1
|
Jia CJ, Chen MN, Huang DD, Wu SF, Zeng CM, Liu ZQ, Wang MX, Huang YF, Yuan QJ, Zhang X. Edaravone promotes motoneuron survival and functional recovery after brachial plexus root avulsion and reimplantation in rats: Involvement of SIRT1/TFEB pathway. Int Immunopharmacol 2025; 145:113686. [PMID: 39642559 DOI: 10.1016/j.intimp.2024.113686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/31/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Brachial plexu root avulsion (BPRA) commonly causes extensive motoneuron death, motor axon degeneration and denervation of biceps, leading to devastating motor dysfunction in the upper limb. Edaravone (Eda) has been proven to exert anti-oxidative and neuroprotective effects on various neurological disorders. Herein, we aimed to investigate the efficacy profile and potential mechanisms of Eda on BPRA in vitro and in vivo models. METHODS Rats following BPRA and reimplantation surgery were intraperitoneally injected with Eda once daily. The motor function recovery of the affected forelimb was assessed by Terzis grooming test. Histological staining and transmission electron microscopy were performed to evaluate the morphological appearance of the spinal cord, musculocutaneous nerve, and biceps. Further in-depth studies to explore the underlying mechanisms of Eda were conducted using Western blotting, biochemical assays, and immunofluorescence in H2O2-induced NSC-34 cells. RESULTS Eda significantly accelerated motor function recovery, enhanced motoneuron survival, prevented motor axon descent, preserved myelin sheath integrity and attenuated muscle atrophy. Additionally, Eda treatment markedly suppressed oxidative stress-related indicators, downregulated apoptosis-related proteins, mitigated glial reactivity, and activated SIRT1 and TFEB. Notably, the neuroprotective effect of Eda was diminished by the SIRT1 inhibitor EX527 in H2O2-treated NSC-34 cells, suggesting that Eda regulated oxidative stress and apoptosis through SIRT1/TFEB-induced autophagy flux. CONCLUSIONS Eda enhanced motoneuron survival and axonal regeneration that promotes motor functional restoration by inhibiting oxidative stress and apoptosis via the SIRT1/TFEB-autophagy pathway. Thus, it may serve as a promising strategy in reimplantation surgery for the treatment of BPRA.
Collapse
Affiliation(s)
- Cai-Ju Jia
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Man-Ni Chen
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Dou-Dou Huang
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Shao-Feng Wu
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Chun-Ming Zeng
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Zhe-Qi Liu
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Meng-Xia Wang
- ShunDe Polytechnic College, School of Medicine & Health Care, FoShan, Guangdong, 528000, China.
| | - Yan-Feng Huang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| | - Qiu-Ju Yuan
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Shatin, N.T., Hong Kong SAR, China.
| | - Xie Zhang
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, China.
| |
Collapse
|
2
|
Li L, Xu H, Hu Z, Li L. Artemisinin ameliorates thyroid function and complications in adult male hypothyroid rats via upregulation of the L1 cell adhesion molecule. Thyroid Res 2024; 17:19. [PMID: 39155377 PMCID: PMC11331813 DOI: 10.1186/s13044-024-00206-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Hypothyroidism, a common worldwide syndrome caused by insufficient thyroid hormone secretion, affects number of people at different ages. Artemisinin (ART), a well-known effective agent in the treatment of malaria, also has anti-oxidative stress functions in various diseases. The L1 cell adhesion molecule exerts multiple protective roles in diseased systems. The aim of the present study was to evaluate the role of ART in adult male hypothyroid rats and the underlying mechanisms. METHODS The propylthiouracil (PTU) rat model was treated with or without 5 mg/kg ART and with or without L1 short-interfering RNA (siRNA), followed by the experiments to determine the effect of ART on thyroid function, depression and anxiety, cognition impairments, liver, kidney and heart functions, and oxidative stress. RESULTS In the current study, it was shown that ART can ameliorate thyroid function, mitigate depression and anxiety symptoms, attenuate cognition impairments, improve liver, kidney and heart functions, and inhibit oxidative stress; however, the effects exerted by ART could not be observed when L1 was silenced by L1 siRNA. CONCLUSION These results indicated that ART can upregulate the L1 cell adhesion molecule to ameliorate thyroid function and the complications in adult male hypothyroid rats, laying the foundation for ART to be a novel strategy for the treatment of hypothyroidism.
Collapse
Affiliation(s)
- Lingling Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Hengyang Medical School, University Of SouthChina, Hengyang, Hunan, 421001, China
| | - Haifan Xu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Hengyang Medical School, University Of SouthChina, Hengyang, Hunan, 421001, China
| | - Zecheng Hu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Hengyang Medical School, University Of SouthChina, Hengyang, Hunan, 421001, China
| | - Li Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
3
|
Wu L, Chen S, He B, Zhou G, Xu Y, Zhu G, Xie J, Deng L, Wen X, Li S, Xiao Z. Acetylglutamine facilitates motor recovery and alleviates neuropathic pain after brachial plexus root avulsion in rats. J Transl Med 2023; 21:563. [PMID: 37612586 PMCID: PMC10464467 DOI: 10.1186/s12967-023-04399-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/29/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Brachial plexus root avulsion (BPRA), a disabling peripheral nerve injury, induces substantial motoneuron death, motor axon degeneration and denervation of biceps muscles, leading to the loss of upper limb motor function. Acetylglutamine (N-acetyl-L-glutamine, NAG) has been proven to exert neuroprotective and anti-inflammatory effects on various disorders of the nervous system. Thus, the present study mainly focused on the influence of NAG on motor and sensory recovery after BPRA in rats and the underlying mechanisms. METHODS Male adult Sprague Dawley (SD) rats were subjected to BPRA and reimplantation surgery and subsequently treated with NAG or saline. Behavioral tests were conducted to evaluate motor function recovery and the mechanical pain threshold of the affected forelimb. The morphological appearance of the spinal cord, musculocutaneous nerve, and biceps brachii was assessed by histological staining. Quantitative real-time PCR (qRT‒PCR) was used to measure the mRNA levels of remyelination and regeneration indicators in myocutaneous nerves. The protein levels of inflammatory and pyroptotic indicators in the spinal cord anterior horn were measured using Western blotting. RESULTS NAG significantly accelerated the recovery of motor function in the injured forelimbs, enhanced motoneuronal survival in the anterior horn of the spinal cord, inhibited the expression of proinflammatory cytokines and pyroptosis pathway factors, facilitated axonal remyelination in the myocutaneous nerve and alleviated atrophy of the biceps brachii. Additionally, NAG attenuated neuropathic pain following BPRA. CONCLUSION NAG promotes functional motor recovery and alleviates neuropathic pain by enhancing motoneuronal survival and axonal remyelination and inhibiting the pyroptosis pathway after BPRA in rats, laying the foundation for the use of NAG as a novel treatment for BPRA.
Collapse
Affiliation(s)
- Lin Wu
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, 421001, Hengyang, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hunan, 421001, Hengyang, China
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, 421000, Hengyang, People's Republic of China
| | - Shuangxi Chen
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, 421001, Hengyang, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hunan, 421001, Hengyang, China
| | - Bing He
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, 421001, Hengyang, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hunan, 421001, Hengyang, China
| | - Guijuan Zhou
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, 421001, Hengyang, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hunan, 421001, Hengyang, China
| | - Yan Xu
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, 421001, Hengyang, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hunan, 421001, Hengyang, China
| | - Guanghua Zhu
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, 421001, Hengyang, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hunan, 421001, Hengyang, China
| | - Juan Xie
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, 421001, Hengyang, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hunan, 421001, Hengyang, China
| | - Limin Deng
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, 421001, Hengyang, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hunan, 421001, Hengyang, China
| | - Xuanwei Wen
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, 421001, Hengyang, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hunan, 421001, Hengyang, China
| | - Sijing Li
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, 421001, Hengyang, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hunan, 421001, Hengyang, China
| | - Zijian Xiao
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, 421001, Hengyang, China.
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hunan, 421001, Hengyang, China.
| |
Collapse
|
4
|
Paes SM, Castro MVD, Barbosa RM, Politti Cartarozzi L, Coser LDO, Kempe PRG, Decarli MC, Moraes ÂM, Barraviera B, Ferreira Júnior RS, Oliveira ALRD. Human dental pulp stem cell monolayer and spheroid therapy after spinal motor root avulsion in adult rats. Brain Res 2023; 1802:148229. [PMID: 36592804 DOI: 10.1016/j.brainres.2022.148229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Spinal cord injuries result in severe neurological deficits and neuronal loss, with poor functional recovery. Mesenchymal stem cells have shown promising results; therefore the present objective of this work was to compare motor recovery after treatment with human dental pulp stem cells (hDPSC) cultivated in monolayer (2D) or as spheroids (3D), following avulsion and reimplantation of spinal motor roots in adult rats. Thus, 72 adult female Lewis rats were divided into 4 groups: avulsion (AV); avulsion followed by reimplantation (AR); avulsion associated with reimplant and 2D cell therapy (AR + 2D), and avulsion associated with reimplant and 3D cell therapy (AR + 3D). The application of the cells in 2D and 3D was performed by microsurgery, with subsequent functional assessment using a walking track test (Catwalk system), immunohistochemistry, neuronal survival, and qRT-PCR in 1-, 4-, and 12-weeks post-injury. The animals in the AR + 2D and AR + 3D groups showed the highest neuronal survival rates, and immunofluorescence revealed downregulation of GFAP, and Iba-1, with preservation of synaptophysin, indicating a reduction in glial reactivity, combined with the maintenance of pre-synaptic inputs. There was an increase in anti-inflammatory (IL-4, TGFβ) and a reduction of pro-inflammatory factors (IL-6, TNFα) in animals treated with reimplantation and hDPSC. As for the functional recovery, in all analyzed parameters, the AR + 2D group performed better and was superior to the avulsion alone. Overall, our results indicate that the 2D and 3D cell therapy approaches provide successful immunomodulation and motor recovery, consistent with advanced therapies after spinal cord injury.
