1
|
Kale MB, Rahangdale SR, Banarase TA, Siddiqui MS, Taksande BG, Aglawe MM, Upaganlawar AB, Kopalli SR, Koppula S, Umekar MJ, Wankhede NL. Agmatine diminishes behavioral and endocrine alterations in a rat model of post-traumatic stress disorder. Neurosci Lett 2025; 845:138074. [PMID: 39645070 DOI: 10.1016/j.neulet.2024.138074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Post-traumatic stress disorder (PTSD), is a severe anxiety disorder characterized by associative fear conditioning. Single prolonged stress (SPS) is a widely accepted reliable animal model to stimulate PTSD. Agmatine is an endogenous neuromodulator of stress; however, its effect on PTSD remains to be investigated. This study explored the role of agmatine in conditioned fear response (CFR) in PTSD and highlighted the role of imidazoline receptors in the effect of agmatine. Intra-cerebroventricular (icv) surgery was done in order to facilitate drug administration. Animals were subjected to SPS. Agmatine and the involvement of imidazoline receptors (I1 and I2) were assessed for their effect in fear conditioning apparatus. During weeks 1, 2, and 3, in CFR, agmatine (40 µg/rat, icv) showed significantly decreased freezing time whereas other doses of agmatine (10 and 20 µg/rat, icv). Imidazoline (I1 and I2) receptor agonists Moxonidine (25 µg/rat, icv) and 2-BFI, (10 µg/rat, icv) respectively, at their sub-effective doses, with a submaximal dose of agmatine (20 µg/rat, icv) significantly decreased the altered freezing time during weeks 1, 2 and 3 compared to SPS animals. Moreover, the effective dose of agmatine (40 µg/rat, icv) with imidazoline (I1 and I2) receptor antagonists Efaroxan (10 µg/rat, icv) and Idazoxan (4 µg/rat, icv) respectively does not reversed the effect of agmatine on freezing. Agmatine and its combination with I1 and I2 agonists, normalized the altered freezing behavior, corticosterone level, organ coefficient of adrenal gland, neuroinflammatory and neurotrophic factor due to SPS during CFR projecting its strong therapeutic effect in SPS induced PTSD.
Collapse
Affiliation(s)
- Mayur B Kale
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Sandip R Rahangdale
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Trupti A Banarase
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohd Shahnavaj Siddiqui
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Manish M Aglawe
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| | - Milind J Umekar
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Nitu L Wankhede
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| |
Collapse
|
2
|
Katariya RA, Sammeta SS, Kale MB, Kotagale NR, Umekar MJ, Taksande BG. Agmatine as a novel intervention for Alzheimer's disease: Pathological insights and cognitive benefits. Ageing Res Rev 2024; 96:102269. [PMID: 38479477 DOI: 10.1016/j.arr.2024.102269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/24/2024]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by progressive cognitive decline and a significant societal burden. Despite extensive research and efforts of the multidisciplinary scientific community, to date, there is no cure for this debilitating disease. Moreover, the existing pharmacotherapy for AD only provides symptomatic support and does not modify the course of the illness or halt the disease progression. This is a significant limitation as the underlying pathology of the disease continues to progress leading to the deterioration of cognitive functions over time. In this milieu, there is a growing need for the development of new and more efficacious treatments for AD. Agmatine, a naturally occurring molecule derived from L-arginine, has emerged as a potential therapeutic agent for AD. Besides this, agmatine has been shown to modulate amyloid beta (Aβ) production, aggregation, and clearance, key processes implicated in AD pathogenesis. It also exerts neuroprotective effects, modulates neurotransmitter systems, enhances synaptic plasticity, and stimulates neurogenesis. Furthermore, preclinical and clinical studies have provided evidence supporting the cognition-enhancing effects of agmatine in AD. Therefore, this review article explores the promising role of agmatine in AD pathology and cognitive function. However, several limitations and challenges exist, including the need for large-scale clinical trials, optimal dosing, and treatment duration. Future research should focus on mechanistic investigations, biomarker studies, and personalized medicine approaches to fully understand and optimize the therapeutic potential of agmatine. Augmenting the use of agmatine may offer a novel approach to address the unmet medical need in AD and provide cognitive enhancement and disease modification for individuals affected by this disease.
Collapse
Affiliation(s)
- Raj A Katariya
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Shivkumar S Sammeta
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Nandkishor R Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, Maharashtra 444604, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| |
Collapse
|
3
|
Ji XT, Yu WL, Jin MJ, Lu LJ, Yin HP, Wang HH. Possible Role of Cellular Polyamine Metabolism in Neuronal Apoptosis. Curr Med Sci 2024; 44:281-290. [PMID: 38453792 DOI: 10.1007/s11596-024-2843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 01/19/2024] [Indexed: 03/09/2024]
Abstract
Recent studies have shown that cellular levels of polyamines (PAs) are significantly altered in neurodegenerative diseases. Evidence from in vivo animal and in vitro cell experiments suggests that the cellular levels of various PAs may play important roles in the central nervous system through the regulation of oxidative stress, mitochondrial metabolism, cellular immunity, and ion channel functions. Dysfunction of PA metabolism related enzymes also contributes to neuronal injury and cognitive impairment in many neurodegenerative diseases. Therefore, in the current work, evidence was collected to determine the possible associations between cellular levels of PAs, and related enzymes and the development of several neurodegenerative diseases, which could provide a new idea for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Xin-Tong Ji
- School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Wen-Lei Yu
- School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
- Department of Stomatology, Huzhou Wuxing District People's Hospital, Huzhou Wuxing District Maternal and Child Health Hospital, Huzhou, 313008, China
| | - Meng-Jia Jin
- School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
- School of Pharmacy, Zhejiang University, Hangzhou, 310030, China
| | - Lin-Jie Lu
- School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
- Department of Stomatology, Haining Hospital of Traditional Chinese Medicine, Jiaxing, 314400, China
| | - Hong-Ping Yin
- School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Huan-Huan Wang
- School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
4
|
Saha P, Panda S, Holkar A, Vashishth R, Rana SS, Arumugam M, Ashraf GM, Haque S, Ahmad F. Neuroprotection by agmatine: Possible involvement of the gut microbiome? Ageing Res Rev 2023; 91:102056. [PMID: 37673131 DOI: 10.1016/j.arr.2023.102056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Agmatine, an endogenous polyamine derived from L-arginine, elicits tremendous multimodal neuromodulant properties. Alterations in agmatinergic signalling are closely linked to the pathogeneses of several brain disorders. Importantly, exogenous agmatine has been shown to act as a potent neuroprotectant in varied pathologies, including brain ageing and associated comorbidities. The antioxidant, anxiolytic, analgesic, antidepressant and memory-enhancing activities of agmatine may derive from its ability to regulate several cellular pathways; including cell metabolism, survival and differentiation, nitric oxide signalling, protein translation, oxidative homeostasis and neurotransmitter signalling. This review briefly discusses mammalian metabolism of agmatine and then proceeds to summarize our current understanding of neuromodulation and neuroprotection mediated by agmatine. Further, the emerging exciting bidirectional links between agmatine and the resident gut microbiome and their implications for brain pathophysiology and ageing are also discussed.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Subhrajita Panda
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Aayusha Holkar
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Rahul Vashishth
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sandeep Singh Rana
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah 27272, United Arab Emirates.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
5
|
Roy R, Wilcox J, Webb AJ, O’Gallagher K. Dysfunctional and Dysregulated Nitric Oxide Synthases in Cardiovascular Disease: Mechanisms and Therapeutic Potential. Int J Mol Sci 2023; 24:15200. [PMID: 37894881 PMCID: PMC10607291 DOI: 10.3390/ijms242015200] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Nitric oxide (NO) plays an important and diverse signalling role in the cardiovascular system, contributing to the regulation of vascular tone, endothelial function, myocardial function, haemostasis, and thrombosis, amongst many other roles. NO is synthesised through the nitric oxide synthase (NOS)-dependent L-arginine-NO pathway, as well as the nitrate-nitrite-NO pathway. The three isoforms of NOS, namely neuronal (NOS1), inducible (NOS2), and endothelial (NOS3), have different localisation and functions in the human body, and are consequently thought to have differing pathophysiological roles. Furthermore, as we continue to develop a deepened understanding of the different roles of NOS isoforms in disease, the possibility of therapeutically modulating NOS activity has emerged. Indeed, impaired (or dysfunctional), as well as overactive (or dysregulated) NOS activity are attractive therapeutic targets in cardiovascular disease. This review aims to describe recent advances in elucidating the physiological role of NOS isoforms within the cardiovascular system, as well as mechanisms of dysfunctional and dysregulated NOS in cardiovascular disease. We then discuss the modulation of NO and NOS activity as a target in the development of novel cardiovascular therapeutics.
Collapse
Affiliation(s)
- Roman Roy
- Cardiovascular Department, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK;
| | - Joshua Wilcox
- Cardiovascular Department, Guy’s and St. Thomas’ NHS Foundation Trust, London SE1 7EH, UK;
| | - Andrew J. Webb
- Department of Clinical Pharmacology, British Heart Foundation Centre, School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London SE1 7EH, UK;
| | - Kevin O’Gallagher
- Cardiovascular Department, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK;
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE5 9NU, UK
| |
Collapse
|
6
|
Kim J, Sim AY, Barua S, Kim JY, Lee JE. Agmatine-IRF2BP2 interaction induces M2 phenotype of microglia by increasing IRF2-KLF4 signaling. Inflamm Res 2023:10.1007/s00011-023-01741-z. [PMID: 37314519 DOI: 10.1007/s00011-023-01741-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Following central nervous system (CNS) injury, the investigation for neuroinflammation is vital because of its pleiotropic role in both acute injury and long-term recovery. Agmatine (Agm) is well known for its neuroprotective effects and anti-neuroinflammatory properties. However, Agm's mechanism for neuroprotection is still unclear. We screened target proteins that bind to Agm using a protein microarray; the results showed that Agm strongly binds to interferon regulatory factor 2 binding protein (IRF2BP2), which partakes in the inflammatory response. Based on these prior data, we attempted to elucidate the mechanism by which the combination of Agm and IRF2BP2 induces a neuroprotective phenotype of microglia. METHODS To confirm the relationship between Agm and IRF2BP2 in neuroinflammation, we used microglia cell-line (BV2) and treated with lipopolysaccharide from Escherichia coli 0111:B4 (LPS; 20 ng/mL, 24 h) and interleukin (IL)-4 (20 ng/mL, 24 h). Although Agm bound to IRF2BP2, it failed to enhance IRF2BP2 expression in BV2. Therefore, we shifted our focus onto interferon regulatory factor 2 (IRF2), which is a transcription factor and interacts with IRF2BP2. RESULTS IRF2 was highly expressed in BV2 after LPS treatment but not after IL-4 treatment. When Agm bound to IRF2BP2 following Agm treatment, the free IRF2 translocated to the nucleus of BV2. The translocated IRF2 activated the transcription of Kruppel-like factor 4 (KLF4), causing KLF4 to be induced in BV2. The expression of KLF4 increased the CD206-positive cells in BV2. CONCLUSIONS Taken together, unbound IRF2, resulting from the competitive binding of Agm to IRF2BP2, may provide neuroprotection against neuroinflammation via an anti-inflammatory mechanism of microglia involving the expression of KLF4.
