1
|
Schmidt VM, Zelger P, Wöss C, Fodor M, Hautz T, Schneeberger S, Huck CW, Arora R, Brunner A, Zelger B, Schirmer M, Pallua JD. Handheld hyperspectral imaging as a tool for the post-mortem interval estimation of human skeletal remains. Heliyon 2024; 10:e25844. [PMID: 38375262 PMCID: PMC10875450 DOI: 10.1016/j.heliyon.2024.e25844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
In forensic medicine, estimating human skeletal remains' post-mortem interval (PMI) can be challenging. Following death, bones undergo a series of chemical and physical transformations due to their interactions with the surrounding environment. Post-mortem changes have been assessed using various methods, but estimating the PMI of skeletal remains could still be improved. We propose a new methodology with handheld hyperspectral imaging (HSI) system based on the first results from 104 human skeletal remains with PMIs ranging between 1 day and 2000 years. To differentiate between forensic and archaeological bone material, the Convolutional Neural Network analyzed 65.000 distinct diagnostic spectra: the classification accuracy was 0.58, 0.62, 0.73, 0.81, and 0.98 for PMIs of 0 week-2 weeks, 2 weeks-6 months, 6 months-1 year, 1 year-10 years, and >100 years, respectively. In conclusion, HSI can be used in forensic medicine to distinguish bone materials >100 years old from those <10 years old with an accuracy of 98%. The model has adequate predictive performance, and handheld HSI could serve as a novel approach to objectively and accurately determine the PMI of human skeletal remains.
Collapse
Affiliation(s)
- Verena-Maria Schmidt
- Institute of Forensic Medicine, Medical University of Innsbruck, Muellerstraße 44, 6020 Innsbruck, Austria
| | - Philipp Zelger
- University Clinic for Hearing, Voice and Speech Disorders, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Claudia Wöss
- Institute of Forensic Medicine, Medical University of Innsbruck, Muellerstraße 44, 6020 Innsbruck, Austria
| | - Margot Fodor
- OrganLifeTM, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Theresa Hautz
- OrganLifeTM, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schneeberger
- OrganLifeTM, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Wolfgang Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Rohit Arora
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Andrea Brunner
- Institute of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck, Muellerstrasse 44, 6020 Innsbruck, Austria
| | - Bettina Zelger
- Institute of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck, Muellerstrasse 44, 6020 Innsbruck, Austria
| | - Michael Schirmer
- Department of Internal Medicine, Clinic II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Johannes Dominikus Pallua
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Delrue C, Speeckaert R, Oyaert M, Kerre T, Rottey S, Coopman R, Huvenne W, De Bruyne S, Speeckaert MM. Infrared Spectroscopy: A New Frontier in Hematological Disease Diagnosis. Int J Mol Sci 2023; 24:17007. [PMID: 38069330 PMCID: PMC10707114 DOI: 10.3390/ijms242317007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Hematological diseases, due to their complex nature and diverse manifestations, pose significant diagnostic challenges in healthcare. The pressing need for early and accurate diagnosis has driven the exploration of novel diagnostic techniques. Infrared (IR) spectroscopy, renowned for its noninvasive, rapid, and cost-effective characteristics, has emerged as a promising adjunct in hematological diagnostics. This review delves into the transformative role of IR spectroscopy and highlights its applications in detecting and diagnosing various blood-related ailments. We discuss groundbreaking research findings and real-world applications while providing a balanced view of the potential and limitations of the technique. By integrating advanced technology with clinical needs, we offer insights into how IR spectroscopy may herald a new era of hematological disease diagnosis.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium;
| | | | - Matthijs Oyaert
- Department of Clinical Biology, Ghent University Hospital, 9000 Ghent, Belgium; (M.O.); (S.D.B.)
| | - Tessa Kerre
- Department of Hematology, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Sylvie Rottey
- Department of Medical Oncology, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Renaat Coopman
- Department of Oral, Maxillofacial and Plastic Surgery, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Wouter Huvenne
- Department of Head and Neck Surgery, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Sander De Bruyne
- Department of Clinical Biology, Ghent University Hospital, 9000 Ghent, Belgium; (M.O.); (S.D.B.)