Collapse
Affiliation(s)
- Sabrina Moreira Paes
- Laboratory of Nerve Regeneration, Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Mateus Vidigal de Castro
- Laboratory of Nerve Regeneration, Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rafael Maza Barbosa
- Laboratory of Nerve Regeneration, Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil; School of Chemical Engineering, University of Campinas, UNICAMP, Av. Albert Einstein, 500, Brazil
| | - Luciana Politti Cartarozzi
- Laboratory of Nerve Regeneration, Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Lilian de Oliveira Coser
- Laboratory of Nerve Regeneration, Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Paula Regina Gelinski Kempe
- Laboratory of Nerve Regeneration, Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Monize Caiado Decarli
- School of Chemical Engineering, University of Campinas, UNICAMP, Av. Albert Einstein, 500, Brazil
| | - Ângela Maria Moraes
- School of Chemical Engineering, University of Campinas, UNICAMP, Av. Albert Einstein, 500, Brazil
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Rui Seabra Ferreira Júnior
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | |
Collapse
|
5
|
Huang Y, Zhang X, Huang Q, Dou Y, Qu C, Xu Q, Yuan Q, Xian YF, Lin ZX. Quercetin enhances survival and axonal regeneration of motoneurons after spinal root avulsion and reimplantation: experiments in a rat model of brachial plexus avulsion. Inflamm Regen 2022; 42:56. [PMID: 36456978 PMCID: PMC9714227 DOI: 10.1186/s41232-022-00245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Brachial plexus avulsion (BPA) physically involves the detachment of spinal nerve roots themselves and the associated spinal cord segment, leading to permanent paralysis of motor function of the upper limb. Root avulsion induces severe pathological changes, including inflammatory reaction, oxidative damage, and finally massive motoneuron apoptosis. Quercetin (QCN), a polyphenolic flavonoid found in abundance in fruit and vegetables, has been reported to possess anti-oxidative, anti-inflammatory, and neuroprotective effects in many experimental models of both central nervous system (CNS) and peripheral nervous system (PNS) disorders. The purpose of this study was to investigate whether QCN could improve motor function recovery after C5-7 ventral root avulsion and C6 reimplantation in a rat model of BPA. METHODS The right fifth cervical (C5) to C7 ventral roots were avulsed followed by re-implantation of only C6 to establish the spinal root avulsion plus re-implantation model in rats. After surgery, rats were treated with QCN (25, 50, and 100 mg/kg) by gavage for 2 or 8 consecutive weeks. The effects of QCN were assessed using behavior test (Terzis grooming test, TGT) and histological evaluation. The molecular mechanisms were determined by immunohistochemistry analysis and western blotting. RESULTS Our results demonstrated that QCN significantly expedited motor function recovery in the forelimb as shown by the increased Terzis grooming test score, and accelerated motor axon regeneration as evidenced by the ascending number of Fluoro-Ruby-labeled and P75-positive regenerative motoneurons. The raised ChAT-immunopositive and cresyl violet-stained neurons indicated the enhanced survival of motoneurons by QCN administration. Furthermore, QCN treatment markedly alleviated muscle atrophy, restored functional motor endplates in biceps and inhibited the microglial and astroglia activation via modulating Nrf2/HO-1 and neurotrophin/Akt/MAPK signaling pathway. CONCLUSIONS Taken together, these findings have for the first time unequivocally indicated that QCN has promising potential for further development into a novel therapeutic in conjunction with reimplantation surgery for the treatment of BPA. .
Collapse
Affiliation(s)
- Yanfeng Huang
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, SAR China
| | - Xie Zhang
- grid.411866.c0000 0000 8848 7685School of Basic Medical Sciences, Department of Medical Biotechnology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong People’s Republic of China
| | - Qionghui Huang
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, SAR China
| | - Yaoxing Dou
- grid.411866.c0000 0000 8848 7685The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Chang Qu
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, SAR China
| | - Qingqing Xu
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, SAR China
| | - Qiuju Yuan
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, SAR China ,grid.9227.e0000000119573309Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Shatin, N.T., Hong Kong, SAR China
| | - Yan-Fang Xian
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, SAR China
| | - Zhi-Xiu Lin
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, SAR China ,grid.10784.3a0000 0004 1937 0482Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong, SAR China
| |
Collapse
|
6
|
Zhong K, Huang Y, Zilundu PLM, Wang Y, Zhou Y, Yu G, Fu R, Chung SK, Tang Y, Cheng X, Zhou L. Motor neuron survival is associated with reduced neuroinflammation and increased autophagy after brachial plexus avulsion injury in aldose reductase-deficient mice. J Neuroinflammation 2022; 19:271. [PMID: 36352421 PMCID: PMC9648007 DOI: 10.1186/s12974-022-02632-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Brachial plexus root avulsion (BPRA) is frequently caused by high-energy trauma including traffic accident and birth trauma, which will induces massive motoneurons (MNs) death as well as loss of motor and sensory function in the upper limb. The death of MNs is attributed to energy deficiency, neuroinflammation and oxidative stress at the injured ventral horn of spinal cord triggered by BPRA injury. It has been reported which aldose reductase (AR), an endogenous enzyme that catalyzes fructose synthesis, positively correlates with the poor prognosis following cerebral ischemic injury, diabetic retinopathy and diabetic peripheral neuropathy. However, the role of AR in BPRA remains unknown. Herein, we used a mouse model and found that in the spinal cord of BPRA mice, the upregulation of AR correlated significantly with (1) an inactivated SIRT1-AMPK-mTOR pathway and disrupted autophagy; (2) increased byproducts accumulation of lipid peroxidation metabolism and neuroinflammation; and (3) increased MNs death. Furthermore, our results demonstrated the role of AR in BPRA injury whereby the absence of AR (AR knockout mice, AR-/-) prevented the hyper-neuroinflammation and disrupted autophagy as well as motor neuron death caused by BPRA injury. Finally, we further demonstrate that AR inhibitor epalrestat is neuroprotective against BPRA injury by increasing autophagy level, alleviating neuroinflammation and rescuing MNs death in mice. Collectively, our data demonstrate that the AR upregulation in the spinal cord is an important factor contributing to autophagy disruption, neuroinflammation and MNs death following brachial plexus roots avulsion in mice. Our study also provides a promising therapy drug to assist re-implantation surgery for the treatment of BPRA.
Collapse
Affiliation(s)
- Ke Zhong
- Department of Pharmacy, Sun-Yat-Sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, China
| | - Yu Huang
- Department of Anatomy, School of Medicine (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, Guangdong, China
| | | | - Yaqiong Wang
- Department of Electron Microscope, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yingying Zhou
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guangyin Yu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, Guangdong, China
| | - Rao Fu
- Department of Anatomy, School of Medicine (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, Guangdong, China
| | - Sookja Kim Chung
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiao Cheng
- Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong, China.
- State Key Laboratory of Dampness, Syndrome of Traditional Chinese Medicine, Guangzhou, Guangdong, China.
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, 111 Dade Road, Guangzhou, Guangdong, China.
| | - Lihua Zhou
- Department of Anatomy, School of Medicine (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
7
|
Lu F, Zhang G, Zhu Y, Liu Z. (-)-Epigallocatechin Gallate Attenuates Spinal Motoneuron Death Induced by Brachial Plexus Root Avulsion in Rats. Curr Med Chem 2022; 29:5139-5154. [PMID: 35579165 DOI: 10.2174/0929867329666220509204151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
Background:
Recent studies have indicated that epigallocatechin gallate (EGCG) benefits a variety of neurological insults. This study was performed to investigate the neuroprotective effect of EGCG after brachial plexus root avulsion in SD rats.
Methods:
One hundred twenty SD rats were randomized into the following three groups: an EGCG group, an Avulsion group, and a Sham group. There were 40 rats in each group. EGCG (100 mg/kg, i.p.) or normal saline was administered to rats immediately following the injuries. The treatment was continued from day 1 to day 7, and the animals were sacrificed on days 3, 7, 14 and 28 post-surgery for the harvesting of spinal cord samples for Nissl staining, immunohistochemistry (caspase-3, p-JNK, p-c-Jun) and western blot analysis (p-JNK, JNK, p-c-Jun, c-Jun).
Results:
EGCG treatment caused significant increases in the percentage of surviving motoneurons at days 14 and 28 (P<0.05) compared to the control animals. At days 3 and 7 after avulsion, the numbers of caspase-3-positive motoneurons in the EGCG-treated animals were significantly fewer than in the control animals (P<0.05). The numbers of p-JNK-positive motoneurons and the ratio of p-JNK/JNK were no significant differences between the Avulsion group and the EGCG-treated group after injury at any time point. The numbers of p-c-Jun-positive motoneurons and the ratio of p-c-Jun/c-Jun were significantly lower in EGCG-treated group compared with the Avulsion group at 3d and 7d after injury (p<0.05).
Conclusions:
Our results indicated that motoneurons were protected by EGCG against the cell death induced by brachial plexus root avulsion, and this effect was correlated with inhibiting c-Jun phosphorylation.
Collapse
Affiliation(s)
- Fatai Lu
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, No.4 Chongshan Dong Street, Huanggu District, Shenyang 110032, Liaoning Province, PR China
| | - Guodong Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, No.4 Chongshan Dong Street, Huanggu District, Shenyang 110032, Liaoning Province, PR China
| | - Yingkang Zhu
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, No.4 Chongshan Dong Street, Huanggu District, Shenyang 110032, Liaoning Province, PR China
| | - Zunpeng Liu
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, No.4 Chongshan Dong Street, Huanggu District, Shenyang 110032, Liaoning Province, PR China
| |
Collapse
|
8
|
Santos DRD, Teixeira RKC, Araújo NPD, Calvo FC, Duarte TB, Ataíde LAPD, Chaves RHDF, Barros RSMD. A new anesthetic protocol to medullary nerve roots access in rats. Acta Cir Bras 2021; 36:e360908. [PMID: 34755768 PMCID: PMC8580513 DOI: 10.1590/acb360908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/12/2021] [Indexed: 11/22/2022] Open
Abstract
Purpose: To describe a new anesthetic protocol medullary and nerve roots access and in
Rattus norvegicus. Methods: Seventy female Wistar rats (n=70) were used. The animals were randomly
divided into two laminectomy groups: cervical (n=40) and thoracic (n=30). In
cervical group, a right posterior hemilaminectomy was performed to access
the nerve roots. In thoracic group, a laminectomy of the eighth thoracic
vertebra was accomplished. Thirty-five rats (20 cervical and 15 thoracic)
were submitted to old anesthetic protocol (ketamine 70 mg/kg plus xylazine
10 mg/kg); and the 35 other animals (20 cervical and 15 thoracic) were
submitted to a new anesthetic protocol (ketamine 60 mg/kg,xylazine 8 mg/kg
and fentanyl 0.03 mg/kg). Results: The time to complete induction was 4.15 ±1.20 minin ketamine, xylazine and
fentanyl group, and it was 4.09 ±1.47 min in the ketamine and xylazine
group. There was no correlation in the time required to perform the cervical
laminectomy in the old anesthetic protocol. In all groups, the animals
submitted to the old anesthetic protocol had a higher level of pain on the
first and third postoperative days than the animals submitted to the new
anesthetic protocol. Conclusions: The new anesthetic protocol reduces the surgical time, allows better
maintenance of the anesthetic plan, and brings more satisfactory
postoperative recovery.