Collapse
Affiliation(s)
- Jiwon Kim
- Department of Anatomy, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - A Young Sim
- Department of Anatomy, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sumit Barua
- Department of Anatomy, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Park YM, Kim JH, Lee JE. Neural Stem Cells Overexpressing Arginine Decarboxylase Improve Functional Recovery from Spinal Cord Injury in a Mouse Model. Int J Mol Sci 2022; 23:ijms232415784. [PMID: 36555425 PMCID: PMC9779865 DOI: 10.3390/ijms232415784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Current therapeutic strategies for spinal cord injury (SCI) cannot fully facilitate neural regeneration or improve function. Arginine decarboxylase (ADC) synthesizes agmatine, an endogenous primary amine with neuroprotective effects. Transfection of human ADC (hADC) gene exerts protective effects after injury in murine brain-derived neural precursor cells (mNPCs). Following from these findings, we investigated the effects of hADC-mNPC transplantation in SCI model mice. Mice with experimentally damaged spinal cords were divided into three groups, separately transplanted with fluorescently labeled (1) control mNPCs, (2) retroviral vector (pLXSN)-infected mNPCs (pLXSN-mNPCs), and (3) hADC-mNPCs. Behavioral comparisons between groups were conducted weekly up to 6 weeks after SCI, and urine volume was measured up to 2 weeks after SCI. A subset of animals was euthanized each week after cell transplantation for molecular and histological analyses. The transplantation groups experienced significantly improved behavioral function, with the best recovery occurring in hADC-mNPC mice. Transplanting hADC-mNPCs improved neurological outcomes, induced oligodendrocyte differentiation and remyelination, increased neural lineage differentiation, and decreased glial scar formation. Moreover, locomotor and bladder function were both rehabilitated. These beneficial effects are likely related to differential BMP-2/4/7 expression in neuronal cells, providing an empirical basis for gene therapy as a curative SCI treatment option.
Collapse
Affiliation(s)
- Yu Mi Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- BK 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- CHA Advanced Research Institute, CHA University, CHA Bio-Complex, 335, Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
- Department of Biomedical Science, CHA University, CHA Bio-Complex, 335, Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Jae Hwan Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- BK 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- BK 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Correspondence: ; Tel.: +82-2-2228-1646
| |
Collapse
|
8
|
Barua S, Sim AY, Kim JY, Shin I, Lee JE. Maintenance of the Neuroprotective Function of the Amino Group Blocked Fluorescence-Agmatine. Neurochem Res 2021; 46:1933-1940. [PMID: 33914233 PMCID: PMC8254702 DOI: 10.1007/s11064-021-03319-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/21/2021] [Accepted: 04/02/2021] [Indexed: 11/23/2022]
Abstract
Agmatine, an endogenous derivative of arginine, has been found to be effective in treating idiopathic pain, convulsion, stress-mediated behavior, and attenuate the withdrawal symptoms of drugs like morphine. In the early stages of ischemic brain injury in animals, exogenous agmatine treatment was found to be neuroprotective. Agmatine is also considered as a putative neurotransmitter and is still an experimental drug. Chemically, agmatine is called agmatine 1-(4-aminobutyl guanidine). Crystallographic study data show that positively-charged guanidine can bind to the protein containing Gly and Asp residues, and the amino group can interact with the complimentary sites of Glu and Ser. In this study, we blocked the amino end of the agmatine by conjugating it with FITC, but the guanidine end was unchanged. We compared the neuroprotective function of the agmatine and agmatine-FITC by treating them in neurons after excitotoxic stimulation. We found that even the amino end blocked neuronal viability in the excitotoxic condition, by NMDA treatment for 1 h, was increased by agmatine-FITC, which was similar to that of agmatine. We also found that the agmatine-FITC treatment reduced the expression of nitric oxide production in NMDA-treated cells. This study suggests that even if the amino end of agmatine is blocked, it can perform its neuroprotective function.
Collapse
Affiliation(s)
- Sumit Barua
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722 Korea
| | - A Young Sim
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722 Korea
- BK21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722 Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722 Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University, Seoul, 03722 Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722 Korea
- BK21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722 Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722 Korea
| |
Collapse
|
9
|
Kosonen R, Barua S, Kim JY, Lee JE. Role of agmatine in the application of neural progenitor cell in central nervous system diseases: therapeutic potentials and effects. Anat Cell Biol 2021; 54:143-151. [PMID: 34162764 PMCID: PMC8225474 DOI: 10.5115/acb.21.089] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/01/2022] Open
Abstract
Agmatine, the primary decarboxylation product of L-arginine, generated from arginine decarboxylase. Since the discovery of agmatine in the mammalian brain in the 1990s, an increasing number of agmatine-mediated effects have been discovered, demonstrating the benefits of agmatine on ischemic strokes, traumatic brain injury and numerous psychological disorders such as depression, anxiety, and stress. Agmatine also has cellular protective effects and contributes to cell proliferation and differentiation in the central nervous system (CNS). Neural progenitor cells are an important component in the recovery and repair of many neurological disorders due to their ability to differentiate into functional adult neurons. Recent data has revealed that agmatine can regulate and increase proliferation and the fate of progenitor cells in the adult hippocampus. This review aims to summarise and discuss the role of agmatine in the CNS; specifically, the effects and relationship between agmatine and neural progenitor cells and how these ideas can be applied to potential therapeutic application.
Collapse
Affiliation(s)
- Renée Kosonen
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 Plus Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sumit Barua
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 Plus Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Yoon Y, Voloudakis G, Doran N, Zhang E, Dimovasili C, Chen L, Shao Z, Darmanis S, Tang C, Tang J, Wang VX, Hof PR, Robakis NK, Georgakopoulos A. PS1 FAD mutants decrease ephrinB2-regulated angiogenic functions, ischemia-induced brain neovascularization and neuronal survival. Mol Psychiatry 2021; 26:1996-2012. [PMID: 32541930 PMCID: PMC7736163 DOI: 10.1038/s41380-020-0812-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
Microvascular pathology and ischemic lesions contribute substantially to neuronal dysfunction and loss that lead to Alzheimer disease (AD). To facilitate recovery, the brain stimulates neovascularization of damaged tissue via sprouting angiogenesis, a process regulated by endothelial cell (EC) sprouting and the EphB4/ephrinB2 system. Here, we show that in cultures of brain ECs, EphB4 stimulates the VE-cadherin/Rok-α angiogenic complexes known to mediate sprouting angiogenesis. Importantly, brain EC cultures expressing PS1 FAD mutants decrease the EphB4-stimulated γ-secretase cleavage of ephrinB2 and reduce production of the angiogenic peptide ephrinB2/CTF2, the VE-cadherin angiogenic complexes and EC sprouting and tube formation. These data suggest that FAD mutants may attenuate ischemia-induced brain angiogenesis. Supporting this hypothesis, ischemia-induced VE-cadherin angiogenic complexes, levels of neoangiogenesis marker Endoglin, vascular density, and cerebral blood flow recovery, are all decreased in brains of mouse models expressing PS1 FAD mutants. Ischemia-induced brain neuronal death and cognitive deficits also increase in these mice. Furthermore, a small peptide comprising the C-terminal sequence of peptide ephrinB2/CTF2 rescues angiogenic functions of brain ECs expressing PS1 FAD mutants. Together, our data show that PS1 FAD mutations impede the EphB4/ephrinB2-mediated angiogenic functions of ECs and impair brain neovascularization, neuronal survival and cognitive recovery following ischemia. Furthermore, our data reveal a novel brain angiogenic mechanism targeted by PS1 FAD mutants and a potential therapeutic target for ischemia-induced neurodegeneration. Importantly, FAD mutant effects occur in absence of neuropathological hallmarks of AD, supporting that such hallmarks may form downstream of mutant effects on neoangiogenesis and neuronal survival.
Collapse
Affiliation(s)
- YoneJung Yoon
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Georgios Voloudakis
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nathan Doran
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Zhang
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christina Dimovasili
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lei Chen
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Zhiping Shao
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Spyros Darmanis
- Departments of Bioengineering and Applied Physics, Stanford University and Chan Zuckerberg Biohub, Stanford, CA, 94305, USA
| | - Cheuk Tang
- Department of Radiology, Neuroscience and Psychiatry Translational and Molecular Imaging Institute at Mount Sinai, New York, NY, USA
| | - Jun Tang
- Department of Radiology, Neuroscience and Psychiatry Translational and Molecular Imaging Institute at Mount Sinai, New York, NY, USA
| | - Victoria X Wang
- Department of Radiology, Translational and Molecular Imaging Institute at Mount Sinai, New York, NY, USA
| | - Patrick R Hof
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikolaos K Robakis
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Anastasios Georgakopoulos
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
11
|
Akman Ö, Utkan T, Arıcıoğlu F, Güllü K, Ateş N, Karson A. Agmatine has beneficial effect on harmaline-induced essential tremor in rat. Neurosci Lett 2021; 753:135881. [PMID: 33838255 DOI: 10.1016/j.neulet.2021.135881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
Essential tremor (ET) is one of the most prevalent movement disorders and the most common cause of abnormal tremors. However, it cannot be treated efficiently with the currently available pharmacotherapy options. The pathophysiology of harmaline-induced tremor, most commonly used model of ET, involves various neurotransmitter systems including glutamate as well as ion channels. Agmatine, an endogenous neuromodulator, interacts with various glutamate receptor subtypes and ion channels, which have been associated with its' beneficial effects on several neurological disorders. The current study aims to assess the effect of agmatine on the harmaline model of ET. Two separate groups of male rats were injected either with saline or agmatine (40 mg/kg) 30 min prior to single intraperitoneal injection of harmaline (20 mg/kg). The percent duration, intensity and frequency of tremor and locomotor activity were evaluated by a custom-built tremor and locomotion analysis system. Pretreatment with agmatine reduced the percent tremor duration and intensity of tremor induced by harmaline, without affecting the tremor frequency. However, it did not affect the decreased spontaneous locomotor activity due to harmaline. This pattern of ameliorating effects of agmatine on harmaline-induced tremor provide the first evidence for being considered as a treatment option for ET.
