Umbilical Cord Blood in Transplantation and Beyond: Initiatives for an Advanced and Sustainable Public Banking Program in Greece. J Clin Med 2024; 13:1152. [PMID: 38398465 PMCID: PMC10889829 DOI: 10.3390/jcm13041152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The umbilical cord blood (UCB) donated in public UCB banks is a source of hematopoietic stem cells (HSC) alternative to bone marrow for allogeneic HSC transplantation (HSCT). However, the high rejection rate of the donated units due to the strict acceptance criteria and the wide application of the haploidentical HSCT have resulted in significant limitation of the use of UCB and difficulties in the economic sustainability of the public UCB banks. There is an ongoing effort within the UCB community to optimize the use of UCB in the field of HSCT and a parallel interest in exploring the use of UCB for applications beyond HSCT i.e., in the fields of cell therapy, regenerative medicine and specialized transfusion medicine. In this report, we describe the mode of operation of the three public UCB banks in Greece as an example of an orchestrated effort to develop a viable UCB banking system by (a) prioritizing the enrichment of the national inventory by high-quality UCB units from populations with rare human leukocyte antigens (HLA), and (b) deploying novel sustainable applications of UCB beyond HSCT, through national and international collaborations. The Greek paradigm of the public UCB network may become an example for countries, particularly with high HLA heterogeneity, with public UCB banks facing sustainability difficulties and adds value to the international efforts aiming to sustainably expand the public UCB banking system.
Collapse
Affiliation(s)
- Patra Pateraki
- Law Directorate of the Health Region of Crete, Ministry of Health, Heraklion, 71500 Heraklion, Greece;
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
| | - Helen Latsoudis
- Institute of Computer Sciences, Foundation for Research and Technology–Hellas (FORTH), 70013 Heraklion, Greece;
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Department of Hematology-HCT Unit, George Papanikolaou Hospital, 57010 Thessaloniki, Greece;
| | - Ioanna Gontika
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Irene Fragiadaki
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Irene Mavroudi
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Nikoleta Bizymi
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Aristea Batsali
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Michail E. Klontzas
- Department of Radiology, School of Medicine, University of Crete, 71500 Heraklion, Greece;
- Department of Medical Imaging, University Hospital of Heraklion, 71500 Heraklion, Greece
| | - Angeliki Xagorari
- Public Cord Blood Bank, Department of Hematology, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (A.X.); (D.S.)
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank (HCBB), Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (E.M.); (C.S.-G.)
| | - Damianos Sotiropoulos
- Public Cord Blood Bank, Department of Hematology, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (A.X.); (D.S.)
| | - Evangelia Yannaki
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank (HCBB), Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (E.M.); (C.S.-G.)
| | - Helen A. Papadaki
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| |
Collapse
|
5
|
Zhao L, Liu S, Zhang Y, Fan X, Xue X, Li Q, Zhuang X, Zheng G. Analysis of Expression of Diabetic Nephropathy-Related Protein and Stem Cell Tissue Repair Under Nano Membrane Concentration Technology. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This study aimed to study protein expression in diabetic nephropathy (DN) rats and stem cell tissue repair based on nanomembrane concentration technology. Based on the polymer porous self-assembled nanomembrane technology, the content of total protein and albumin in the serum of rats
in the control and experimental groups were measured. The obtained images were adopted to analyze the expression of cytoplasmic proteins and membrane proteins, and then the mechanism of stem cell tissue repair function was studied. The results showed that at 56 weeks of age, in contrast to
control group, the total protein content in the serum of the experimental group evidently decreased. At 36 weeks of age, the cytoplasmic protein samples of diabetic rats in the experimental group were subjected to three two-dimensional protein electrophoresis. It was found that there were
about 701 spots in each gel, and the matching rate was about 87.5%. In contrast to control group, 16 cytoplasmic proteins and 23 membrane proteins of the experimental group changed. The results of the differentially expressed protein analysis indicated that the change trends of protein spots.
Based on polymer porous self-assembled nano-film technology, the expression of differential proteins in DN rats was analyzed, which would supplement new research assistance to the mechanism of DN.
Collapse
Affiliation(s)
- Lingxia Zhao
- Endocrine Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Shiwei Liu
- Endocrine Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Yuanlin Zhang
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, China
| | - Xuemei Fan
- Endocrine Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Xuehua Xue
- Endocrine Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Qingxia Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaofei Zhuang
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Guoping Zheng
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| |
Collapse
|
6
|
A review of the role of extracellular vesicles in neonatal physiology and pathology. Pediatr Res 2021; 90:289-299. [PMID: 33184501 DOI: 10.1038/s41390-020-01240-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022]
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-bound particles, extensively investigated across many fields to improve the understanding of pathophysiological processes, as biomarkers of disease and as therapeutic targets for pharmacological intervention. We aim to describe the current knowledge of EVs detected in the body fluids of human neonates, both term and preterm, from birth to 4 weeks of age. To date, EVs have been described in several neonatal body fluids, including cerebrospinal fluid, umbilical cord blood, neonatal blood, tracheal aspirates and urine. These studies demonstrate some important roles of EVs in the neonatal population, particularly in haemostasis. Moreover, some studies have demonstrated the pathophysiological mechanisms and the identification of potential biomarkers of neonatal disease. We must continue to build on this knowledge, evaluating the role of EVs in neonatal pathology, particularly in prematurity and during the perinatal adaption period. Future studies should use larger numbers, robust EV characterisation techniques and always correlate the findings to clinical outcomes. IMPACT: This article summarises the current knowledge of the effect of EVs in neonates. It describes the potential compensatory role of EVs in neonatal haemostasis. It also describes the role of EVs as mediators of pathology and as potential biomarkers of perinatal and neonatal disease.
Collapse
|
7
|
Abstract
[Figure: see text].
Collapse
|