Collapse
|
9
|
Zilundu PLM, Xu X, Liaquat Z, Wang Y, Zhong K, Fu R, Zhou L. Long-Term Suppression of c-Jun and nNOS Preserves Ultrastructural Features of Lower Motor Neurons and Forelimb Function after Brachial Plexus Roots Avulsion. Cells 2021; 10:1614. [PMID: 34203264 PMCID: PMC8307634 DOI: 10.3390/cells10071614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022] Open
Abstract
Brachial plexus root avulsions cause debilitating upper limb paralysis. Short-term neuroprotective treatments have reported preservation of motor neurons and function in model animals while reports of long-term benefits of such treatments are scarce, especially the morphological sequelae. This morphological study investigated the long-term suppression of c-Jun- and neuronal nitric oxide synthase (nNOS) (neuroprotective treatments for one month) on the motor neuron survival, ultrastructural features of lower motor neurons, and forelimb function at six months after brachial plexus roots avulsion. Neuroprotective treatments reduced oxidative stress and preserved ventral horn motor neurons at the end of the 28-day treatment period relative to vehicle treated ones. Motor neuron sparing was associated with suppression of c-Jun, nNOS, and pro-apoptotic proteins Bim and caspases at this time point. Following 6 months of survival, neutral red staining revealed a significant loss of most of the motor neurons and ventral horn atrophy in the avulsed C6, 7, and 8 cervical segments among the vehicle-treated rats (n = 4). However, rats that received neuroprotective treatments c-Jun JNK inhibitor, SP600125 (n = 4) and a selective inhibitor of nNOS, 7-nitroindazole (n = 4), retained over half of their motor neurons in the ipsilateral avulsed side compared. Myelinated axons in the avulsed ventral horns of vehicle-treated rats were smaller but numerous compared to the intact contralateral ventral horns or neuroprotective-treated groups. In the neuroprotective treatment groups, there was the preservation of myelin thickness around large-caliber axons. Ultrastructural evaluation also confirmed the preservation of organelles including mitochondria and synapses in the two groups that received neuroprotective treatments compared with vehicle controls. Also, forelimb functional evaluation demonstrated that neuroprotective treatments improved functional abilities in the rats. In conclusion, neuroprotective treatments aimed at suppressing degenerative c-Jun and nNOS attenuated apoptosis, provided long-term preservation of motor neurons, their organelles, ventral horn size, and forelimb function.
Collapse
Affiliation(s)
- Prince Last Mudenda Zilundu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (P.L.M.Z.); (X.X.); (K.Z.)
| | - Xiaoying Xu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (P.L.M.Z.); (X.X.); (K.Z.)
| | - Zaara Liaquat
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Shenzhen 518100, China;
| | - Yaqiong Wang
- Department of Electron Microscopy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China;
| | - Ke Zhong
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (P.L.M.Z.); (X.X.); (K.Z.)
| | - Rao Fu
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Shenzhen 518100, China;
| | - Lihua Zhou
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (P.L.M.Z.); (X.X.); (K.Z.)
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Shenzhen 518100, China;
| |
Collapse
|
10
|
Lv SQ, Wu W. ISP and PAP4 peptides promote motor functional recovery after peripheral nerve injury. Neural Regen Res 2021; 16:1598-1605. [PMID: 33433490 PMCID: PMC8323685 DOI: 10.4103/1673-5374.294565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Both intracellular sigma peptide (ISP) and phosphatase and tensin homolog agonist protein (PAP4) promote nerve regeneration and motor functional recovery after spinal cord injury. However, the role of these two small peptides in peripheral nerve injury remains unclear. A rat model of brachial plexus injury was established by crush of the C6 ventral root. The rats were then treated with subcutaneous injection of PAP4 (497 µg/d, twice per day) or ISP (11 µg/d, once per day) near the injury site for 21 successive days. After ISP and PAP treatment, the survival of motoneurons was increased, the number of regenerated axons and neuromuscular junctions was increased, muscle atrophy was reduced, the electrical response of the motor units was enhanced and the motor function of the injured upper limbs was greatly improved in rats with brachial plexus injury. These findings suggest that ISP and PAP4 promote the recovery of motor function after peripheral nerve injury in rats. The animal care and experimental procedures were approved by the Laboratory Animal Ethics Committee of Jinan University of China (approval No. 20111008001) in 2011.
Collapse
Affiliation(s)
- Shi-Qin Lv
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Wutian Wu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province; Re-Stem Biotechnology Co., Ltd., Suzhou, Jiangsu Province, China
| |
Collapse
|
11
|
Chen S, He B, Zhou G, Xu Y, Wu L, Xie Y, Li Y, Chen S, Huang J, Wu H, Xiao Z. Berberine enhances L1 expression and axonal remyelination in rats after brachial plexus root avulsion. Brain Behav 2020; 10:e01792. [PMID: 32770668 PMCID: PMC7559605 DOI: 10.1002/brb3.1792] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/17/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Enhanced remyelination of the regenerated axons results in functional re-innervation and improved functional motor recovery after brachial plexus root avulsion (BPRA). The neural cell adhesion molecule L1 (L1CAM, L1) regulates myelination and promotes regeneration after acute injury in the nervous system. Berberine (BBR) can exert neuroprotective roles against the lesion. Herein, we investigated whether berberine (BBR) can affect the expression of L1 and enhance the axonal remyelination in rats following BPRA. METHODS The surgical procedures were performed to build the rat brachial plexus avulsion and re-implantation model, and then, the rats were treated with BBR. After the rehabilitation for 12 weeks, the musculocutaneous nerves were collected for quantitative real-time PCR, Western blot analysis, and histochemical and immunofluorescence staining. RESULTS We observed that, BBR treatment ameliorated the abnormal musculocutaneous nerve fibers morphology, up-regulated the L1 expression, increased the myelination-related genes, decreased the differentiated-associated genes, and up-regulated the phosphorylation of ERK. CONCLUSION These results suggest that BBR may enhance L1 expression and promote axonal remyelination after spinal root avulsion.
Collapse
Affiliation(s)
- Shuangxi Chen
- The First Affiliated Hospital, University of South China, Hengyang, China
| | - Bing He
- The First Affiliated Hospital, University of South China, Hengyang, China
| | - Guijuan Zhou
- The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yan Xu
- The First Affiliated Hospital, University of South China, Hengyang, China
| | - Lin Wu
- The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yangzhi Xie
- The First Affiliated Hospital, University of South China, Hengyang, China.,Leiyang People's Hospital, Leiyang, China
| | - Yihui Li
- The First Affiliated Hospital, University of South China, Hengyang, China
| | - Shuangqin Chen
- The First Affiliated Hospital, University of South China, Hengyang, China
| | - Jianghua Huang
- The First Affiliated Hospital, University of South China, Hengyang, China
| | - Heng Wu
- The First Affiliated Hospital, University of South China, Hengyang, China
| | - Zijian Xiao
- The First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
12
|
Carvalho NZM, Chiarotto GB, Bernardes D, Kempe PRG, Oliveira ALR. Neuroprotection by dimethyl fumarate following ventral root crush in C57BL/6J mice. Brain Res Bull 2020; 164:184-197. [PMID: 32866558 DOI: 10.1016/j.brainresbull.2020.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/22/2020] [Accepted: 08/13/2020] [Indexed: 01/22/2023]
Abstract
CNS lesions usually result in permanent loss of function and are an important problem in the medical field. In order to investigate neuroprotection/degeneration mechanisms and the synaptic plasticity of motoneurons, in addition to the potential for a variety of treatments, different experimental models of axonal injury have been proposed. Recent studies have tested the immunomodulatory drug dimethyl fumarate (DMF) for the treatment of neurodegenerative diseases and have shown promising outcomes. Therefore, in this work, we investigated the effects of DMF with regard to neuroprotection and its influence on the glial response in C57BL/6J animals subjected to crushing of the motor roots in the lumbar intumescence of the spinal cord. The animals were divided into a vehicle-treated injury group (0.08 % methylcellulose solution control group, n = 7) and injured groups treated with DMF at different doses (15, 30, 45, 90 and 180 mg/kg; n = 6-7 per dose). The 90 mg/kg dose showed the best neuroprotective results, so it was used for treatment over a period of eight weeks. Neuronal survival was assessed through Nissl staining, and functional recovery was evaluated with the CatWalk system (walking track test) and the von Frey test (mechanoreception). Immunohistochemistry was used to assess synaptic coverage and astroglial and microglial reactivity using the primary antibodies anti-synaptophysin (pre-synaptic terminal pan marker), GAD65 (GABAergic pre-synaptic terminations - inhibitory), and VGLUT1 (glutamatergic pre-synaptic terminations - excitatory). Glial reactions were evaluated with anti-IBA1 (microglia) and GFAP (astrocytes). Gene transcript levels of IL-3, IL-4, TNF-α, IL-6, TGF-β, iNOS-M1, and arginase-M2 were quantified by RT-qPCR. The results indicated that treatment with DMF, at a dose of 90 mg/kg, promoted neuroprotection and immunomodulation towards an anti-inflammatory response. It also resulted in greater preservation of inhibitory synapses and reduced astroglial reactivity, providing a more favorable environment for sensorimotor recovery.
Collapse
Affiliation(s)
| | - Gabriela Bortolança Chiarotto
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP. 13083-970, Campinas, SP, Brazil; University Center of Herminio Ometto Foundation, Post Graduate Program in Biomedical Science, Brazil.
| | - Danielle Bernardes
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP. 13083-970, Campinas, SP, Brazil; University Center of Herminio Ometto Foundation, Post Graduate Program in Biomedical Science, Brazil.
| | - Paula Regina Gelinski Kempe
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP. 13083-970, Campinas, SP, Brazil.
| | - Alexandre Leite Rodrigues Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP. 13083-970, Campinas, SP, Brazil.
| |
Collapse
|
13
|
Eggers R, de Winter F, Smit L, Luimens M, Muir EM, Bradbury EJ, Tannemaat MR, Verhaagen J. Combining timed GDNF and ChABC gene therapy to promote long-distance regeneration following ventral root avulsion and repair. FASEB J 2020; 34:10605-10622. [PMID: 32543730 DOI: 10.1096/fj.202000559r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/18/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022]
Abstract
Ventral root avulsion leads to severe motoneuron degeneration and prolonged distal nerve denervation. After a critical period, a state of chronic denervation develops as repair Schwann cells lose their pro-regenerative properties and inhibitory factors such as CSPGs accumulate in the denervated nerve. In rats with ventral root avulsion injuries, we combined timed GDNF gene therapy delivered to the proximal nerve roots with the digestion of inhibitory CSPGs in the distal denervated nerve using sustained lentiviral-mediated chondroitinase ABC (ChABC) enzyme expression. Following reimplantation of lumbar ventral roots, timed GDNF-gene therapy enhanced motoneuron survival up to 45 weeks and improved axonal outgrowth, electrophysiological recovery, and muscle reinnervation. Despite a timed GDNF expression period, a subset of animals displayed axonal coils. Lentiviral delivery of ChABC enabled digestion of inhibitory CSPGs for up to 45 weeks in the chronically denervated nerve. ChABC gene therapy alone did not enhance motoneuron survival, but led to improved muscle reinnervation and modest electrophysiological recovery during later stages of the regeneration process. Combining GDNF treatment with digestion of inhibitory CSPGs did not have a significant synergistic effect. This study suggests a delicate balance exists between treatment duration and concentration in order to achieve therapeutic effects.