Collapse
Affiliation(s)
- Özlem Akman
- Department of Physiology, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey.
| | - Tijen Utkan
- Kocaeli University, Faculty of Medicine, Department of Pharmacology, Kocaeli, Turkey.
| | - Feyza Arıcıoğlu
- Marmara University, Faculty of Pharmacy, Department of Pharmacology and Psychopharmacology Research Unit, Istanbul, Turkey.
| | - Kemal Güllü
- Department of Electrical and Electronics Engineering, İzmir Bakircay University, İzmir, Turkey.
| | - Nurbay Ateş
- Kocaeli University, Faculty of Medicine, Department of Physiology, Kocaeli, Turkey.
| | - Ayşe Karson
- Kocaeli University, Faculty of Medicine, Department of Physiology, Kocaeli, Turkey.
| |
Collapse
|
12
|
Al Rahim M, Yoon Y, Dimovasili C, Shao Z, Huang Q, Zhang E, Kezunovic N, Chen L, Schaffner A, Huntley GW, Ubarretxena-Belandia I, Georgakopoulos A, Robakis NK. Presenilin1 familial Alzheimer disease mutants inactivate EFNB1- and BDNF-dependent neuroprotection against excitotoxicity by affecting neuroprotective complexes of N-methyl-d-aspartate receptor. Brain Commun 2020; 2:fcaa100. [PMID: 33005890 PMCID: PMC7520050 DOI: 10.1093/braincomms/fcaa100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Excitotoxicity is thought to play key roles in brain neurodegeneration and stroke. Here we show that neuroprotection against excitotoxicity by trophic factors EFNB1 and brain-derived neurotrophic factor (called here factors) requires de novo formation of 'survival complexes' which are factor-stimulated complexes of N-methyl-d-aspartate receptor with factor receptor and presenilin 1. Absence of presenilin 1 reduces the formation of survival complexes and abolishes neuroprotection. EPH receptor B2- and N-methyl-d-aspartate receptor-derived peptides designed to disrupt formation of survival complexes also decrease the factor-stimulated neuroprotection. Strikingly, factor-dependent neuroprotection and levels of the de novo factor-stimulated survival complexes decrease dramatically in neurons expressing presenilin 1 familial Alzheimer disease mutants. Mouse neurons and brains expressing presenilin 1 familial Alzheimer disease mutants contain increased amounts of constitutive presenilin 1-N-methyl-d-aspartate receptor complexes unresponsive to factors. Interestingly, the stability of the familial Alzheimer disease presenilin 1-N-methyl-d-aspartate receptor complexes differs from that of wild type complexes and neurons of mutant-expressing brains are more vulnerable to cerebral ischaemia than neurons of wild type brains. Furthermore, N-methyl-d-aspartate receptor-mediated excitatory post-synaptic currents at CA1 synapses are altered by presenilin 1 familial Alzheimer disease mutants. Importantly, high levels of presenilin 1-N-methyl-d-aspartate receptor complexes are also found in post-mortem brains of Alzheimer disease patients expressing presenilin 1 familial Alzheimer disease mutants. Together, our data identify a novel presenilin 1-dependent neuroprotective mechanism against excitotoxicity and indicate a pathway by which presenilin 1 familial Alzheimer disease mutants decrease factor-depended neuroprotection against excitotoxicity and ischaemia in the absence of Alzheimer disease neuropathological hallmarks which may form downstream of neuronal damage. These findings have implications for the pathogenic effects of familial Alzheimer disease mutants and therapeutic strategies.
Collapse
Affiliation(s)
- Md Al Rahim
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yonejung Yoon
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christina Dimovasili
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhiping Shao
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qian Huang
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Zhang
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nebojsa Kezunovic
- Nash Family Department of Neuroscience, and the Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lei Chen
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Schaffner
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George W Huntley
- Nash Family Department of Neuroscience, and the Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Anastasios Georgakopoulos
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikolaos K Robakis
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
13
|
Niu B, Zhang H, Li C, Yan F, Song Y, Hai G, Jiao Y, Feng Y. Network pharmacology study on the active components of Pterocypsela elata and the mechanism of their effect against cerebral ischemia. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3009-3019. [PMID: 31564827 PMCID: PMC6733351 DOI: 10.2147/dddt.s207955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/18/2019] [Indexed: 01/19/2023]
Abstract
Objective The aim of this study was to identify the active anti-ischemic components of Pterocypsela elata (P. elata) using a network pharmacology approach to construct an effective component anti-cerebral ischemic target network and systematically analyze this medicinal material. Methods Pharmacological studies have shown that P. elata has an obvious effect against cerebral ischemia. To identify the potential targets, 14 components of P. elata were docked to each structural element of the targets in the DRAR-CPI database by reverse docking technology. We then compared the identified potential targets with FDA-approved targets for stroke/cerebral infarction treatment in the DrugBank database and identified the active components of P. elata and their potential targets for stroke/cerebral infarction treatment. The active component-target networks were constructed using Cytoscape 3.5.1 software. The target protein-protein interactions were analyzed using the STRING database. KEGG pathway analysis and gene ontology (GO) enrichment analysis were performed through the Database for Annotation, Visualization and Integrated Discovery (DAVID). Results There were 14 active components identified from P. elata and 21 potential targets identified for cerebral ischemia treatment, including carbonic anhydrase 2, ribosyldihydronicotinamide dehydrogenase, cholinesterase, and glutathione S-transferase P. The main involved pathways include metabolic pathways, complement and coagulation cascades and steroid hormone biosynthesis. Conclusion Through a network pharmacology approach, we predicted the active components of P. elata and their potential targets for cerebral ischemia treatment. Our results provide new perspectives and clues for further studies on the anti-cerebral ischemia mechanism of P. elata.
Collapse
Affiliation(s)
- Bingxuan Niu
- College of Pharmacy, Xinxiang Medical University, Xingxiang, Henan Province 453003, People's Republic of China
| | - Hui Zhang
- College of Pharmacy, Xinxiang Medical University, Xingxiang, Henan Province 453003, People's Republic of China
| | - Chunyan Li
- Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453002, People's Republic of China
| | - Fulin Yan
- College of Pharmacy, Xinxiang Medical University, Xingxiang, Henan Province 453003, People's Republic of China.,Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453002, People's Republic of China
| | - Yu Song
- College of Pharmacy, Xinxiang Medical University, Xingxiang, Henan Province 453003, People's Republic of China
| | - Guangfan Hai
- College of Pharmacy, Xinxiang Medical University, Xingxiang, Henan Province 453003, People's Republic of China
| | - Yunjuan Jiao
- Basic Medical College, Xinxiang Medical University, Xinxiang, Henan Province 453003, People's Republic of China
| | - Yansheng Feng
- Basic Medical College, Xinxiang Medical University, Xinxiang, Henan Province 453003, People's Republic of China
| |
Collapse
|
14
|
Up-regulation of HIF-1α is associated with neuroprotective effects of agmatine against rotenone-induced toxicity in differentiated SH-SY5Y cells. Amino Acids 2019; 52:171-179. [PMID: 31292720 DOI: 10.1007/s00726-019-02759-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/01/2019] [Indexed: 02/08/2023]
Abstract
Agmatine, a metabolite generated by arginine decarboxylation, has been reported as neuromodulator and neuroactive substance. Several findings suggest that agmatine displays neuroprotective effects in several models of neurodegenerative disorders, such as Parkinson's disease (PD). It has been hypothesized that biogenic amines may be involved in neuroprotection by scavenging oxygen radicals, thus preventing the generation of oxidative stress. Mitochondrial dysfunction, that leads to a reduction of oxygen consumption, followed by activation of prolyl hydroxylase and decrease of hypoxia-inducible factor 1 alpha (HIF-1α) levels, has been demonstrated to play a role in PD pathogenesis. Using rotenone-treated differentiated SH-SY5Y cells as the in vitro PD model, we here investigated the molecular mechanisms underlying agmatine neuroprotective effects. Our results showed that the preliminary addition of agmatine induces HIF-1α activation, and prevents the rotenone-induced production of free radical species, and the activation of apoptotic pathways by inhibiting mitochondrial membrane potential decrease and caspase 3 as well as cytochrome c increase. Notably, these effects are mediated by HIF-1α, as indicated by experiments using a HIF-1α inhibitor. The present findings suggest that the treatment with agmatine is able to counteract the neuronal cell injury evoked by mitochondrial toxins.
Collapse
|
15
|
Kotagale NR, Taksande BG, Inamdar NN. Neuroprotective offerings by agmatine. Neurotoxicology 2019; 73:228-245. [DOI: 10.1016/j.neuro.2019.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/31/2022]
|
16
|
Garip B, Kayir H, Uzun O. l-Arginine metabolism before and after 10 weeks of antipsychotic treatment in first-episode psychotic patients. Schizophr Res 2019; 206:58-66. [PMID: 30587428 DOI: 10.1016/j.schres.2018.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 12/02/2018] [Accepted: 12/09/2018] [Indexed: 12/16/2022]
Abstract
Agmatine is an endogenous NMDA (N-methyl-d-aspartate) antagonist which is synthesized from l-Arginine and described as a novel neurotransmitter. Agmatine is considered to play an important role for the development of schizophrenia. The aim of the present study is to explore the role of agmatine and l-arginine metabolism in medication-naive first-episode psychosis (FEP). We conducted a case control study in medication-naive patients with FEP (n = 40). The healthy volunteers with no family history of schizophrenia (n = 35) matched for age, gender and education level were selected as a control group. The patients were recruited to the study and followed up for 10 weeks. The plasma l-arginine, l-citrulline, l-ornithine and agmatine levels were measured using modified liquid chromatography/mass spectrometry. The plasma levels of l-arginine, l-citrulline and agmatine (p < 0.0001), but not l-ornithine and agmatinase (p > 0.05), were significantly increased during baseline analysis. After 10 weeks of treatment, plasma l-arginine and l-citrulline levels were still significantly increased (p < 0.05) while l-ornithine and agmatinase levels remained unchanged (p > 0.05). Conversely, plasma agmatine levels were significantly decreased after the treatment (p < 0.0001). Positive and negative predictive values of agmatine used for evaluating the diagnostic accuracy were 95.1% and 97.1%, respectively (p < 000.1). This is the first study of arginine metabolism and agmatine in medication-naive first-episode patients and provides evidence of increased levels of an endogenous NMDA antagonist which decreases following antipsychotic treatment.
Collapse
Affiliation(s)
- Beyazit Garip
- Gulhane Training and Research Hospital, Department of Psychiatry, Ankara, Turkey
| | - Hakan Kayir
- Noro Saglik Brain Trainings Research Application Center, Istanbul, Turkey.
| | - Ozcan Uzun
- Health Sciences University, Gulhane Medical School, Department of Psychiatry, Ankara, Turkey
| |
Collapse
|
17
|
Kim JY, Kim JY, Kim JH, Jung H, Lee WT, Lee JE. Restorative Mechanism of Neural Progenitor Cells Overexpressing Arginine Decarboxylase Genes Following Ischemic Injury. Exp Neurobiol 2019; 28:85-103. [PMID: 30853827 PMCID: PMC6401554 DOI: 10.5607/en.2019.28.1.85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
Cell replacement therapy using neural progenitor cells (NPCs) following ischemic stroke is a promising potential therapeutic strategy, but lacks efficacy for human central nervous system (CNS) therapeutics. In a previous in vitro study, we reported that the overexpression of human arginine decarboxylase (ADC) genes by a retroviral plasmid vector promoted the neuronal differentiation of mouse NPCs. In the present study, we focused on the cellular mechanism underlying cell proliferation and differentiation following ischemic injury, and the therapeutic feasibility of NPCs overexpressing ADC genes (ADC-NPCs) following ischemic stroke. To mimic cerebral ischemia in vitro , we subjected the NPCs to oxygen-glucose deprivation (OGD). The overexpressing ADC-NPCs were differentiated by neural lineage, which was related to excessive intracellular calcium-mediated cell cycle arrest and phosphorylation in the ERK1/2, CREB, and STAT1 signaling cascade following ischemic injury. Moreover, the ADC-NPCs were able to resist mitochondrial membrane potential collapse in the increasingly excessive intracellular calcium environment. Subsequently, transplanted ADC-NPCs suppressed infarct volume, and promoted neural differentiation, synapse formation, and motor behavior performance in an in vivo tMCAO rat model. The results suggest that ADC-NPCs are potentially useful for cell replacement therapy following ischemic stroke.