| | - Marijn M. Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium;
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
3
|
Brunner A, Willenbacher E, Willenbacher W, Zelger B, Zelger P, Huck CW, Pallua JD. Visible- and near-infrared hyperspectral imaging for the quantitative analysis of PD-L1+ cells in human lymphomas: Comparison with fluorescent multiplex immunohistochemistry. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121940. [PMID: 36208576 DOI: 10.1016/j.saa.2022.121940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION We analyzed the expression of PD-L1 in human lymphomas using hyperspectral imaging (HSI) compared to visual assessment (VA) and conventional digital image analysis (DIA) to strengthen further the value of HSI as a tool for the evaluation of brightfield-based immunohistochemistry (IHC). In addition, fluorescent multiplex immunohistochemistry (mIHC) was used as a second detection method to analyze the impact of a different detection method. MATERIAL AND METHODS 18 cases (6 follicular lymphomas and 12 diffuse large B-cell lymphomas) were stained for PD-L1 by IHC and for PD-L1, CD3, and CD8 by fluorescent mIHC. The percentage of positively stained cells was evaluated with VA, HSI, and DIA for IHC and VA and DIA for mIHC. Results were compared between the different methods of detection and analysis. RESULTS An overall high concordance was found between VA, HSI, and DIA in IHC (Cohens Kappa = 0.810VA/HSI, 0.710 VA/DIA, and 0.516 HSI/DIA) and for VAmIHCversus DIAmIHC (Cohens Kappa = 0.894). Comparing IHC and mIHC general agreement differed depending on the methods compared but reached at most a moderate agreement (Coheńs Kappa between 0.250 and 0.483). This is reflected by the significantly higher percentage of PD-L1+ cells found with mIHC (pFriedman = 0.014). CONCLUSION Our study shows a good concordance for the different analysis methods. Compared to VA and DIA, HSI proved to be a reliable tool for assessing IHC. Understanding the regulation of PD-L1 expression will further enlighten the role of PD-L1 as a biomarker. Therefore it is necessary to develop an instrument, such as HSI, which can offer a reliable and objective evaluation of PD-L1 expression.
Collapse
Affiliation(s)
- A Brunner
- Innsbruck Medical University, Institute of Pathology, Neuropathology and Molecular Pathology, Innsbruck, Austria
| | - E Willenbacher
- Innsbruck Medical University, Internal Medicine. V, Hematology & Oncology, Innsbruck, Austria
| | - W Willenbacher
- Innsbruck Medical University, Internal Medicine. V, Hematology & Oncology, Innsbruck, Austria; Syndena GmbH, Connect to Cure, Karl-Kapferer-Straße 5, 6020 Innsbruck, Austria
| | - B Zelger
- Innsbruck Medical University, Institute of Pathology, Neuropathology and Molecular Pathology, Innsbruck, Austria
| | - P Zelger
- Innsbruck Medical University, University Clinic for Hearing, Voice and Speech Disorders, Anichstrasse 35, Innsbruck, Austria
| | - C W Huck
- University of Innsbruck, Institute of Analytical Chemistry and Radiochemistry, Innsbruck, Austria
| | - J D Pallua
- Innsbruck Medical University, Department of Traumatology and Orthopaedics, Innsbruck, Austria.