Collapse
Affiliation(s)
- Ruben Eggers
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Fred de Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Lotte Smit
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Maruelle Luimens
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Elizabeth M Muir
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Elizabeth J Bradbury
- King's College London, Regeneration Group, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), London, UK
| | - Martijn R Tannemaat
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, the Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, the Netherlands.,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognition Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Reactivation of Denervated Schwann Cells by Embryonic Spinal Cord Neurons to Promote Axon Regeneration and Remyelination. Stem Cells Int 2019; 2019:7378594. [PMID: 31885623 PMCID: PMC6915008 DOI: 10.1155/2019/7378594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/06/2019] [Indexed: 01/04/2023] Open
Abstract
In peripheral nerve injuries (PNIs) in which proximal axons do not regenerate quickly enough, significant chronic degeneration of Schwann cells (SCs) can occur at the distal stump of the injured nerve and obstruct regeneration. Cell transplantation can delay the degeneration of SCs, but transplanted cells fail to generate voluntary electrical impulses without downstream signal stimulation from the central nervous system. In this study, we combined cell transplantation and nerve transfer strategies to investigate whether the transplantation of embryonic spinal cord cells could benefit the microenvironment of the distal stump of the injured nerve. The experiment consisted of two stages. In the first-stage surgery, common peroneal nerves were transected, and embryonic day 14 (E14) cells or cell culture medium was transplanted into the distal stump of the CPs. Six months after the first-stage surgery, the transplanted cells were removed, and the nerve segment distal to the transplanted site was used to bridge freshly cut tibial nerves to detect whether the cell-treated graft promoted axon growth. The phenotypic changes and the neurotrophic factor expression pattern of SCs distal to the transplanted site were detected at several time points after cell transplantation and excision. The results showed that at different times after transplantation, the cells could survive and generate neurons. Thus, the neurons play the role of proximal axons to prevent chronic degeneration and fibrosis of SCs. After excision of the transplanted cells, the SCs returned to their dedifferentiated phenotype and upregulated growth-associated gene expression. The ability of SCs to be activated again allowed a favorable microenvironment to be created and enhanced the regeneration and remyelination of proximal axons. Muscle reinnervation was also elevated. This transplantation strategy could provide a treatment option for complex neurological injuries in the clinic.
Collapse
|
15
|
Günther M, Sköld MK. Temporal gene expression changes after acute and delayed ventral root avulsion-reimplantation. Restor Neurol Neurosci 2019; 38:23-40. [PMID: 31683492 DOI: 10.3233/rnn-190955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In a model of injured spinal motor neurons where the avulsed spinal nerve is surgically reimplanted, useful regrowth of the injured nerve follows, both in animal experiments and clinical cases. This has led to surgical reimplantation strategies with subsequent partial functional motoric recovery. Still, the ideal time point for successful regeneration after reimplantation and the specific genetic profile of this time point is not known. OBJECTIVE To explore the temporal gene expression of the whole genome in the ventral spinal cord after reimplantation at different time points after avulsion. METHODS Totally 18 adult rats were subjected to avulsion of the left L5 root only (N = 3), avulsion followed by acute spinal reimplantation (N = 3), avulsion followed by 24 h (N = 3) or 48 h (N = 3) delayed reimplantation. Animals were allowed to survive 24 h after their respective surgery whereafter the ventral quadrant of the spinal cord at the operated side was harvested, processed for and analysed with Affymetrix Rat Gene ST 1.0 array followed by statistical analysis of gene expression patternsResults:Specific gene expression patterns were found at different time points after avulsion and reimplantation. Over all, early reimplantation seemed to diminish inflammatory response and support gene regulation related to neuronal activity compared to avulsion only or delayed reimplantation. In addition did gene activity after avulsion-reimplantation correspond to regeneration-associated genes typical for regeneration in the peripheral nervous system. CONCLUSIONS Our study reveal that genetic profiling after this kind of injury is possible, that specific and distinct expression patterns can be found with early reimplantation being favourable over late and that regenerative activity in this kind of injury bears hallmark typical for peripheral nerve regeneration. These findings can be useful in elucidating specific genetic expression typical for successful nerve regeneration, hopefully not only in this specific model but in the nervous system in general.
Collapse
Affiliation(s)
- Mattias Günther
- Department of Neuroscience, Section of Experimental Traumatology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Science and Education, Södersjukhuset, Stockholm, Sweden
| | - Mattias K Sköld
- Department of Neuroscience, Section of Experimental Traumatology, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Zhang X, Liu XD, Xian YF, Zhang F, Huang PY, Tang Y, Yuan QJ, Lin ZX. Berberine enhances survival and axonal regeneration of motoneurons following spinal root avulsion and re-implantation in rats. Free Radic Biol Med 2019; 143:454-470. [PMID: 31472247 DOI: 10.1016/j.freeradbiomed.2019.08.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/17/2019] [Accepted: 08/27/2019] [Indexed: 01/10/2023]
Abstract
Brachial plexus avulsion (BPA) occurs when the spinal nerve roots are pulled away from the surface of the spinal cord and disconnects neuronal cell body from its distal downstream axon, which induces massive motoneuron death, motor axon degeneration and de-innervation of targeted muscles, thereby resulting in permanent paralysis of motor functions in the upper limb. Avulsion injury triggers oxidative stress and intense local neuroinflammation at the lesioned site, leading to the death of most motoneurons. Berberine (BBR), a natural isoquinoline alkaloid derived from medicinal herbs of Berberis and Coptis species, has been reported to possess neuro-protective, anti-inflammatory and anti-oxidative effects in various animal models of central nervous system (CNS)-related disorders. In this study, we aimed to investigate the effect of BBR on motoneuron survival and axonal regeneration following spinal root avulsion plus re-implantation in rats. Our results indicated BBR significantly accelerated motor function recovery in the forelimb as revealed by the increased Terzis grooming test score, facilitated motor axon regeneration as evidenced by the elevated number of Fluoro-Gold-labeled and P75-positive regenerative motoneurons. The survival of motoneurons was notably promoted by BBR administration presented with boosted ChAT-immunopositive and neutral red-stained neurons. BBR treatment efficiently alleviated muscle atrophy, attenuated functional motor endplates loss in biceps and prevented the reduction of motor axons in the musculocutaneous nerve. Additionally, BBR treatment markedly mitigated the avulsion-induced neuroinflammation via inhibiting microglial and astroglial reactivity, up-regulated the expression of antioxidative indicator Cu/Zn SOD, and down-regulated the levels of nNOS, 3-NT, lipid peroxidation and NF-κB, as well as promoted SIRT1, PI3K and Akt activation. Collectively, BBR might be a promising therapy to assist re-implantation surgery for the treatment of BPA.
Collapse
Affiliation(s)
- Xie Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Xiao-Dong Liu
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Feng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Peng-Yun Huang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Ying Tang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Qiu-Ju Yuan
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| |
Collapse
|
17
|
Up-regulation of heat shock protein 27 inhibits apoptosis in lumbosacral nerve root avulsion-induced neurons. Sci Rep 2019; 9:11468. [PMID: 31391542 PMCID: PMC6685944 DOI: 10.1038/s41598-019-48003-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/26/2019] [Indexed: 11/29/2022] Open
Abstract
Lumbosacral nerve root avulsion leads to widespread death of neurons in the anterior horn area of the injured spinal cord, which results in dysfunction in the lower extremities. Heat shock protein 27 (Hsp27) has been found to play cytoprotective roles under adverse conditions. However, the role of Hsp27 in neurons after lumbosacral nerve root avulsion is unknown. The aim of the present study was to investigate the effects and mechanism of action of Hsp27 on neurons after lumbosacral nerve root avulsion. It was found that Hsp27 expression was elevated in the anterior horn area of the injured spinal cord and the up-regulation of Hsp27 protected neurons against apoptosis after lumbosacral nerve root avulsion. In addition, Hsp27 plays an anti-apoptotic role by suppressing oxidative stress reactions. These findings indicated that Hsp27 may play a key role in resistance to lumbosacral nerve root avulsion-induced neuron apoptosis and may prove to be a potential strategy for improving prognosis after lumbosacral nerve root avulsion.
Collapse
|
18
|
Ruven C, Badea SR, Wong WM, Wu W. Combination Treatment With Exogenous GDNF and Fetal Spinal Cord Cells Results in Better Motoneuron Survival and Functional Recovery After Avulsion Injury With Delayed Root Reimplantation. J Neuropathol Exp Neurol 2019; 77:325-343. [PMID: 29420729 DOI: 10.1093/jnen/nly009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
When spinal roots are torn off from the spinal cord, both the peripheral and central nervous system get damaged. As the motoneurons lose their axons, they start to die rapidly, whereas target muscles atrophy due to the denervation. In this kind of complicated injury, different processes need to be targeted in the search for the best treatment strategy. In this study, we tested glial cell-derived neurotrophic factor (GDNF) treatment and fetal lumbar cell transplantation for their effectiveness to prevent motoneuron death and muscle atrophy after the spinal root avulsion and delayed reimplantation. Application of exogenous GDNF to injured spinal cord greatly prevented the motoneuron death and enhanced the regeneration and axonal sprouting, whereas no effect was seen on the functional recovery. In contrast, cell transplantation into the distal nerve did not affect the host motoneurons but instead mitigated the muscle atrophy. The combination of GDNF and cell graft reunited the positive effects resulting in better functional recovery and could therefore be considered as a promising strategy for nerve and spinal cord injuries that involve the avulsion of spinal roots.