Collapse
Affiliation(s)
- Jae Young Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae Hwan Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Hosung Jung
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Won Taek Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
18
|
Therapeutic Effect of Agmatine on Neurological Disease: Focus on Ion Channels and Receptors. Neurochem Res 2019; 44:735-750. [PMID: 30610652 DOI: 10.1007/s11064-018-02712-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 02/08/2023]
Abstract
The central nervous system (CNS) is the most injury-prone part of the mammalian body. Any acute or chronic, central or peripheral neurological disorder is related to abnormal biochemical and electrical signals in the brain cells. As a result, ion channels and receptors that are abundant in the nervous system and control the electrical and biochemical environment of the CNS play a vital role in neurological disease. The N-methyl-D-aspartate receptor, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid receptor, kainate receptor, acetylcholine receptor, serotonin receptor, α2-adrenoreceptor, and acid-sensing ion channels are among the major channels and receptors known to be key components of pathophysiological events in the CNS. The primary amine agmatine, a neuromodulator synthesized in the brain by decarboxylation of L-arginine, can regulate ion channel cascades and receptors that are related to the major CNS disorders. In our previous studies, we established that agmatine was related to the regulation of cell differentiation, nitric oxide synthesis, and murine brain endothelial cell migration, relief of chronic pain, cerebral edema, and apoptotic cell death in experimental CNS disorders. In this review, we will focus on the pathophysiological aspects of the neurological disorders regulated by these ion channels and receptors, and their interaction with agmatine in CNS injury.
Collapse
|
19
|
Xu W, Gao L, Li T, Shao A, Zhang J. Neuroprotective Role of Agmatine in Neurological Diseases. Curr Neuropharmacol 2018; 16:1296-1305. [PMID: 28786346 PMCID: PMC6251039 DOI: 10.2174/1570159x15666170808120633] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/17/2017] [Accepted: 07/27/2017] [Indexed: 12/31/2022] Open
Abstract
Background: Neurological diseases have always been one of the leading cause of mobility and mortality world-widely. However, it is still lacking efficient agents. Agmatine, an endogenous polyamine, exerts its diverse biological characteristics and therapeutic potential in varied aspects. Methods: This review would focus on the neuroprotective actions of agmatine and its potential mechanisms in the setting of neurological diseases. Results: Numerous studies had demonstrated the neuroprotective effect of agmatine in varied types of neurological diseases, including acute attack (stroke and trauma brain injury) and chronic neurodegenerative diseases (Parkinson's disease, Alz-heimer’s disease). The potential mechanism of agmatine induced neuroprotection includes anti-oxidation, anti-apoptosis, anti-inflammation, brain blood barrier (BBB) protection and brain edema prevention. Conclusions: The safety and low incidence of adverse effects indicate the vast potential therapeutic value of agmatine in the treatment of neurological diseases. However, most of the available studies relate to the agmatine are conducted in experi-mental models, more clinical trials are needed before the agmatine could be extensively clinically used
Collapse
Affiliation(s)
- Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
Kim SY, Son M, Lee SE, Park IH, Kwak MS, Han M, Lee HS, Kim ES, Kim JY, Lee JE, Choi JE, Diamond B, Shin JS. High-Mobility Group Box 1-Induced Complement Activation Causes Sterile Inflammation. Front Immunol 2018; 9:705. [PMID: 29696019 PMCID: PMC5904255 DOI: 10.3389/fimmu.2018.00705] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/22/2018] [Indexed: 12/24/2022] Open
Abstract
High-mobility group box 1 (HMGB1), a well-known danger-associated molecular pattern molecule, acts as a pro-inflammatory molecule when secreted by activated immune cells or released after necrotic cell damage. HMGB1 binds to immunogenic bacterial components and augments septic inflammation. In this study, we show how HMGB1 mediates complement activation, promoting sterile inflammation. We show that HMGB1 activates the classical pathway of complement system in an antibody-independent manner after binding to C1q. The C3a complement activation product in human plasma and C5b-9 membrane attack complexes on cell membrane surface are detected after the addition of HMGB1. In an acetaminophen (APAP)-induced hepatotoxicity model, APAP injection reduced HMGB1 levels and elevated C3 levels in C1q-deficient mouse serum samples, compared to that in wild-type (WT) mice. APAP-induced C3 consumption was inhibited by sRAGE treatment in WT mice. Moreover, in a mouse model of brain ischemia–reperfusion injury based on middle cerebral arterial occlusion, C5b-9 complexes were deposited on vessels where HMGB1 was accumulated, an effect that was suppressed upon HMGB1 neutralization. We propose that the HMGB1 released after cell necrosis and in ischemic condition can trigger the classical pathway of complement activation to exacerbate sterile inflammation.
Collapse
Affiliation(s)
- Sook Young Kim
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Myoungsun Son
- The Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Sang Eun Lee
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - In Ho Park
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Man Sup Kwak
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Myeonggil Han
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun Sook Lee
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Sook Kim
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Young Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Eun Choi
- Department of Pediatrics, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Betty Diamond
- The Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea.,Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, South Korea
| |
Collapse
|
21
|
Donertas B, Cengelli Unel C, Aydin S, Ulupinar E, Ozatik O, Kaygisiz B, Yildirim E, Erol K. Agmatine co-treatment attenuates allodynia and structural abnormalities in cisplatin-induced neuropathy in rats. Fundam Clin Pharmacol 2018; 32:288-296. [DOI: 10.1111/fcp.12351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/09/2018] [Accepted: 01/23/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Basak Donertas
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Cigdem Cengelli Unel
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Sule Aydin
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Emel Ulupinar
- Department of Anatomy; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Orhan Ozatik
- Department of Histology and Embryology; Faculty of Medicine; Dumlupinar University; Kutahya 43000 Turkey
| | - Bilgin Kaygisiz
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Engin Yildirim
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Kevser Erol
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| |
Collapse
|
22
|
Bahremand T, Payandemehr P, Riazi K, Noorian AR, Payandemehr B, Sharifzadeh M, Dehpour AR. Modulation of the anticonvulsant effect of swim stress by agmatine. Epilepsy Behav 2018; 78:142-148. [PMID: 29195160 DOI: 10.1016/j.yebeh.2017.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/29/2017] [Accepted: 11/05/2017] [Indexed: 02/07/2023]
Abstract
Agmatine is an endogenous l-arginine metabolite with neuroprotective effects in the stress-response system. It exerts anticonvulsant effects against several seizure paradigms. Swim stress induces an anticonvulsant effect by activation of endogenous antiseizure mechanisms. In this study, we investigated the interaction of agmatine with the anticonvulsant effect of swim stress in mice on pentylenetetrazole (PTZ)-induced seizure threshold. Then we studied the involvement of nitric oxide (NO) pathway and endogenous opioid system in that interaction. Swim stress induced an anticonvulsant effect on PTZ seizures which was opioid-independent in shorter than 1-min swim durations and opioid-dependent with longer swims, as it was completely reversed by pretreatment with naltrexone (NTX) (10mg/kg), an opioid receptor antagonist. Agmatine significantly enhanced the anticonvulsant effect of opioid-independent shorter swim stress, in which a combination of subthreshold swim stress duration (45s) and subeffective dose of agmatine (1mg/kg) revealed a significantly higher seizure threshold compared with either one. This effect was significantly reversed by NO synthase inhibitor NG-nitro-l-arginine (L-NAME (Nω-Nitro-L-arginine methyl ester), 5mg/kg), suggesting an NO-dependent mechanism, and was unaffected by NTX (10mg/kg), proving little role for endogenous opioids in the interaction. Our data suggest that pretreatment of animals with agmatine acts additively with short swim stress to exert anticonvulsant responses, possibly by mediating NO pathway.
Collapse
Affiliation(s)
- Taraneh Bahremand
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooya Payandemehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiarash Riazi
- Hotchkiss Brain Institute, Department of Physiology & Pharmacology, University of Calgary, Canada
| | - Ali Reza Noorian
- Stroke Program, Kaiser Permanente Orange County, Irvine, CA, United States
| | - Borna Payandemehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Kim JH, Kim JY, Jung JY, Lee YW, Lee WT, Huh SK, Lee JE. Endogenous Agmatine Induced by Ischemic Preconditioning Regulates Ischemic Tolerance Following Cerebral Ischemia. Exp Neurobiol 2017; 26:380-389. [PMID: 29302205 PMCID: PMC5746503 DOI: 10.5607/en.2017.26.6.380] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 12/26/2022] Open
Abstract
Ischemic preconditioning (IP) is one of the most important endogenous mechanisms that protect the cells against ischemia-reperfusion (I/R) injury. However, the exact molecular mechanisms remain unclear. In this study, we showed that changes in the level of agmatine were correlated with ischemic tolerance. Changes in brain edema, infarct volume, level of agmatine, and expression of arginine decarboxylase (ADC) and nitric oxide synthases (NOS; inducible NOS [iNOS] and neural NOS [nNOS]) were analyzed during I/R injury with or without IP in the rat brain. After cerebral ischemia, brain edema and infarct volume were significantly reduced in the IP group. The level of agmatine was increased before and during ischemic injury and remained elevated in the early reperfusion phase in the IP group compared to the experimental control (EC) group. During IP, the level of plasma agmatine was increased in the early phase of IP, but that of liver agmatine was abruptly decreased. However, the level of agmatine was definitely increased in the ipsilateral and contralateral hemisphere of brain during the IP. IP also increased the expression of ADC—the enzyme responsible for the synthesis of endogenous agmatine—before, during, and after ischemic injury. In addition, ischemic injury increased endogenous ADC expression in the EC group. The expression of nNOS was reduced in the I/R injured brain in the IP group. These results suggest that endogenous increased agmatine may be a component of the ischemic tolerance response that is induced by IP. Agmatine may have a pivotal role in endogenous ischemic tolerance.