| |
Collapse
|
4
|
Luo L, Zhu Q, Li Y, Hu F, Yu J, Liao X, Xing Z, He Y, Ye Q. Application of thermosensitive-hydrogel combined with dental pulp stem cells on the injured fallopian tube mucosa in an animal model. Front Bioeng Biotechnol 2023; 10:1062646. [PMID: 36686246 PMCID: PMC9852820 DOI: 10.3389/fbioe.2022.1062646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Objectives: Fallopian tube (FT) injury is an important factor that can lead to tubal infertility. Stem-cell-based therapy shows great potential for the treatment of injured fallopian tube. However, little research has shown that mesenchymal stem cells (MSCs) can be used to treat fallopian tube damage by in situ injection. In this study, we in situ transplanted PF127 hydrogel encapsulating dental pulp stem cells (DPSCs) into the injured sites to promote the repair and regeneration of fallopian tube injury. Materials and methods: The properties of dental pulp stem cells were evaluated by flow cytometry, immunofluorescence analysis, and multi-differentiation detection. The immunomodulatory and angiogenic characteristics of dental pulp stem cells were analyzed on the basis of the detection of inflammatory factor expression and the formation of capillary-like structures, respectively. The biocompatibility of PF127 hydrogel was evaluated by using Live/Dead and CCK-8 assays. The effects of PF127 hydrogel containing dental pulp stem cells on the repair and regeneration of fallopian tube injury were evaluated by histological analysis [e.g., hematoxylin and eosin (H&E) and Masson's trichrome staining, TUNEL staining, immunofluorescence staining, and immunohistochemistry], Enzyme-linked immunosorbent assay (ELISA), and RT-PCR detections. Results: Dental pulp stem cells had MSC-like characteristics and great immunomodulatory and angiogenic properties. PF127 hydrogel had a thermosensitive feature and great cytocompatibility with dental pulp stem cells. In addition, our results indicated that PF127 hydrogel containing dental pulp stem cells could promote the repair and regeneration of fallopian tube damage by inhibiting cell apoptosis, stimulating the secretion of angiogenic factors, promoting cell proliferation, modulating the secretion of inflammatory factors, and restoring the secretion of epithelial cells. Conclusion: In this study, our results reported that in situ injection of PF127 hydrogel encapsulating dental pulp stem cells into the injured sites could provide an attractive strategy for the future treatment of fallopian tube injury in clinical settings.
Collapse
Affiliation(s)
- Lihua Luo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Lihua Luo, ; Yan He, ; Qingsong Ye,
| | - Qunyan Zhu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yejian Li
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fengting Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiangtao Yu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangyan Liao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenjie Xing
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan He
- Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China,*Correspondence: Lihua Luo, ; Yan He, ; Qingsong Ye,
| | - Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China,Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China,*Correspondence: Lihua Luo, ; Yan He, ; Qingsong Ye,
| |
Collapse
|
5
|
Chen HM, Shih YH, Wang HC, Sun YH, Wang RC, Teng CLJ. Detection of DLBCL by pixel purity index and iterative linearly constrained minimum variance into hyperspectral imaging analysis. JOURNAL OF BIOPHOTONICS 2022; 15:e202200143. [PMID: 36053802 DOI: 10.1002/jbio.202200143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
It is unclear whether a hyperspectral imaging-based approach can facilitate the diagnosis of diffuse large B-cell lymphoma (DLBCL), and further investigation is required. In this study, the pixel purity index (PPI) coupled with iterative linearly constrained minimum variance (ILCMV) was used to bridge this gap. We retrospectively reviewed 22 pathological DLBCL specimens. Ten normal lymph node specimens were used as controls. PPI endmember extraction was performed to identify seed-training samples. ILCMV was then used to classify cell regions. The 3D receiver operating characteristic (ROC) showed that the spectral information divergence possessed superior ability to distinguish between normal and abnormal lymphoid cells owing to its stronger background suppression compared with the spectral angle mapper and mean square error methods. An automated cell hyperspectral image classification approach that combined the PPI and ILCMV was used to improve DLBCL diagnosis. This strategy intelligently resolved critical problems arising in unsupervised classification.