Collapse
Affiliation(s)
- Carolin Ruven
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | - Wai-Man Wong
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wutian Wu
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China.,Re-Stem Biotechnology Co., Ltd, Jiangsu, China
| |
Collapse
|
19
|
GDNF pretreatment overcomes Schwann cell phenotype mismatch to promote motor axon regeneration via sensory graft. Exp Neurol 2019; 318:258-266. [PMID: 31100319 DOI: 10.1016/j.expneurol.2019.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 12/11/2022]
Abstract
In the clinic, severe motor nerve injury is commonly repaired by autologous sensory nerve bridging, but the ability of Schwann cells (SCs) in sensory nerves to support motor neuron axon growth is poor due to phenotype mismatch. In vitro experiments have demonstrated that sensory-derived SCs overcome phenotypic mismatch-induced growth inhibition after pretreatment with exogenous glial cell-derived neurotrophic factor (GDNF) and induce motor neuron axonal growth. Thus, we introduced a novel staging surgery: In the first stage of surgery, the denervated sensory nerve was pretreated with sustained-release GDNF, which was encapsulated into a self-assembling peptide nanofiber scaffold (SAPNS) RADA-16I in the donor area in vivo. In the second stage of surgery, the pretreated sensory grafts were transplanted to repair motor nerve injury. Motor axon regeneration and remyelination and muscle functional recovery after the second surgery was compared to those in the control groups. The expression of genes previously shown to be differently expressed in motor and sensory SCs was also analyzed in pretreated sensory grafts by qRT-PCR to explore possible changes after exogenous GDNF application. Exogenous GDNF acted directly on the denervated sensory nerve graft in vivo, increasing the expression of endogenous GDNF and sensory SC-derived marker brain-derived neurotrophic factor (BDNF). After transplantation to repair motor nerve injury, exogenous GDNF pretreatment promoted the regeneration and remyelination of proximal motor axons and the recovery of muscle function. Further research into how phenotype, gene expression and changes in neurotrophic factors in SCs are affected by GDNF will help us design more effective methods to treat peripheral nerve injury.
Collapse
|
20
|
Romeo-Guitart D, Casas C. Network-centric medicine for peripheral nerve injury: Treating the whole to boost endogenous mechanisms of neuroprotection and regeneration. Neural Regen Res 2019; 14:1122-1128. [PMID: 30804234 PMCID: PMC6425822 DOI: 10.4103/1673-5374.251187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peripheral nerve injuries caused by accidents may lead to paralysis, sensory disturbances, anaesthesia, and lack of autonomic functions. Functional recovery after disconnection of the motoneuronal soma from target tissue with proximal rupture of axons is determined by several factors: motoneuronal soma viability, proper axonal sprouting across inhibitory zones and elongation toward specific muscle, effective synapse contact rebuilding, and prevention of muscle atrophy. Therapies, such as adjuvant drugs with pleiotropic effects, that promote functional recovery after peripheral nerve injury are needed. Toward this aim, we designed a drug discovery workflow based on a network-centric molecular vision using unbiased proteomic data and neural artificial computational tools. Our focus is on boosting intrinsic capabilities of neurons for neuroprotection; this is in contrast to the common approach based on suppression of a pathobiological pathway known to be associated with disease condition. Using our workflow, we discovered neuroheal, a combination of two repurposed drugs that promotes motoneuronal soma neuroprotection, is anti-inflammatory, enhances axonal regeneration after axotomy, and reduces muscle atrophy. This drug discovery workflow has thus yielded a therapy that is close to its clinical application.
Collapse
Affiliation(s)
- David Romeo-Guitart
- Institut de Neurociències (INc) and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB) & Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Barcelona, Spain
| | - Caty Casas
- Institut de Neurociències (INc) and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB) & Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Barcelona, Spain
| |
Collapse
|
21
|
Romeo-Guitart D, Forés J, Navarro X, Casas C. Boosted Regeneration and Reduced Denervated Muscle Atrophy by NeuroHeal in a Pre-clinical Model of Lumbar Root Avulsion with Delayed Reimplantation. Sci Rep 2017; 7:12028. [PMID: 28931824 PMCID: PMC5607317 DOI: 10.1038/s41598-017-11086-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022] Open
Abstract
The “gold standard” treatment of patients with spinal root injuries consists of delayed surgical reconnection of nerves. The sooner, the better, but problems such as injury-induced motor neuronal death and muscle atrophy due to long-term denervation mean that normal movement is not restored. Herein we describe a preclinical model of root avulsion with delayed reimplantation of lumbar roots that was used to establish a new adjuvant pharmacological treatment. Chronic treatment (up to 6 months) with NeuroHeal, a new combination drug therapy identified using a systems biology approach, exerted long-lasting neuroprotection, reduced gliosis and matrix proteoglycan content, accelerated nerve regeneration by activating the AKT pathway, promoted the formation of functional neuromuscular junctions, and reduced denervation-induced muscular atrophy. Thus, NeuroHeal is a promising treatment for spinal nerve root injuries and axonal regeneration after trauma.
Collapse
Affiliation(s)
- David Romeo-Guitart
- Institut de Neurociències (INc) and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Joaquim Forés
- Hand and Peripheral Nerve Unit, Hospital Clínic i Provincial, Universitat de Barcelona, Barcelona, Spain
| | - Xavier Navarro
- Institut de Neurociències (INc) and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Caty Casas
- Institut de Neurociències (INc) and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain.
| |
Collapse
|
22
|
Gloviczki B, Török DG, Márton G, Gál L, Bodzay T, Pintér S, Nógrádi A. Delayed Spinal Cord–Brachial Plexus Reconnection after C7 Ventral Root Avulsion: The Effect of Reinnervating Motoneurons Rescued by Riluzole Treatment. J Neurotrauma 2017; 34:2364-2374. [DOI: 10.1089/neu.2016.4754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Balázs Gloviczki
- Laboratory of Neural Regeneration, Department of Anatomy, Histology, and Embryology, University of Szeged, Szeged, Hungary
- Department of Traumatology, Sándor Péterfy Hospital, Budapest, Hungary
| | - Dénes G. Török
- Laboratory of Neural Regeneration, Department of Anatomy, Histology, and Embryology, University of Szeged, Szeged, Hungary
- Department of Traumatology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Gábor Márton
- Laboratory of Neural Regeneration, Department of Anatomy, Histology, and Embryology, University of Szeged, Szeged, Hungary
| | - László Gál
- Laboratory of Neural Regeneration, Department of Anatomy, Histology, and Embryology, University of Szeged, Szeged, Hungary
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Tamás Bodzay
- Department of Traumatology, Sándor Péterfy Hospital, Budapest, Hungary
| | - Sándor Pintér
- Laboratory of Neural Regeneration, Department of Anatomy, Histology, and Embryology, University of Szeged, Szeged, Hungary
- Department of Traumatology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Antal Nógrádi
- Laboratory of Neural Regeneration, Department of Anatomy, Histology, and Embryology, University of Szeged, Szeged, Hungary
| |
Collapse
|
23
|
Ruven C, Li W, Li H, Wong WM, Wu W. Transplantation of Embryonic Spinal Cord Derived Cells Helps to Prevent Muscle Atrophy after Peripheral Nerve Injury. Int J Mol Sci 2017; 18:ijms18030511. [PMID: 28264437 PMCID: PMC5372527 DOI: 10.3390/ijms18030511] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/10/2017] [Accepted: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
Injuries to peripheral nerves are frequent in serious traumas and spinal cord injuries. In addition to surgical approaches, other interventions, such as cell transplantation, should be considered to keep the muscles in good condition until the axons regenerate. In this study, E14.5 rat embryonic spinal cord fetal cells and cultured neural progenitor cells from different spinal cord segments were injected into transected musculocutaneous nerve of 200–300 g female Sprague Dawley (SD) rats, and atrophy in biceps brachii was assessed. Both kinds of cells were able to survive, extend their axons towards the muscle and form neuromuscular junctions that were functional in electromyographic studies. As a result, muscle endplates were preserved and atrophy was reduced. Furthermore, we observed that the fetal cells had a better effect in reducing the muscle atrophy compared to the pure neural progenitor cells, whereas lumbar cells were more beneficial compared to thoracic and cervical cells. In addition, fetal lumbar cells were used to supplement six weeks delayed surgical repair after the nerve transection. Cell transplantation helped to preserve the muscle endplates, which in turn lead to earlier functional recovery seen in behavioral test and electromyography. In conclusion, we were able to show that embryonic spinal cord derived cells, especially the lumbar fetal cells, are beneficial in the treatment of peripheral nerve injuries due to their ability to prevent the muscle atrophy.
Collapse
Affiliation(s)
- Carolin Ruven
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.
| | - Wen Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.
| | - Heng Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.
| | - Wai-Man Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.
| | - Wutian Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.
- State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Joint Laboratory for CNS Regeneration, Jinan University and The University of Hong Kong, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510000, China.
- Guangdong Engineering Research Center of Stem Cell Storage and Clinical Application, Saliai Stem Cell Science and Technology, Guangzhou 510000, China.
| |
Collapse
|
24
|
Zhang W, Fang X, Zhang C, Li W, Wong WM, Xu Y, Wu W, Lin J. Transplantation of embryonic spinal cord neurons to the injured distal nerve promotes axonal regeneration after delayed nerve repair. Eur J Neurosci 2017; 45:750-762. [PMID: 27973754 DOI: 10.1111/ejn.13495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/05/2016] [Accepted: 11/26/2016] [Indexed: 11/29/2022]
Abstract
Peripheral nerve injury (PNI) usually results in poor functional recovery. Nerve repair is the common clinical treatment for PNI but is always obstructed by the chronic degeneration of the distal stump and muscle. Cell transplantation can alleviate the muscle atrophy after PNI, but the subsequent recovery of the locomotive function is seldom described. In this study, we combined cell transplantation and nerve repair to investigate whether the transplantation of embryonic spinal cord cells could benefit the delayed nerve repair. The experiment consisted of 3 stages: transection of the tibial nerve to induce 'pre-degeneration', a second surgery performed 2 weeks later for transplantation of E14 embryonic spinal cord cells or vehicle (culture medium) at the distal end of the injured nerve, and, 3 months later, the removal of the grafted cells and the cross-suturing of the residual distal end to the proximal end of a freshly cut ipsilateral common peroneal (CP) nerve. Cell survival and fate after the transplantation were investigated, and the functional recovery after the cross-suturing was compared between the groups. The grafted cells could survive and generate motor neurons, extending axons that were subsequently myelinated and forming synapses with the muscle. After the cross-suturing, the axonal regeneration from the proximal stump of the injured CP nerve and the functional recovery of the denervated gastrocnemius muscle were significantly promoted in the group receiving the cells. Our study presents a new perspective indicating that the transplantation of embryonic spinal cord neurons may be a valuable therapeutic strategy for PNI.