Collapse
Affiliation(s)
- Jae Hwan Kim
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea.,Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae Young Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jin Young Jung
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Yong Woo Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Won Taek Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Seung Kon Huh
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.,Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
24
|
Kim JH, Kim JY, Mun CH, Suh M, Lee JE. Agmatine Modulates the Phenotype of Macrophage Acute Phase after Spinal Cord Injury in Rats. Exp Neurobiol 2017; 26:278-286. [PMID: 29093636 PMCID: PMC5661060 DOI: 10.5607/en.2017.26.5.278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/29/2017] [Accepted: 09/24/2017] [Indexed: 12/26/2022] Open
Abstract
Agmatine is a decarboxylated arginine by arginine decarboxylase. Agmatine is known to be a neuroprotective agent. It has been reported that agmatine works as a NMDA receptor blocker or a competitive nitric oxide synthase inhibitor in CNS injuries. In spinal cord injury, agmatine showed reduction of neuropathic pain, improvement of locomotor function, and neuroprotection. Macrophage is a key cellular component in neuroinflammation, a major cause of impairment after spinal cord injury. Macrophage has subtypes, M1 and M2 macrophages. M1 macrophage induces a pro-inflammatory response, but M2 inspires an anti-inflammatory response. In this study, it was clarified whether the neuroprotective effect of agmatine is related with the modulation of macrophage subdivision after spinal cord injury. Spinal cord injury was induced in rats with contusion using MASCIS. Animals received agmatine (100 mg/kg, IP) daily for 6 days beginning the day after spinal cord injury. The proportion of M1 and M2 macrophages are confirmed with immunohistochemistry and FACS. CD206+ & ED1+ cells were counted as M2 macrophages. The systemic treatment of agmatine increased M2 macrophages caudal side to epicenter 1 week after spinal cord injury in immunohistochemistry. M2 macrophage related markers, Arginase-1 and CD206 mRNA, were increased in the agmatine treatment group and M2 macrophage expressing and stimulated cytokine, IL-10 mRNA, also was significantly overexpressed by agmatine injection. Among BMPs, BMP2/4/7, agmatine significantly increased only the expression of BMP2 known to reduce M1 macrophage under inflammatory status. These results suggest that agmatine reduces impairment after spinal cord injury through modulating the macrophage phenotype.
Collapse
Affiliation(s)
- Jae Hwan Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Sungkyunkwan University (SKKU), Suwon 16419, Korea.,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.,Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae Young Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Chin Hee Mun
- Division of Rheumatology, Department of Internal Medicine, Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Minah Suh
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Sungkyunkwan University (SKKU), Suwon 16419, Korea.,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea.,BK21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
25
|
Kim JM, Lee JE, Cheon SY, Lee JH, Kim SY, Kam EH, Koo BN. The Anti-inflammatory Effects of Agmatine on Transient Focal Cerebral Ischemia in Diabetic Rats. J Neurosurg Anesthesiol 2017; 28:203-13. [PMID: 26057630 DOI: 10.1097/ana.0000000000000195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND In the previous study, we observed agmatine (AGM) posttreatment immediately after 30 minutes of suture occlusion of the middle cerebral artery (MCAO) reduced the infarct size and neurological deficit in diabetic rats. The aim of the present study was to investigate the anti-inflammatory effect of AGM to reduce cerebral ischemic damage in diabetic rats. MATERIALS AND METHODS Normoglycemic (n=20) and streptozotocin-induced diabetic rats (n=40) were subjected to 30 minutes of MCAO followed by reperfusion. Twenty diabetic rats were treated with AGM (100 mg/kg, intraperitoneal) immediately after 30 minutes of MCAO. Modified neurological examinations and rotarod exercises were performed to evaluate motor function. Western blot and immunohistochemical analysis were performed to determine the expression of inflammatory cytokines in ischemic brain tissue. Real-time polymerase chain reaction was performed to measure the mRNA expression of high-mobility group box 1, receptor for advanced glycation end products (RAGE), Toll-like receptor (TLR)2, and TLR4 RESULTS AND CONCLUSIONS:: AGM posttreatment improved the neurobehavioral activity and motor function of diabetic MCAO rats at 24 and 72 hours after reperfusion. Immunohistochemical analysis showed that AGM treatment significantly decreased the expression of inflammatory cytokines in diabetic MCAO rats at 24 and 72 hours after reperfusion (P<0.01). Western blotting and real-time polymerase chain reaction results indicated that AGM treatment significantly decreased the expression of high-mobility group box 1, RAGE, TLR2, and TLR4 in diabetic rats at 24 hours after reperfusion (P<0.05). This neuroprotective effect of AGM after MCAO was associated with modulation of the postischemic neuronal inflammation cascade.
Collapse
Affiliation(s)
- Jeong Min Kim
- Departments of *Anesthesiology and Pain Medicine ‡Anatomy †Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
26
|
Neis VB, Rosa PB, Olescowicz G, Rodrigues ALS. Therapeutic potential of agmatine for CNS disorders. Neurochem Int 2017; 108:318-331. [DOI: 10.1016/j.neuint.2017.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/06/2017] [Accepted: 05/12/2017] [Indexed: 12/14/2022]
|
27
|
Agmatine: multifunctional arginine metabolite and magic bullet in clinical neuroscience? Biochem J 2017; 474:2619-2640. [DOI: 10.1042/bcj20170007] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 12/12/2022]
Abstract
Agmatine, the decarboxylation product of arginine, was largely neglected as an important player in mammalian metabolism until the mid-1990s, when it was re-discovered as an endogenous ligand of imidazoline and α2-adrenergic receptors. Since then, a wide variety of agmatine-mediated effects have been observed, and consequently agmatine has moved from a wallflower existence into the limelight of clinical neuroscience research. Despite this quantum jump in scientific interest, the understanding of the anabolism and catabolism of this amine is still vague. The purification and biochemical characterization of natural mammalian arginine decarboxylase and agmatinase still are open issues. Nevertheless, the agmatinergic system is currently one of the most promising candidates in order to pharmacologically interfere with some major diseases of the central nervous system, which are summarized in the present review. Particularly with respect to major depression, agmatine, its derivatives, and metabolizing enzymes show great promise for the development of an improved treatment of this common disease.
Collapse
|
28
|
Freitas AE, Neis VB, Rodrigues ALS. Agmatine, a potential novel therapeutic strategy for depression. Eur Neuropsychopharmacol 2016; 26:1885-1899. [PMID: 27836390 DOI: 10.1016/j.euroneuro.2016.10.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/12/2016] [Accepted: 10/29/2016] [Indexed: 12/19/2022]
Abstract
Major depressive disorder is the most common psychiatric disorder with lifetime prevalence of up to 20% worldwide. It is responsible for more years lost to disability than any other disorder. Despite the fact that current available antidepressant drugs are safe and effective, they are far from ideal. In addition to the need to administer the drugs for weeks or months to obtain clinical benefit, side effects are still a serious problem. Agmatine is an endogenous polyamine synthesized by the enzyme arginine decarboxylase. It modulates several receptors and is considered as a neuromodulator in the brain. In this review, studies demonstrating the antidepressant effects of agmatine are presented and discussed, as well as, the mechanisms of action related to these effects. Also, the potential beneficial effects of agmatine for the treatment of other neurological disorders are presented. In particular, we provide evidence to encourage future clinical studies investigating agmatine as a novel antidepressant drug.
Collapse
Affiliation(s)
- Andiara E Freitas
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil.
| | - Vivian B Neis
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
29
|
Song J, Oh Y, Kim JY, Cho KJ, Lee JE. Suppression of MicroRNA let-7a Expression by Agmatine Regulates Neural Stem Cell Differentiation. Yonsei Med J 2016; 57:1461-7. [PMID: 27593875 PMCID: PMC5011279 DOI: 10.3349/ymj.2016.57.6.1461] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Neural stem cells (NSCs) effectively reverse some severe central nervous system (CNS) disorders, due to their ability to differentiate into neurons. Agmatine, a biogenic amine, has cellular protective effects and contributes to cellular proliferation and differentiation in the CNS. Recent studies have elucidated the function of microRNA let-7a (let-7a) as a regulator of cell differentiation with roles in regulating genes associated with CNS neurogenesis. MATERIALS AND METHODS This study aimed to investigate whether agmatine modulates the expression of crucial regulators of NSC differentiation including DCX, TLX, c-Myc, and ERK by controlling let-7a expression. RESULTS Our data suggest that high levels of let-7a promoted the expression of TLX and c-Myc, as well as repressed DCX and ERK expression. In addition, agmatine attenuated expression of TLX and increased expression of ERK by negatively regulating let-7a. CONCLUSION Our study therefore enhances the present understanding of the therapeutic potential of NSCs in CNS disorders.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Yumi Oh
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung Joo Cho
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
30
|
Wang S, Lv Q, Yang Y, Guo LH, Wan B, Ren X, Zhang H. Arginine decarboxylase: A novel biological target of mercury compounds identified in PC12 cells. Biochem Pharmacol 2016; 118:109-120. [PMID: 27565891 DOI: 10.1016/j.bcp.2016.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/22/2016] [Indexed: 01/28/2023]
Abstract
Mercury compounds are well-known toxic environmental pollutants and potently induce severe neurotoxicological effects in human and experimental animals. Previous studies showed that one of the mechanisms of mercury compounds neurotoxicity arose from the over-activation of the N-methyl d-aspartate (NMDA)-type glutamate receptor induced by increased glutamate release. In this work, we aimed to investigate the molecular mechanisms of Hg compounds neurotoxicities by identifying their biological targets in cells. Firstly, the inhibitory effects of four Hg compounds, including three organic (methyl-, ethyl- and phenyl-mercury) and one inorganic (Hg2+) Hg compounds, on the activity of arginine decarboxylase (ADC), a key enzyme in the central agmatinergic system, were evaluated. They were found to inhibit the ADC activity significantly with methylmercury (MeHg) being the strongest (IC50=7.96nM). Furthermore, they showed remarkable inhibitory effects on ADC activity in PC12 cells (MeHg>EtHg>PhHg>HgCl2), and led to a marked loss in the level of agmatine, an endogenous neuromodulatory and neuroprotective agent that selectively blocks the activation of NMDA receptors. MeHg was detected in the immunoprecipitated ADC from the cells, providing unequivocal evidence for the direct binding of MeHg with ADC in the cell. Molecular dynamics simulation revealed that Hg compounds could form the coordination bond not only with cofactor PLP of ADC, but also with substrate arginine. Our finding indicated that MeHg could attenuate the neuroprotective effects of agmatine by the inhibition of ADC, a new cellular target of MeHg, which might be implicated in molecular mechanism of MeHg neurotoxicity.