Collapse
Affiliation(s)
- Hsian-Min Chen
- Center for Quantitative Imaging in Medicine (CQUIM), Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Biomedical Engineering, HungKuang University, Taichung, Taiwan
- Department of Computer Science and Information Engineering, National United University, Miaoli, Taiwan
| | - Yu-Hsuan Shih
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsin-Che Wang
- Center for Quantitative Imaging in Medicine (CQUIM), Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Hsuan Sun
- Center for Quantitative Imaging in Medicine (CQUIM), Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ren Ching Wang
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan
| | - Chieh-Lin Jerry Teng
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Life Science, Tunghai University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
6
|
Brunner A, Schmidt VM, Zelger B, Woess C, Arora R, Zelger P, Huck CW, Pallua J. Visible and Near-Infrared hyperspectral imaging (HSI) can reliably quantify CD3 and CD45 positive inflammatory cells in myocarditis: Pilot study on formalin-fixed paraffin-embedded specimens from myocard obtained during autopsy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121092. [PMID: 35257987 DOI: 10.1016/j.saa.2022.121092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION To implement Hyperspectral Imaging (HSI) as a tool for quantifying inflammatory cells in tissue specimens by the example of myocarditis in a collective of forensic patients. MATERIAL AND METHODS 44 consecutive patients with suspected myocardial inflammation at autopsy, diagnosed between 2013 and 2018 at the Institute of ForensicMedicine, Medical University of Innsbruck, were selected for this study. Using the IMEC SNAPSCAN camera, visible and near infrared hyperspectral images were collected from slides stained with CD3 and CD45 to assess quantity and spatial distribution of positive cells. Results were compared with visual assessment (VA) and conventional digital image analysis (DIA). RESULTS Finally, specimens of 40 patients were evaluated, of whom 36 patients (90%) suffered from myocarditis, two patients (5%) had suspected healing/healed myocarditis, and two did no have myocarditis (5%). The amount of CD3 and CD45 positive cells did not differ significantly between VA, HSI, and DIA (pVA/HSI/DIA = 0.46 for CD3 and 0.81 for CD45). Coheńs Kappa showed a very high correlation between VA versus HSI, VA versus DIA, and HSI versus DIA for CD3 (Coheńs Kappa = 0.91, 1.00, and 0.91, respectively). For CD45 an almost as high correlation was seen for VA versus HSI and HSI versus DIA (Coheńs Kappa = 0.75 and 0.70) and VA versus DIA (Coheńs Kappa = 0.89). CONCLUSION HSI is a reliable and objective method to count inflammatory cells in tissue slides of suspected myocarditis. Implementation of HSI in digital pathology might further expand the possibility of a sophisticated method.
Collapse
Affiliation(s)
- A Brunner
- Innsbruck Medical University, Institute of Pathology, Neuropathology, and Molecular Pathology, Muellerstrasse 44, 6020 Innsbruck, Austria
| | - V M Schmidt
- Institute of Forensic Medicine, Medical University of Innsbruck, Muellerstraße 44, 6020 Innsbruck, Austria
| | - B Zelger
- Innsbruck Medical University, Institute of Pathology, Neuropathology, and Molecular Pathology, Muellerstrasse 44, 6020 Innsbruck, Austria
| | - C Woess
- Institute of Forensic Medicine, Medical University of Innsbruck, Muellerstraße 44, 6020 Innsbruck, Austria.
| | - R Arora
- University Hospital for Orthopedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - P Zelger
- University Clinic for Hearing, Voice and Speech Disorders, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, Austria
| | - C W Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, Innsbruck, Austria
| | - J Pallua
- Innsbruck Medical University, Institute of Pathology, Neuropathology, and Molecular Pathology, Muellerstrasse 44, 6020 Innsbruck, Austria; Institute of Forensic Medicine, Medical University of Innsbruck, Muellerstraße 44, 6020 Innsbruck, Austria; University Hospital for Orthopedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Wieser M, Unterberger SH, Lackner R. Application of Hyperspectral Imaging for identification of aging state of Styrene-Butadiene-Styrene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120918. [PMID: 35093820 DOI: 10.1016/j.saa.2022.120918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
In the context of the circular economy, the sorting process during recycling of polymers is essential as regards the efficiency of the process itself and the quality of the so-obtained recycled materials. In this paper, the application of Hyperspectral Imaging (HSI) is proposed for this purpose, providing additional insight into the state of aging and the polymer quality. The underlying study comprises HSI in the wavelength range of 1115-1678 nm considering artificially aged Styrene-Butadiene-Styrene (SBS), where aging is performed for 2, 5, 10, 15 and 20 days in a forced-draft oven at a temperature of 105 °C. The obtained HSI spectra are normalized using the Standard Normal Variate (SNV) method, with the normalized spectra as well as their first and second derivative entering the modeling attempt for SBS aging. For the latter, different partial least squares regression (PLSR) models are evaluated, where the original spectra achieved a correlation of R2=0.94 and a root mean squared error of prediction (RMSEP) of 1.83 days, showing the suitability of HSI for the proper identification of the state of aging of SBS and its potential use for other polymers.
Collapse
Affiliation(s)
- Martin Wieser
- University of Innsbruck, Unit of Material Technology, Technikerstraße 13, 6020 Innsbruck, Austria
| | | | - Roman Lackner
- University of Innsbruck, Unit of Material Technology, Technikerstraße 13, 6020 Innsbruck, Austria
| |
Collapse
|