Collapse
Affiliation(s)
- Wenming Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350005, Fujian, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong SAR, China
| | - Xinyu Fang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong SAR, China.,Department of Orthopaedic Surgery, The Third Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Chaofan Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350005, Fujian, China.,Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wen Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong SAR, China.,Joint Laboratory for CNS Regeneration, Jinan University and The University of Hong Kong, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Wai Man Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong SAR, China
| | - Yejun Xu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350005, Fujian, China
| | - Wutian Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong SAR, China.,Joint Laboratory for CNS Regeneration, Jinan University and The University of Hong Kong, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Jianhua Lin
- Department of Orthopaedic Surgery, The Third Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
25
|
Fang XY, Zhang WM, Zhang CF, Wong WM, Li W, Wu W, Lin JH. Lithium accelerates functional motor recovery by improving remyelination of regenerating axons following ventral root avulsion and reimplantation. Neuroscience 2016; 329:213-25. [PMID: 27185485 DOI: 10.1016/j.neuroscience.2016.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/12/2016] [Accepted: 05/06/2016] [Indexed: 01/14/2023]
Abstract
Brachial plexus injury (BPI) often involves the complete or partial avulsion of one or more of the cervical nerve roots, which leads to permanent paralysis of the innervated muscles. Reimplantation surgery has been attempted as a clinical treatment for brachial plexus root avulsion but has failed to achieve complete functional recovery. Lithium is a mood stabilizer drug that is used to treat bipolar disorder; however, its effects on spinal cord or peripheral nerve injuries have also been reported. The purpose of this study was to investigate whether lithium can improve functional motor recovery after ventral root avulsion and reimplantation in a rat model of BPI. The results showed that systemic treatment with a clinical dose of lithium promoted motor neuron outgrowth and increased the efficiency of motor unit regeneration through enhanced remyelination. An analysis of myelin-associated genes showed that the effects of lithium started during the early phase of remyelination and persisted through the late stage of the process. Efficient remyelination of the regenerated axons in the lithium-treated rats led to an earlier functional recovery. Therefore, we demonstrated that lithium might be a potential clinical treatment for BPI in combination with reimplantation surgery.
Collapse
Affiliation(s)
- Xin-Yu Fang
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Wen-Ming Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Chao-Fan Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China; Department of Orthopedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Wai-Man Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Wen Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Wutian Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region; Joint Laboratory for CNS Regeneration, Jinan University and The University of Hong Kong, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China.
| | - Jian-Hua Lin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
26
|
Repair and regeneration of lumbosacral nerve defects in rats with chitosan conduits containing bone marrow mesenchymal stem cells. Injury 2015; 46:2156-63. [PMID: 26429103 DOI: 10.1016/j.injury.2015.08.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 08/07/2015] [Accepted: 08/25/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Despite the great progress in surgical treatment of lumbosacral nerve injuries caused by high-energy trauma, functional recovery remains poor and insufficient. Bone marrow mesenchymal stem cells (BMSCs), which express neurotrophic factors and can also differentiate into nerve cells, have potential as an effective alternative therapy for lumbosacral nerve defects. The aim of the present study was to evaluate the functional recovery, nerve regeneration, motor neuron survival and apoptosis after lumbosacral nerve transection in rats receiving BMSC transplantation into the chitosan conduit. METHODS The right L4-L6 nerve roots of rats were transected and bridged with three 1-cm-long chitosan conduits, which were further injected with the BMSCs (MSC-treated group) or culture medium (DMEM group). The nerve regeneration and motor function recovery were assessed by the sciatic functional index (SFI) and analysed electrophysiologically and morphologically. RESULTS At 6 and 12 weeks after surgery, the SFI values in MSC-treated group were significantly higher than those in DMEM group (P≤0.05). The peak amplitude of CMAP (compound muscle action potential) and nerve conduction velocity in MSC-treated group were significantly higher than that in DMEM group (P≤0.01), while the latency of CMAP onset in MSC-treated group was significantly shorter than that in DMEM group (P≤0.01). The diameter of the myelinated fibres and thickness of the myelin sheath in MSC-treated group were significantly higher than those in DMEM group (P≤0.05). There was no difference in the number of motor neurons in the anterior horn of the spinal cord at 6 weeks post-operation (P>0.05), while the number of motor neurons was significantly greater in MSC-treated group than that in DMEM group at 12 weeks post-operation (P≤0.001). The number of apoptotic cells was also significantly lower (P≤0.01). CONCLUSIONS The results of the present study showed that BMSCs treatment improved lumbosacral nerve regeneration and motor function. In addition, our data suggested that BMSCs inhibited motor neuron apoptosis, and improved motor neuron function and survival in the anterior horn of the spinal cord.
Collapse
|
27
|
Eggers R, Tannemaat MR, De Winter F, Malessy MJA, Verhaagen J. Clinical and neurobiological advances in promoting regeneration of the ventral root avulsion lesion. Eur J Neurosci 2015; 43:318-35. [PMID: 26415525 DOI: 10.1111/ejn.13089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/31/2015] [Accepted: 09/23/2015] [Indexed: 12/27/2022]
Abstract
Root avulsions due to traction to the brachial plexus causes complete and permanent loss of function. Until fairly recent, such lesions were considered impossible to repair. Here we review clinical repair strategies and current progress in experimental ventral root avulsion lesions. The current gold standard in patients with a root avulsion is nerve transfer, whereas reimplantation of the avulsed root into the spinal cord has been performed in a limited number of cases. These neurosurgical repair strategies have significant benefit for the patient but functional recovery remains incomplete. Developing new ways to improve the functional outcome of neurosurgical repair is therefore essential. In the laboratory, the molecular and cellular changes following ventral root avulsion and the efficacy of intervention strategies have been studied at the level of spinal motoneurons, the ventral spinal root and peripheral nerve, and the skeletal muscle. We present an overview of cell-based pharmacological and neurotrophic factor treatment approaches that have been applied in combination with surgical reimplantation. These interventions all demonstrate neuroprotective effects on avulsed motoneurons, often accompanied with various degrees of axonal regeneration. However, effects on survival are usually transient and robust axon regeneration over long distances has as yet not been achieved. Key future areas of research include finding ways to further extend the post-lesion survival period of motoneurons, the identification of neuron-intrinsic factors which can promote persistent and long-distance axon regeneration, and finally prolonging the pro-regenerative state of Schwann cells in the distal nerve.
Collapse
Affiliation(s)
- Ruben Eggers
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands
| | - Martijn R Tannemaat
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Fred De Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands.,Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Martijn J A Malessy
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands.,Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands.,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognition research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
28
|
|
29
|
Erythropoietin Attenuates the Apoptosis of Adult Neurons After Brachial Plexus Root Avulsion by Downregulating JNK Phosphorylation and c-Jun Expression and Inhibiting c-PARP Cleavage. J Mol Neurosci 2015; 56:917-925. [PMID: 25877688 DOI: 10.1007/s12031-015-0543-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/09/2015] [Indexed: 01/05/2023]
Abstract
In the present study, the effects of erythropoietin (EPO) on preventing adult neurons from apoptosis (introduced by brachial plexus avulsion) were examined, and the mechanism was analyzed. Fifty injury rat models were established in this study by using micro-hemostat forceps to pull out brachial plexus root from the intervertebral foramen in supine position. These models were divided into EPO group (avulsion + 1000 U/kg subcutaneously on alternate days) and control group (avulsion + normal saline). C5-T1 spinal cord was harvested at days 1, 2, 4, 7, and 14. Compared with the control group, the apoptosis of spinal motoneurons was significantly decreased on days 4 and 7 in the EPO group, which was also approved by TUNEL examination results. The detection of p-JNK and expression of c-Jun and cleavage of cleaved PARP (c-PARP) were also examined by immunohistochemistry and were increased immediately at day 1, and peaked at day 2, day 2, and day 4 in control group, respectively. However, the amounts were decreased and delayed by EPO treatment significantly at the same time points. In conclusion, the apoptosis of adult spinal motorneurons was associated with JNK phosphorylation, c-Jun expression, and caspase activity, and EPO-mediated neuronal protective effect is proved by downregulating the JNK phosphorylation and c-Jun expression and inhibiting of c-PARP cleavage.
Collapse
|
30
|
Ruven C, Chan TK, Wu W. Spinal root avulsion: an excellent model for studying motoneuron degeneration and regeneration after severe axonal injury. Neural Regen Res 2014; 9:117-8. [PMID: 25206791 PMCID: PMC4146159 DOI: 10.4103/1673-5374.125338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2014] [Indexed: 11/27/2022] Open
Affiliation(s)
- Carolin Ruven
- Department of Anatomy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Tak-Kwong Chan
- Department of Anatomy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wutian Wu
- Department of Anatomy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China ; GHM Institute of CNS regeneration, Jinan University and The University of Hong Kong, Guangzhou, Guangdong Province, China
| |
Collapse
|
31
|
Jiang X, Chen X, Shen D, Chen A. Anterior cornual motoneuron regression pattern after sacral plexus avulsion in rats. Acta Neurochir (Wien) 2014; 156:1599-604. [PMID: 24855021 DOI: 10.1007/s00701-014-2114-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/26/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND Sacral plexus avulsions lead to severe disability in patients and remain a thorny clinical problem due to the lack of anatomical, experimental and clinical studies. Attempts have been made to treat lumbosacral plexus injuries with such operations as direct anastomosis of the ends of injured sacral plexuses, and certain therapeutic effects were achieved. To further explore the degeneration pattern of anterior cornual motoneurons and determine the best time for treatment, we carried out this study. METHODS We randomly assigned 60 SD rats into six groups (group A-F), with ten rats per group. The A, B, C, D, E, F groups included animals that received operation for L4-L6 nerve root avulsion at 2, 4, 6, 8, 10 and 12 weeks respectively. We measured the apoptosis of motor neurons in the anterior corn through hematoxylin-eosin (HE) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and found that after sacral plexus avulsions, motor neurons in the anterior horn of the spinal cord gradually reduced and the apoptosis index gradually increased as the time went by. RESULTS Survival rates of motoneurons at 2, 4, 6, 8, 10, and 12 weeks after avulsion were (92.1 ± 4.7)%, (83.6 ± 3.7)%, (43.6 ± 4.2)%, (32.1 ± 3.5)%, (18.4 ± 3.7)% and (12.1 ± 3.3)%, respectively. The difference was most significant at week 6. CONCLUSION Week 6 after injury is probably the deadline for surgical repair of sacral plexus avulsions.