Collapse
Affiliation(s)
- Sufang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085, China; College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Qiyan Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085, China
| | - Yu Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085, China.
| | - Liang-Hong Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Bin Wan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085, China
| | - Xiaomin Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085, China
| | - Hui Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085, China
| |
Collapse
|
31
|
Bokara KK, Kim JH, Kim JY, Lee JE. Transfection of arginine decarboxylase gene increases the neuronal differentiation of neural progenitor cells. Stem Cell Res 2016; 17:256-265. [PMID: 27591482 DOI: 10.1016/j.scr.2016.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/26/2016] [Accepted: 08/16/2016] [Indexed: 10/21/2022] Open
Abstract
Growing evidence suggests that the clinical use of neural progenitor cells (NPCs) is hampered by heterogeneity, poor neuronal yield and low survival rate. Recently, we reported that retrovirus-delivered human arginine decarboxylase (hADC) genes improve cell survival against oxidative insult in murine NPCs in vitro. This study investigates whether the induced expression of hADC gene in mNPCs induces any significant change in the cell fate commitment. The evaluation of induced hADC gene function was assessed by knockdown of hADC gene using specific siRNA. The hADC gene delivery triggered higher expression of N-CAM, cell adhesion molecule and MAP-2, neuronal marker. However, the hADC gene knockdown showed downregulation of N-CAM and MAP-2 expression suggesting that hADC gene delivery favors cell fate commitment of mNPCs towards neuronal lineage. Neurite outgrowth was significantly longer in the hADC infected cells. The neurotrophic signal, BDNF aided in the neuronal commitment, differentiation, and maturation of hADC-mNPCs through PI3K and ERK1/2 activation. The induction of neuron-like differentiation is believed to be regulated by the expression of GSK-3β and Wnt/β-catenin signaling pathways. Our findings suggest that hADC gene delivery favors cell fate commitment of mNPCs towards neuronal lineage, bring new advances in the field of neurogenesis and cell therapy.
Collapse
Affiliation(s)
- Kiran Kumar Bokara
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEXE II, Uppal Road, Uppal, Hyderabad 500007, India.
| | - Jae Hwan Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| | - Jae Young Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; BK 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
32
|
|
33
|
El-Kashef DH, El-Kenawi AE, Rahim MA, Suddek GM, Salem HA. Agmatine improves renal function in gentamicin-induced nephrotoxicity in rats. Can J Physiol Pharmacol 2016; 94:278-86. [DOI: 10.1139/cjpp-2015-0321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The present study was designed to explore the possible protective effects of agmatine, a known nitric oxide (NO) synthase inhibitor, against gentamicin-induced nephrotoxicity in rats. For this purpose, we quantitatively evaluated gentamicin-induced renal structural and functional alterations using histopathological and biochemical approaches. Furthermore, the effect of agmatine on gentamicin-induced hypersensitivity of urinary bladder rings to acetylcholine (ACh) was evaluated. Twenty-four male Wistar albino rats were randomly divided into 3 groups, namely control, gentamicin (100 mg/kg, i.p.), and gentamicin plus agmatine (40 mg/kg, orally). At the end of the study, all rats were sacrificed and then blood and urine samples and kidneys were taken. Administration of agmatine significantly decreased kidney/body mass ratio, serum creatinine, lactate dehydrogenase (LDH), renal malondialdehyde (MDA), myeloperoxidase (MPO), NO, and tumor necrosis factor-alpha (TNF-α) while it significantly increased creatinine clearance and renal superoxide dismutase (SOD) activity when compared with the gentamicin-treated group. Additionally, agmatine ameliorated tissue morphology as evidenced by histological evaluation and reduced the responses of isolated bladder rings to ACh. Our study indicates that agmatine administration with gentamicin attenuates oxidative-stress associated renal injury by reducing oxygen free radicals and lipid peroxidation, restoring NO level and inhibiting inflammatory mediators such as TNF-α.
Collapse
Affiliation(s)
- Dalia H. El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Asmaa E. El-Kenawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mona Abdel Rahim
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ghada M. Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hatem A. Salem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
34
|
Lin CM, Chang CK, Chang CP, Hsu YC, Lin MT, Lin JW. Protecting against ischaemic stroke in rats by heat shock protein 20-mediated exercise. Eur J Clin Invest 2015; 45:1297-305. [PMID: 26479875 DOI: 10.1111/eci.12551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/15/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Exercise preconditioning (EP(+) ) has been widely accepted as a being of safe and effective preventive measure for stroke. The purpose of this study was to investigate whether EP(+) improves outcomes of ischaemic stroke by promoting neuronal and glial expression of heat shock protein (HSP) 20. MATERIALS AND METHODS Adult male Sprague-Dawley rats (288 in number) were used to investigate the contribution of HSP20-containing neurons and HSP20-containing glial cells in the exercise-mediated neuroprotection in the stroke condition using middle cerebral artery occlusion. RESULTS Exercise preconditioning, in addition to increasing the numbers of both the HSP20-containg neurons (88 ± 8 vs. 43 ± 4; n = 8 each group; P < 0·05) and the HSP20-containg astrocytes (102 ± 10 vs. 56 ± 5; n = 8; P < 0·05) significantly attenuated stroke-induced brain infarct (140 ± 9 vs. 341 ± 20 mm(3) ; n = 8 per group; P < 0·01), neuronal apoptosis (20 ± 5 vs. 87 ± 7; n = 8 per group; n = 8; P < 0·01), glial apoptosis (29 ± 5 vs. 101 ± 4; n = 8; P < 0·01), and neurological deficits (6·6 ± 0·3 vs. 11·7 ± 0·8; n = 8 per group; P < 0·01). Reducing the numbers of both HSP20-containing neurons and HSP20-contaiing glia by intracerebral injection of pSUPER small interfering RNAί expressing HSP20 significantly reversed the beneficial effects of EP(+) in attenuating stroke-induced cerebral infarct, neuronal and glial apoptosis, and neurological deficits. CONCLUSIONS The numbers of both the HSP20-containing neurons and the HSP20-containing glia inversely correlated with the outcomes of ischaemic stroke. In addition, preischaemic treadmill exercise improves outcomes of ischaemic stroke by increasing the numbers of both the HSP20-containing neurons and the HSP20-containing glia.
Collapse
Affiliation(s)
- Chien-Min Lin
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Kuei Chang
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Ping Chang
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Yu-Chih Hsu
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Jia-Wei Lin
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
35
|
Li Y, Cheng KC, Asakawa A, Amitani H, Takimoto Y, Runtuwene J, Inui A. Activation of imidazoline-I3 receptors ameliorates pancreatic damage. Clin Exp Pharmacol Physiol 2015; 42:964-971. [PMID: 26112210 DOI: 10.1111/1440-1681.12441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/25/2015] [Accepted: 06/09/2015] [Indexed: 01/09/2023]
Abstract
Agmatine, an endogenous ligand of imidazoline receptors, is reported to exhibit anti-hyperglycaemic and many other effects. It has been established that the imidazoline I3 receptor is involved in insulin secretion. The current study characterizes the role of the imidazoline I3 receptor in the protection of pancreatic islets. The activity effect of agmatine against on streptozotocin (STZ)-induced (5 mmol/L) rat β cell apoptosis was examined by using ApoTox-Glo triplex assay, live/dead cell double staining assay, flow cytometric analysis, and western blot. Imidazoline I3 receptors antagonist KU14R and the phospholipase C inhibitor named U73122 were treated in β cells to investigate the potential signalling pathways. The serum glucose and recovery of insulin secretion were measured in STZ-treated rats after continuously injected agmatine. The apoptosis in rat β cells was reduced by agmatine in a dose-dependent manner, cell viability was improved after treatment with agmatine and these effects were suppressed after the blockade of KU14R and U73122. Western blot analysis confirmed that agmatine could decrease caspase-3 expression and increase the p-BAD levels. In STZ-treated rats, injection of agmatine for 4 weeks may significantly lower the serum glucose and recovery of insulin secretion. This improvement of pancreatic islets induced by agmatine was deleted by KU14R in vivo. Agmatine can activate the imidazoline I3 receptor linked with the phospholipase C pathway to induce cell protection against apoptosis induced by a low dose of STZ. This finding provides new insight into the prevention of early stage pancreatic islet damage.
Collapse
Affiliation(s)
- Yingxiao Li
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kai-Chun Cheng
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Asakawa
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Haruka Amitani
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoshiyuki Takimoto
- Department of Stress Sciences and Psychosomatic Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Joshua Runtuwene
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akio Inui
- Department of Stress Sciences and Psychosomatic Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
36
|
The Use of Agmatine Provides the New Insight in an Experimental Model of Multiple Sclerosis. Neurochem Res 2015; 40:1719-27. [DOI: 10.1007/s11064-015-1655-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/26/2015] [Accepted: 06/28/2015] [Indexed: 10/23/2022]
|
37
|
Kim JY, Lee YW, Kim JH, Lee WT, Park KA, Lee JE. Agmatine Attenuates Brain Edema and Apoptotic Cell Death after Traumatic Brain Injury. J Korean Med Sci 2015; 30:943-52. [PMID: 26130959 PMCID: PMC4479950 DOI: 10.3346/jkms.2015.30.7.943] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 04/01/2015] [Indexed: 11/20/2022] Open
Abstract
Traumatic brain injury (TBI) is associated with poor neurological outcome, including necrosis and brain edema. In this study, we investigated whether agmatine treatment reduces edema and apoptotic cell death after TBI. TBI was produced by cold injury to the cerebral primary motor cortex of rats. Agmatine was administered 30 min after injury and once daily until the end of the experiment. Animals were sacrificed for analysis at 1, 2, or 7 days after the injury. Various neurological analyses were performed to investigate disruption of the blood-brain barrier (BBB) and neurological dysfunction after TBI. To examine the extent of brain edema after TBI, the expression of aquaporins (AQPs), phosphorylation of mitogen-activated protein kinases (MAPKs), and nuclear translocation of nuclear factor-κB (NF-κB) were investigated. Our findings demonstrated that agmatine treatment significantly reduces brain edema after TBI by suppressing the expression of AQP1, 4, and 9. In addition, agmatine treatment significantly reduced apoptotic cell death by suppressing the phosphorylation of MAPKs and by increasing the nuclear translocation of NF-κB after TBI. These results suggest that agmatine treatment may have therapeutic potential for brain edema and neural cell death in various central nervous system diseases.
Collapse
Affiliation(s)
- Jae Young Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Woo Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Hwan Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Won Taek Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Ah Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
38
|
Wu MH, Chio CC, Tsai KJ, Chang CP, Lin NK, Huang CC, Lin MT. Obesity Exacerbates Rat Cerebral Ischemic Injury through Enhancing Ischemic Adiponectin-Containing Neuronal Apoptosis. Mol Neurobiol 2015; 53:3702-3713. [DOI: 10.1007/s12035-015-9305-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/11/2015] [Indexed: 12/26/2022]
|
39
|
Pramila B, Kalaivani P, Anita A, Saravana Babu C. L-NAME combats excitotoxicity and recuperates neurological deficits in MCAO/R rats. Pharmacol Biochem Behav 2015; 135:246-53. [PMID: 26093193 DOI: 10.1016/j.pbb.2015.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/21/2015] [Accepted: 06/09/2015] [Indexed: 11/19/2022]
Abstract
PURPOSE OF RESEARCH Since, transient focal cerebral ischaemia exhibits detrimental effect not only during the course of ischaemia but also after the onset of reperfusion, the current study is focussed on identifying the appropriate therapeutic time point at which NG-nitro-l-arginine methyl ester (l-NAME) exerts better neuroprotection. PRINCIPAL RESULTS Pre-ischaemic administration of l-NAME ameliorated neurological deficits much better than the during ischaemic and post-ischaemic groups. Pre-ischaemic l-NAME has also mitigated glutamate excitotoxicity, increased glutamine synthetase activity, ATP and NAD levels, decreased nitrate/nitrite content, down regulated TNF-α and upregulated IL-10 expressions and reduced the cerebral infarction significantly than the during ischaemic and post-ischaemic groups. MAJOR CONCLUSION Current study revealed that l-NAME improved neurological deficit at the pre-ischaemic state in transient focal cerebral ischaemia and has also significantly ameliorated glutamate excitotoxicity. Though l-NAME showed neuroprotective effects when administered at during and post-ischaemia (during reperfusion), it exerts considerable neuroprotection when administered pre-ischaemically.