Collapse
Affiliation(s)
- Xi Jiang
- Department of Orthopedics Trauma Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | |
Collapse
|
32
|
Ding Y, Qu Y, Feng J, Wang M, Han Q, So KF, Wu W, Zhou L. Functional motor recovery from motoneuron axotomy is compromised in mice with defective corticospinal projections. PLoS One 2014; 9:e101918. [PMID: 25003601 PMCID: PMC4087004 DOI: 10.1371/journal.pone.0101918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/12/2014] [Indexed: 12/28/2022] Open
Abstract
Brachial plexus injury (BPI) and experimental spinal root avulsion result in loss of motor function in the affected segments. After root avulsion, significant motoneuron function is restored by re-implantation of the avulsed root. How much this functional recovery depends on corticospinal inputs is not known. Here, we studied that question using Celsr3|Emx1 mice, in which the corticospinal tract (CST) is genetically absent. In adult mice, we tore off right C5-C7 motor and sensory roots and re-implanted the right C6 roots. Behavioral studies showed impaired recovery of elbow flexion in Celsr3|Emx1 mice compared to controls. Five months after surgery, a reduced number of small axons, and higher G-ratio of inner to outer diameter of myelin sheaths were observed in mutant versus control mice. At early stages post-surgery, mutant mice displayed lower expression of GAP-43 in spinal cord and of myelin basic protein (MBP) in peripheral nerves than control animals. After five months, mutant animals had atrophy of the right biceps brachii, with less newly formed neuromuscular junctions (NMJs) and reduced peak-to-peak amplitudes in electromyogram (EMG), than controls. However, quite unexpectedly, a higher motoneuron survival rate was found in mutant than in control mice. Thus, following root avulsion/re-implantation, the absence of the CST is probably an important reason to hamper axonal regeneration and remyelination, as well as target re-innervation and formation of new NMJ, resulting in lower functional recovery, while fostering motoneuron survival. These results indicate that manipulation of corticospinal transmission may help improve functional recovery following BPI.
Collapse
Affiliation(s)
- Yuetong Ding
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P.R. China
- Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, P.R. China
| | - Yibo Qu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P.R. China
- Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, P.R. China
| | - Jia Feng
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P.R. China
- Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, P.R. China
| | - Meizhi Wang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P.R. China
- Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, P.R. China
| | - Qi Han
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P.R. China
- Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, P.R. China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P.R. China
- Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, P.R. China
- Department of Anatomy LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Wutian Wu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P.R. China
- Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, P.R. China
- Department of Anatomy LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P.R. China
- Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, P.R. China
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, P.R. China
- Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, P.R. China
| |
Collapse
|
33
|
Noguchi T, Ohta S, Kakinoki R, Kaizawa Y, Matsuda S. A new cervical nerve root avulsion model using a posterior extra-vertebral approach in rats. J Brachial Plex Peripher Nerve Inj 2013; 8:8. [PMID: 24020460 PMCID: PMC3848685 DOI: 10.1186/1749-7221-8-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 09/04/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The nerve root avulsion injury causes decrease of motor neurons in the spinal ventral horn. To investigate the motoneuron death after avulsion injury in rats, the intradural root avulsion procedure is usually used, although it is technically demanding and associated with a risk of unexpected spinal cord damage. We have developed a new cervical nerve root avulsion procedure in rats and investigated the validity of our procedure. METHODS Our procedure is using a posterior approach and pulling the C6 nerve root outside the vertebral foramen without intradural procedures. The lateral third of the lateral mass is needed to be resected before pulling the nerve root. The accomplishment of our procedure is judged by confirmation of the bifurcated stump of the avulsed nerve root and the leakage of the spinal fluid from vertebral foramen. At first, four Sprague-Dawley (SD) rats were used for the examination of C6 motor neuron distribution in the normal spinal cord. Then, 40 SD rats were divided into following four groups and the survival rate of motor neuron was examined. (A) an intradural avulsion group, (B) an intradural rhizotomy group, (C) our extravertebral avulsion group, and (D) an extravertebral rupture group. Another 26 SD rats were used for the examination of histomorphorogic changes in the spinal cord after our extra-vertebral avulsion procedure. RESULTS At 28 days after injury, the percentage of surviving motor neurons in groups A (39.0 ± 2.1%) and C (47.5 ± 7.1%) were significantly lower than those in groups B (77.1 ± 12.3%) and D (98.9 ± 9.9%). Compared with other groups, our procedure was easier and associated with less unexpected spinal cord damage. Although the length of the distal stump of the extravertebrally avulsed ventral rootlets was varied between 1.5 and 3.2 mm, this difference did not affect motoneuron death. The extravertebral avulsion injury showed intraspinal bleeding along the motoneuron axons, glial reaction and macrophage infiltration in the lesioned side of the ventral horn. CONCLUSIONS Our extravertebral avulsion procedure is simple and reproducible. It would become a useful tool for the study of cervical nerve root avulsion injury.
Collapse
Affiliation(s)
- Takashi Noguchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto City, Kyoto 606-8507, Japan.
| | | | | | | | | |
Collapse
|
34
|
Wu D, Li Q, Zhu X, Wu G, Cui S. Valproic acid protection against the brachial plexus root avulsion-induced death of motoneurons in rats. Microsurgery 2013; 33:551-9. [PMID: 23843283 DOI: 10.1002/micr.22130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 03/27/2013] [Accepted: 03/29/2013] [Indexed: 01/17/2023]
Abstract
In this study, the role of valproic acid (VPA) in protecting motoneuron after brachial plexus root avulsion was investigated in adult rats. Sixty rats were used in this study, and underwent the brachial plexus root avulsion injury, which was created by using a micro-hemostat forceps to pull out brachial plexus root from the intervertebral foramen. The animals were divided into two groups, VPA group administered with VPA dissolved in drinking water (300 mg/kg) daily, and control group had drinking water every day. The spinal cords (C5-T1) were harvested at day 1, 2, 3, 7, 14, and 28 for immunohistochemistry analysis, TUNEL staining, Nissl staining, and electron microscopy, respectively. The results showed that with VPA administration, the survival of motoneurons was promoted and the cell apoptosis was inhibited. The number of c-Jun and Bcl-2 positive motoneurons was increased immediately after avulsion both in control and VPA group, however, the percent of c-Jun positive motoneurons was decreased and the percent of Bcl-2 positive motoneurons was increased by VPA treatment significantly. Our results indicated that motoneurons were protected by VPA against cell death induced by brachial plexus root avulsion through c-Jun inhibition and Bcl-2 induction.
Collapse
Affiliation(s)
- Dianxiu Wu
- Department of Hand Surgery, The Third Clinical Hospital of Jilin University, Changchun, China
| | - Qiang Li
- Department of Hand Surgery, The Third Clinical Hospital of Jilin University, Changchun, China
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Guangzhi Wu
- Department of Hand Surgery, The Third Clinical Hospital of Jilin University, Changchun, China
| | - Shusen Cui
- Department of Hand Surgery, The Third Clinical Hospital of Jilin University, Changchun, China
| |
Collapse
|
35
|
Su H, Yuan Q, Qin D, Yang X, Wong WM, So KF, Wu W. Ventral root re-implantation is better than peripheral nerve transplantation for motoneuron survival and regeneration after spinal root avulsion injury. BMC Surg 2013; 13:21. [PMID: 23799915 PMCID: PMC3711737 DOI: 10.1186/1471-2482-13-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 06/19/2013] [Indexed: 11/13/2022] Open
Abstract
Background Peripheral nerve (PN) transplantation and ventral root implantation are the two common types of recovery operations to restore the connection between motoneurons and their target muscles after brachial plexus injury. Despite experience accumulated over the past decade, fundamental knowledge is still lacking concerning the efficacy of the two microsurgical interventions. Methods Thirty-eight adult female Sprague–Dawley rats were divided into 5 groups. Immediately following root avulsion, animals in the first group (n = 8) and the second group (n = 8) received PN graft and ventral root implantation respectively. The third group (n = 8) and the fourth group (n = 8) received PN graft and ventral root implantation respectively at one week after root avulsion. The fifth group received root avulsion only as control (n = 6). The survival and axonal regeneration of severed motoneurons were investigated at 6 weeks post-implantation. Results Re-implantation of ventral roots, both immediately after root avulsion and in delay, significantly increased the survival and regeneration of motoneurons in the avulsed segment of the spinal cord as compared with PN graft transplantation. Conclusions The ventral root re-implantation is a better surgical repairing procedure than PN graft transplantation for brachial plexus injury because of its easier manipulation for re-implanting avulsed ventral roots to the preferred site, less possibility of causing additional damage and better effects on motoneuron survival and axonal regeneration.
Collapse
|
36
|
Hoyng SA, Tannemaat MR, De Winter F, Verhaagen J, Malessy MJA. Nerve surgery and gene therapy: a neurobiological and clinical perspective. J Hand Surg Eur Vol 2011; 36:735-46. [PMID: 21914696 DOI: 10.1177/1753193411420348] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Despite major microsurgical improvements the clinical outcome of peripheral nerve surgery is still regarded as suboptimal. Over the past decade several innovative techniques have been developed to extend the armamentarium of the nerve surgeon. This review evaluates the potential of gene therapy in the context of peripheral nerve repair. First the main challenges impeding peripheral nerve regeneration are presented. This is followed by a short introduction to gene therapy and an overview of its most important advantages over the classical delivery of therapeutic proteins. Next, this review focuses on the most promising viral vectors capable of targeting the peripheral nervous system and their first application in animal models. In addition, the challenges of translating these experimental results to the clinic, the limitations of current vectors and the further developments needed, are discussed. Finally, four strategies are presented on how gene therapy could help patients that have to undergo reconstructive nerve surgery in the future.