Collapse
Affiliation(s)
- B Pramila
- Centre for Toxicology and Developmental Research, No.1, Ramachandra Nagar, Sri Ramachandra University, Porur, Chennai 600 116, India; Dr. M.G.R. Educational and Research Institute University, Periyar E.V.R. High Road (NH 4 Highway), Maduravoyal, Chennai 600 095, India.
| | - P Kalaivani
- Centre for Toxicology and Developmental Research, No.1, Ramachandra Nagar, Sri Ramachandra University, Porur, Chennai 600 116, India.
| | - A Anita
- Centre for Toxicology and Developmental Research, No.1, Ramachandra Nagar, Sri Ramachandra University, Porur, Chennai 600 116, India.
| | - C Saravana Babu
- Centre for Toxicology and Developmental Research, No.1, Ramachandra Nagar, Sri Ramachandra University, Porur, Chennai 600 116, India.
| |
Collapse
|
40
|
Ahn SS, Kim SH, Lee JE, Ahn KJ, Kim DJ, Choi HS, Kim J, Shin NY, Lee SK. Effects of agmatine on blood-brain barrier stabilization assessed by permeability MRI in a rat model of transient cerebral ischemia. AJNR Am J Neuroradiol 2014; 36:283-8. [PMID: 25273536 DOI: 10.3174/ajnr.a4113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE BBB disruption after acute ischemic stroke and subsequent permeability increase may be enhanced by reperfusion. Agmatine has been reported to attenuate BBB disruption. Our aim was to evaluate the effects of agmatine on BBB stabilization in a rat model of transient cerebral ischemia by using permeability dynamic contrast-enhanced MR imaging at early stages and subsequently to demonstrate the feasibility of dynamic contrast-enhanced MR imaging for the investigation of new therapies. MATERIALS AND METHODS Thirty-four male Sprague-Dawley rats were subjected to transient MCA occlusion for 90 minutes. Immediately after reperfusion, agmatine (100 mg/kg) or normal saline was injected intraperitoneally into the agmatine-treated group (n = 17) or the control group, respectively. MR imaging was performed after reperfusion. For quantitative analysis, regions of interest were defined within the infarct area, and values for volume transfer constant, rate transfer coefficient, volume fraction of extravascular extracellular space, and volume fraction of blood plasma were obtained. Infarct volume, infarct growth, quantitative imaging parameters, and numbers of factor VIII-positive cells after immunohistochemical staining were compared between control and agmatine-treated groups. RESULTS Among the permeability parameters, volume transfer constant and volume fraction of extravascular extracellular space were significantly lower in the agmatine-treated group compared with the control group (0.05 ± 0.02 minutes(-1) versus 0.08 ± 0.03 minute(-1), P = .012, for volume transfer constant and 0.12 ± 0.06 versus 0.22 ± 0.15, P = .02 for volume fraction of extravascular extracellular space). Other permeability parameters were not significantly different between the groups. The number of factor VIII-positive cells was less in the agmatine-treated group than in the control group (3-fold versus 4-fold, P = .037). CONCLUSIONS In ischemic stroke, agmatine protects the BBB, which can be monitored in vivo by quantification of permeability by using dynamic contrast-enhanced MR imaging. Therefore, dynamic contrast-enhanced MR imaging may serve as a potential imaging biomarker for assessing the BBB stabilization properties of pharmacologic agents.
Collapse
Affiliation(s)
- S S Ahn
- From the Department of Radiology and the Research Institute of Radiological Science (S.S.A., D.J.K., J.K., N.-Y.S., S.-K.L.)
| | - S H Kim
- Department of Pathology (S.H.K.), Brain Research Institute
| | - J E Lee
- Department of Anatomy (J.E.L.), Yonsei University College of Medicine, Seoul, Republic of Korea
| | - K J Ahn
- Department of Radiology (K.J.A., H.S.C.), The Catholic University College of Medicine, Seoul, Seoul, Republic of Korea
| | - D J Kim
- From the Department of Radiology and the Research Institute of Radiological Science (S.S.A., D.J.K., J.K., N.-Y.S., S.-K.L.)
| | - H S Choi
- Department of Radiology (K.J.A., H.S.C.), The Catholic University College of Medicine, Seoul, Seoul, Republic of Korea
| | - J Kim
- From the Department of Radiology and the Research Institute of Radiological Science (S.S.A., D.J.K., J.K., N.-Y.S., S.-K.L.)
| | - N-Y Shin
- From the Department of Radiology and the Research Institute of Radiological Science (S.S.A., D.J.K., J.K., N.-Y.S., S.-K.L.)
| | - S-K Lee
- From the Department of Radiology and the Research Institute of Radiological Science (S.S.A., D.J.K., J.K., N.-Y.S., S.-K.L.)
| |
Collapse
|
41
|
Hong S, Son MR, Yun K, Lee WT, Park KA, Lee JE. Retroviral expression of human arginine decarboxylase reduces oxidative stress injury in mouse cortical astrocytes. BMC Neurosci 2014; 15:99. [PMID: 25156824 PMCID: PMC4150973 DOI: 10.1186/1471-2202-15-99] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/20/2014] [Indexed: 12/17/2022] Open
Abstract
Background In physiologic and pathologic conditions of the central nervous system (CNS), astrocytes are a double-edged sword. They not only support neuronal homeostasis but also contribute to increases in neuronal demise. A large body of experimental evidence has shown that impaired astrocytes play crucial roles in the pathologic process of cerebral ischemia; therefore, astrocytes may represent a breakthrough target for neuroprotective therapeutic strategies. Agmatine, an endogenous polyamine catalyzed from L-arginine by arginine decarboxylase (ADC), is a neuromodulator and it protects neurons/glia against various injuries. Results In this investigation, agmatine-producing mouse cortical astrocytes were developed through transduction of the human ADC gene. Cells were exposed to oxygen-glucose deprivation (OGD) and restored to a normoxic glucose-supplied condition. Intracellular levels of agmatine were measured by high performance liquid chromatography. Cell viability was evaluated by Hoechest/propidium iodide nuclear staining and lactate dehydrogenase assay. Expression of inducible nitric oxide synthase (iNOS) and matrix metalloproteinase s (MMPs) were assessed by a reverse transcription polymerase chain reaction, Western immunoblots, and immunofluorescence. We confirmed that ADC gene-expressed astrocytes produce a great amount of agmatine. These cells were highly resistant to not only OGD but also restoration, which mimicked ischemia-reperfusion injury in vivo. The neuroprotective effects of ADC seemed to be related to its ability to attenuate expression of iNOS and MMPs. Conclusion Our findings imply that astrocytes can be reinforced against oxidative stress by endogenous agmatine production through ADC gene transduction. The results of this study provide new insights that may lead to novel therapeutic approaches to reduce cerebral ischemic injuries. Electronic supplementary material The online version of this article (doi:10.1186/1471-2202-15-99) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Jong Eun Lee
- Brain Korea 21 Project for Medical Science, and Brain Research Institute, Department of Anatomy, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea.
| |
Collapse
|
42
|
Freitas AE, Egea J, Buendía I, Navarro E, Rada P, Cuadrado A, Rodrigues ALS, López MG. Agmatine induces Nrf2 and protects against corticosterone effects in hippocampal neuronal cell line. Mol Neurobiol 2014; 51:1504-19. [PMID: 25084759 DOI: 10.1007/s12035-014-8827-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/21/2014] [Indexed: 12/15/2022]
Abstract
Hyperactivation of the hypothalamic-pituitary-adrenal axis is a common finding in major depression; this may lead to increased levels of cortisol, which are known to cause oxidative stress imbalance and apoptotic neuronal cell death, particularly in the hippocampus, a key region implicated in mood regulation. Agmatine, an endogenous metabolite of L-arginine, has been proposed for the treatment of major depression. Corticosterone induced apoptotic cell death and increased ROS production in cultured hippocampal neuronal cells, effects that were abolished in a concentration- and time-dependent manner by agmatine. Interestingly, the combination of sub-effective concentrations of agmatine with fluoxetine or imipramine afforded synergic protection. The neuroprotective effect of agmatine was abolished by yohimbine (α2-adrenoceptor antagonist), ketanserin (5-HT2A receptor antagonist), LY294002 (PI3K inhibitor), PD98059 (MEK1/2 inhibitor), SnPP (HO-1 inhibitor), and cycloheximide (protein synthesis inhibitor). Agmatine increased Akt and ERK phosphorylation and induced the transcription factor Nrf2 and the proteins HO-1 and GCLc; induction of these proteins was prevented by yohimbine, ketanserin, LY294002, and PD98059. In conclusion, agmatine affords neuroprotection against corticosterone effects by a mechanism that implicates Nrf2 induction via α2-adrenergic and 5-HT2A receptors, Akt and ERK pathways, and HO-1 and GCLc expression.
Collapse
Affiliation(s)
- Andiara E Freitas
- Instituto Teofilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 4-28029, Madrid, Spain,
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Bennet D, Kim S. Effects of agmatine and resveratrol on RGC-5 cell behavior under light stimulation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:84-97. [PMID: 24929477 DOI: 10.1016/j.etap.2014.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/13/2014] [Accepted: 05/18/2014] [Indexed: 06/03/2023]
Abstract
A light radiation causes dysfunction and death of retinal cells and leads to degeneration. Present study, investigated the light-induced cell dysfunction, and their activity. Further, the effects of agmatine and resveratrol on light-induced damage and these underlying photo-oxidative and protective mechanisms were monitored by real-time bio-impedance system. After light exposure retinal ganglion cells underwent death in a time dependent manner. During light exposure the cells elevate free radicals and Ca(2+), followed by nitric oxide (NO) and tumor necrosis factor-α (TNF-α), which can be facilitated to cell demise. The results revealed that these drugs can control the elevation of free radical, calcium gating, NO level, and increased TNF-α, which could diminish cell photo-damage. In summary, resveratrol helps more to rescue damaged cells compared to agmatine. The proposed system suggested mechanism could meet to identify the photo-toxic effects in retinal cells, and provides high throughput screening for early stages photo-damage.
Collapse
Affiliation(s)
- Devasier Bennet
- Department of Bionanotechnology, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do 461-701, Republic of Korea.
| | - Sanghyo Kim
- Department of Bionanotechnology, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do 461-701, Republic of Korea; Graduate Gachon Medical Research Institute, Gil Medical Center, Inchon 405-760, Republic of Korea.
| |
Collapse
|
44
|
Song J, Hur BE, Bokara KK, Yang W, Cho HJ, Park KA, Lee WT, Lee KM, Lee JE. Agmatine improves cognitive dysfunction and prevents cell death in a streptozotocin-induced Alzheimer rat model. Yonsei Med J 2014; 55:689-99. [PMID: 24719136 PMCID: PMC3990080 DOI: 10.3349/ymj.2014.55.3.689] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 12/03/2022] Open
Abstract
PURPOSE Alzheimer's disease (AD) results in memory impairment and neuronal cell death in the brain. Previous studies demonstrated that intracerebroventricular administration of streptozotocin (STZ) induces pathological and behavioral alterations similar to those observed in AD. Agmatine (Agm) has been shown to exert neuroprotective effects in central nervous system disorders. In this study, we investigated whether Agm treatment could attenuate apoptosis and improve cognitive decline in a STZ-induced Alzheimer rat model. MATERIALS AND METHODS We studied the effect of Agm on AD pathology using a STZ-induced Alzheimer rat model. For each experiment, rats were given anesthesia (chloral hydrate 300 mg/kg, ip), followed by a single injection of STZ (1.5 mg/kg) bilaterally into each lateral ventricle (5 μL/ventricle). Rats were injected with Agm (100 mg/kg) daily up to two weeks from the surgery day. RESULTS Agm suppressed the accumulation of amyloid beta and enhanced insulin signal transduction in STZ-induced Alzheimer rats [experimetal control (EC) group]. Upon evaluation of cognitive function by Morris water maze testing, significant improvement of learning and memory dysfunction in the STZ-Agm group was observed compared with the EC group. Western blot results revealed significant attenuation of the protein expressions of cleaved caspase-3 and Bax, as well as increases in the protein expressions of Bcl2, PI3K, Nrf2, and γ-glutamyl cysteine synthetase, in the STZ-Agm group. CONCLUSION Our results showed that Agm is involved in the activation of antioxidant signaling pathways and activation of insulin signal transduction. Accordingly, Agm may be a promising therapeutic agent for improving cognitive decline and attenuating apoptosis in AD.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Bo Eun Hur
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kiran Kumar Bokara
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Wonsuk Yang
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Jin Cho
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Ah Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Won Taek Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung Min Lee
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
45
|
Vinpocetine regulates cation channel permeability of inner retinal neurons in the ischaemic retina. Neurochem Int 2014; 66:1-14. [DOI: 10.1016/j.neuint.2014.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/09/2013] [Accepted: 01/04/2014] [Indexed: 11/23/2022]
|
46
|
Song J, Kumar BK, Kang S, Park KA, Lee WT, Lee JE. The Effect of Agmatine on Expression of IL-1β and TLX Which Promotes Neuronal Differentiation in Lipopolysaccharide-Treated Neural Progenitors. Exp Neurobiol 2013; 22:268-76. [PMID: 24465142 PMCID: PMC3897688 DOI: 10.5607/en.2013.22.4.268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 11/05/2013] [Accepted: 11/05/2013] [Indexed: 01/08/2023] Open
Abstract
Differentiation of neural progenitor cells (NPCs) is important for protecting neural cells and brain tissue during inflammation. Interleukin-1 beta (IL-1β) is the most common pro- inflammatory cytokine in brain inflammation, and increased IL-1β levels can decrease the proliferation of NPCs. We aimed to investigate whether agmatine (Agm), a primary polyamine that protects neural cells, could trigger differentiation of NPCs by activating IL-1β in vitro. The cortex of ICR mouse embryos (E14) was dissociated to culture NPCs. NPCs were stimulated by lipopolysaccharide (LPS). After 6 days, protein expression of stem cell markers and differentiation signal factors was confirmed by using western blot analysis. Also, immunocytochemistry was used to confirm the cell fate. Agm treatment activated NPC differentiation significantly more than in the control group, which was evident by the increased expression of a neuronal marker, MAP2, in the LPS-induced, Agm-treated group. Differentiation of LPS-induced, Agm-treated NPCs was regulated by the MAPK pathway and is thought to be related to IL-1β activation and decreased expression of TLX, a transcription factor that regulates NPC differentiation. Our results reveal that Agm can promote NPC differentiation to neural stem cells by modulating IL-1β expression under inflammatory condition, and they suggest that Agm may be a novel therapeutic strategy for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Bokara Kiran Kumar
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Somang Kang
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea. ; BK21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Kyung Ah Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Won Taek Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea. ; BK21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
47
|
Stevanovic I, Ninkovic M, Stojanovic I, Ljubisavljevic S, Stojnev S, Bokonjic D. Beneficial effect of agmatine in the acute phase of experimental autoimmune encephalomyelitis in iNOS-/- knockout mice. Chem Biol Interact 2013; 206:309-18. [PMID: 24070732 DOI: 10.1016/j.cbi.2013.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/20/2013] [Accepted: 09/09/2013] [Indexed: 12/13/2022]
Abstract
The aim of the study was to investigate the hypothesis that agmatine (AGM) provides protection against oxidative stress in experimental autoimmune encephalomyelitis (EAE). Wild-type (WT) and knockout (KO) CBA/H iNOS-/- 3 months old (15 ± 5 g) mice, were used for EAE induction by myelin basic protein (MBP), dissolved in Complete Freund's Adjuvant (CFA). The animals were divided into control, EAE, CFA, EAE+AGM and AGM groups. After the development of full clinical remission, animals were decapitated and oxidative stress parameters were determined in whole encephalitic mass (WEM) and cerebellum homogenates. The EAE clinical expression manifested to greater extent in WT than KO mice, was significantly decreased during AGM treatment. We demonstrated significant elevations of superoxide dismutase activity in WT and KO EAE animals, in WEM and cerebellum tissues, which were decreased during AGM treatment in both groups. Superoxide anion content was increased in WEM of both study groups, with a decrease during AGM treatment. The observed changes were more pronounced in WT than in KO animals. Also, the increased expressions of transferrin receptor and glial fibrillary acidic protein observed in WT and KO EAE mice were significantly decreased during AGM treatment. The results suggest potentially beneficial AGM effects in EAE, which might be used for a modified antioxidative approach in MS therapy.
Collapse
Affiliation(s)
- Ivana Stevanovic
- Military Medical Academy, Institute for Medical Research, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
48
|
Owens K, Park JH, Schuh R, Kristian T. Mitochondrial dysfunction and NAD(+) metabolism alterations in the pathophysiology of acute brain injury. Transl Stroke Res 2013; 4:618-34. [PMID: 24323416 DOI: 10.1007/s12975-013-0278-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/24/2013] [Indexed: 12/17/2022]
Abstract
Mitochondrial dysfunction is commonly believed to be one of the major players in mechanisms of brain injury. For several decades, pathologic mitochondrial calcium overload and associated opening of the mitochondrial permeability transition (MPT) pore were considered a detrimental factor causing mitochondrial damage and bioenergetics failure. Mitochondrial and cellular bioenergetic metabolism depends on the enzymatic reactions that require NAD(+) or its reduced form NADH as cofactors. Recently, it was shown that NAD(+) also has an important function as a substrate for several NAD(+) glycohydrolases whose overactivation can contribute to cell death mechanisms. Furthermore, downstream metabolites of NAD(+) catabolism can also adversely affect cell viability. In contrast to the negative effects of NAD(+)-catabolizing enzymes, enzymes that constitute the NAD(+) biosynthesis pathway possess neuroprotective properties. In the first part of this review, we discuss the role of MPT in acute brain injury and its role in mitochondrial NAD(+) metabolism. Next, we focus on individual NAD(+) glycohydrolases, both cytosolic and mitochondrial, and their role in NAD(+) catabolism and brain damage. Finally, we discuss the potential effects of downstream products of NAD(+) degradation and associated enzymes as well as the role of NAD(+) resynthesis enzymes as potential therapeutic targets.
Collapse
Affiliation(s)
- Katrina Owens
- Veterans Affairs Maryland Health Care System, 10 North Greene Street, Baltimore, MD, 21201, USA
| | | | | | | |
Collapse
|
49
|
Huang YC, Tzeng WS, Wang CC, Cheng BC, Chang YK, Chen HH, Lin PC, Huang TY, Chuang TJ, Lin JW, Chang CP. Neuroprotective effect of agmatine in rats with transient cerebral ischemia using MR imaging and histopathologic evaluation. Magn Reson Imaging 2013; 31:1174-81. [PMID: 23642800 DOI: 10.1016/j.mri.2013.03.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 03/28/2013] [Accepted: 03/28/2013] [Indexed: 11/16/2022]
Abstract
PURPOSE This study aimed to further investigate the effects of agmatine on brain edema in the rats with middle cerebral artery occlusion (MCAO) injury using magnetic resonance imaging (MRI) monitoring and biochemical and histopathologic evaluation. MATERIALS AND METHODS Following surgical induction of MCAO for 90min, agmatine was injected 5min after beginning of reperfusion and again once daily for the next 3 post-operative days. The events during ischemia and reperfusion were investigated by T2-weighted images (T2WI), serial diffusion-weighted images (DWI), calculated apparent diffusion coefficient (ADC) maps and contrast-enhanced T1-weighted images (CE-T1WI) during 3h-72h in a 1.5T Siemens MAGNETON Avanto Scanner. Lesion volumes were analyzed in a blinded and randomized manner. Triphenyltetrazolium chloride (TTC), Nissl, and Evans Blue stainings were performed at the corresponding sections. RESULTS Increased lesion volumes derived from T2WI, DWI, ADC, CE-T1WI, and TTC all were noted at 3h and peaked at 24h-48h after MCAO injury. TTC-derived infarct volumes were not significantly different from the T2WI, DWI-, and CE-T1WI-derived lesion volumes at the last imaging time (72h) point except for significantly smaller ADC lesions in the MCAO model (P<0.05). Volumetric calculation based on TTC-derived infarct also correlated significantly stronger to volumetric calculation based on last imaging time point derived on T2WI, DWI or CE-T1WI than ADC (P<0.05). At the last imaging time point, a significant increase in Evans Blue extravasation and a significant decrease in Nissl-positive cells numbers were noted in the vehicle-treated MCAO injured animals. The lesion volumes derived from T2WI, DWI, CE-T1WI, and Evans blue extravasation as well as the reduced numbers of Nissl-positive cells were all significantly attenuated in the agmatine-treated rats compared with the control ischemia rats (P<0.05). CONCLUSION Our results suggest that agmatine has neuroprotective effects against brain edema on a reperfusion model after transient cerebral ischemia.
Collapse
Affiliation(s)
- Y C Huang
- Department of Radiology, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
|