Collapse
Affiliation(s)
- S A Hoyng
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
37
|
Wang LL, Zhao XC, Yan LF, Wang YQ, Cheng X, Fu R, Zhou LH. C-jun phosphorylation contributes to down regulation of neuronal nitric oxide synthase protein and motoneurons death in injured spinal cords following root-avulsion of the brachial plexus. Neuroscience 2011; 189:397-407. [PMID: 21596101 DOI: 10.1016/j.neuroscience.2011.04.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 04/11/2011] [Accepted: 04/30/2011] [Indexed: 01/11/2023]
Abstract
Previous studies have shown that c-jun and neuronal nitric oxide synthase (nNOS) are both induced in injured motoneurons, but their roles in motoneuron death remain unclear. We hypothesized that nNOS might be the downstream effector of c-jun N-terminal kinase (JNK)/c-jun in avulsion-induced motoneuron death. Here, we found that brachial root-avulsion induced a temporary increase in JNK activity and three- and four-fold increases in phospho-c-jun and c-jun, respectively; however, brachial root-avulsion caused a decrease in nNOS protein expression from 4 h to 14 days post-injury. At 14 days post-injury, almost all nNOS-positive motoneurons were co-localized with phospho-c-jun-positive motoneurons in ipsilateral ventral horns. The JNK inhibitor SP600125, applied immediately post-injury, resulted in an upregulation of nNOS protein both in injured spinal cords and motoneurons and caused a slight alleviation of motoneuron death by inhibiting c-jun phosphorylation at 14 days post-injury. Our results demonstrated that the JNK/c-jun signal transduction pathway is involved in root-avulsion. The inhibition of c-jun phosphorylation prevents nNOS levels from dropping below baseline levels in the spinal cord and partially alleviates motoneuron death following root-avulsion. Therefore, inhibiting c-jun phosphorylation or up-regulating the nNOS protein in injured spinal cords at the early stage might be used in the future as the molecular-target strategies to prevent the motoneurons degeneration in root-avulsion.
Collapse
Affiliation(s)
- L-L Wang
- Zhong Shan School of Medicine, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, PR China
| | | | | | | | | | | | | |
Collapse
|
38
|
Co-expression of GAP-43 and nNOS in avulsed motoneurons and their potential role for motoneuron regeneration. Nitric Oxide 2010; 23:258-63. [PMID: 20667480 DOI: 10.1016/j.niox.2010.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 07/22/2010] [Indexed: 12/21/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) is induced after axonal injury. The role of induced nNOS in injured neurons is not well established. In the present study, we investigated the co-expression of nNOS with GAP-43 in spinal motoneurons following axonal injury. The role of induced nNOS was discussed and evaluated. In normal rats, spinal motoneurons do not express nNOS or GAP-43. Following spinal root avulsion, expression of nNOS and GAP-43 were induced and colocalized in avulsed motoneurons. Reimplantation of avulsed roots resulted in a remarkable decrease of GAP-43- and nNOS-IR in the soma of the injured motoneurons. A number of GAP-43-IR regenerating motor axons were found in the reimplanted nerve. In contrast, the nNOS-IR was absent in reimplanted nerve. These results suggest that expression of GAP-43 in avulsed motoneurons is related to axonal regeneration whereas nNOS is not.
Collapse
|
39
|
Huang MC, Lo MJ, Lin YL, Chang SE, Huang WC, Kuo WC, Tsai MJ, Kuo HS, Shih YH, Cheng H. Functional recovery after the repair of transected cervical roots in the chronic stage of injury. J Neurotrauma 2010; 26:1795-804. [PMID: 19548814 DOI: 10.1089/neu.2008.0529] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The treatment of root injury is typically performed at the more chronic stages post injury, by which time a substantial number of neurons have died. Therefore, before being applied in the clinical setting, a treatment strategy for these lesions should prove to be as effective in the chronic stages of injury as it is in the acute stage. In this study, we simulated the most severe clinical scenarios to establish an optimal time window for repair at a chronic stage. The sixth to eighth cervical roots on the left side of female SD rats were cut at their junction with the spinal cord. One or three weeks later, the wound was reopened and these roots were repaired with intercostal nerve grafts, with subsequent application of aFGF and fibrin glue. In the control group, the wound was closed after re-exploration without further repair procedures. Sensory and motor functions were measured after the surgery. Spinal cord morphology, neuron survival, and nerve fiber regeneration were traced by CTB-HRP. Results showed that both the sensory and motor functions had significant recovery in the 1-week repair group, but not in the 3-week repair group. By CTB-HRP tracing, we found that the architecture of the spinal cords was relatively preserved in the 1-week repair group, while those of the control group showed significant atrophic change. There were regenerating nerve fibers in the dorsal horn and more motor neuron survival in the 1-week repair group compared to that of the 3-week group. It was concluded that treating transected cervical roots at a chronic stage with microsurgical nerve grafting and application of aFGF and fibrin glue can lead to significant functional recovery, as long as the repair is done before too many neurons die.
Collapse
Affiliation(s)
- Ming-Chao Huang
- Center for Neural Regeneration, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yuan Q, Hu B, Su H, So KF, Lin Z, Wu W. GAP-43 expression correlates with spinal motoneuron regeneration following root avulsion. J Brachial Plex Peripher Nerve Inj 2009; 4:18. [PMID: 19852861 PMCID: PMC2771005 DOI: 10.1186/1749-7221-4-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 10/25/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The growth-associated protein GAP-43 plays a crucial role in axonal regeneration in injured neurons. METHODS We have used immunohistochemistry to investigate the expression of GAP-43 in spinal motoneurons during nerve reconstruction following root avulsion in the neonatal and adult rats. RESULTS Following the injury, GAP-43-immunoreactivity (IR) could be found in adult avulsed motoneurons as early as 1 day, increased from 3 to 7 days and reached a maximal level at 2 weeks post-injury. The up-regulation of GAP-43 in adult avulsed motoneurons was accompanied with the axonal regeneration indicated by numerous regenerating motor axons entering the reimplanted ventral root and nerve. In contrast, GAP-43-IR could not be found in the neonatal avulsed motoneurons at any examined post-injury time points. This failure of up-regulation of GAP-43 was coincident with no axonal regeneration in the reimplanted nerve in the neonatal rats. CONCLUSION Close association of GAP-43 expression and capacity of regeneration in reimplanted spinal nerve of avulsed motoneurons suggests that GAP-43 is a potential therapeutic target for treatment of root avulsion of brachial plexus.
Collapse
Affiliation(s)
- Qiuju Yuan
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | | | | | | | | | | |
Collapse
|
41
|
A spatio-temporal analysis of motoneuron survival, axonal regeneration and neurotrophic factor expression after lumbar ventral root avulsion and implantation. Exp Neurol 2009; 223:207-20. [PMID: 19646436 DOI: 10.1016/j.expneurol.2009.07.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/08/2009] [Accepted: 07/09/2009] [Indexed: 11/20/2022]
Abstract
Reimplantation of avulsed rat lumbar spinal ventral roots results in poor recovery of function of the denervated hind limb muscles. In contrast, reimplantation of cervical or sacral ventral roots is a successful repair strategy that results in a significant degree of regeneration. A possible explanation for this difference could be that following lumbar root avulsion, axons have to travel longer distances towards their target muscles, resulting in prolonged denervation of the distal nerve and a diminished capacity to support regeneration. Here we present a detailed spatio-temporal analysis of motoneuron survival, axonal regeneration and neurotrophic factor expression following unilateral avulsion and implantation of lumbar ventral roots L3, L4, and L5. Reimplantation prolongs the survival of motoneurons up to one month post-lesion. The first regenerating motor axons entered the reimplanted ventral roots during the first week and large numbers of fibers gradually enter the lumbar plexus between 2 and 4 weeks, indicating that axons enter the reimplanted roots and plexus over an extended period of time. However, motor axon counts show that relatively few axons reach the distal sciatic nerve in the 16 week post-lesion period. The observed initial increase and subsequent decline in expression of glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor correlate with the apparent spatio-temporal decline in the regenerative capacity of motor axons, indicating that the distal nerve is losing its capacity to support regenerating motor axons following prolonged denervation. These findings have important implications for future strategies to promote long-distance regeneration through distal, chronically denervated peripheral nerves.
Collapse
|
42
|
Wu JC, Huang WC, Huang MC, Tsai YA, Chen YC, Shih YH, Cheng H. A novel strategy for repairing preganglionic cervical root avulsion in brachial plexus injury by sural nerve grafting. J Neurosurg 2009; 110:775-85. [PMID: 19119881 DOI: 10.3171/2008.8.jns08328] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECT In this study, the authors evaluated the efficacy of a new surgical strategy for reconnecting the injured brachial plexus with the spinal cord using fibrin glue containing acidic fibroblast growth factor as an adhesive and neurotrophic agent. METHODS Eighteen patients with preganglionic brachial plexus injuries, each with varying degrees of upper limb dysfunction, underwent cervical laminectomy with or without sural nerve grafting. The treatment of each avulsed root varied according to the severity of the injury. Some patients also underwent a second-stage operation involving supraclavicular brachial plexus exploration for reconnection with the corresponding segment of cervical spinal cord at the trunk level. Muscle strength was graded both pre- and postoperatively with the British Medical Research Council scale, and the results were analyzed with the Friedman and Wilcoxon signed-rank tests. RESULTS Muscle strength improvements were observed in 16 of the 18 patients after 24 months of follow-up. Significant improvements in mean muscle strength were observed in patients from all repair method groups at 12 and 24 months postoperatively (p < 0.05). Statistical significance was not reached in the groups with insufficient numbers of cases. CONCLUSIONS The authors' new surgical strategy yielded clinical improvement in muscle strength after preganglionic brachial plexus injury, such that nerve regeneration may have taken place. Reconnection of the brachial plexus to the cervical spinal cord is possible. Functional motor recovery, observed through increases in Medical Research Council-rated muscle strength in the affected arm, is likewise possible.
Collapse
Affiliation(s)
- Jau-Ching Wu
- Department of Neurosurgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
43
|
Chu TH, Du Y, Wu W. Motor nerve graft is better than sensory nerve graft for survival and regeneration of motoneurons after spinal root avulsion in adult rats. Exp Neurol 2008; 212:562-5. [DOI: 10.1016/j.expneurol.2008.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 04/14/2008] [Accepted: 05/05/2008] [Indexed: 02/05/2023]
|
44
|
Eggers R, Hendriks WTJ, Tannemaat MR, van Heerikhuize JJ, Pool CW, Carlstedt TP, Zaldumbide A, Hoeben RC, Boer GJ, Verhaagen J. Neuroregenerative effects of lentiviral vector-mediated GDNF expression in reimplanted ventral roots. Mol Cell Neurosci 2008; 39:105-17. [PMID: 18585464 DOI: 10.1016/j.mcn.2008.05.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 05/28/2008] [Accepted: 05/28/2008] [Indexed: 11/17/2022] Open
Abstract
Traumatic avulsion of spinal nerve roots causes complete paralysis of the affected limb. Reimplantation of avulsed roots results in only limited functional recovery in humans, specifically of distal targets. Therefore, root avulsion causes serious and permanent disability. Here, we show in a rat model that lentiviral vector-mediated overexpression of glial cell line-derived neurotrophic factor (GDNF) in reimplanted nerve roots completely prevents motoneuron atrophy after ventral root avulsion and stimulates regeneration of axons into reimplanted roots. However, over the course of 16 weeks neuroma-like structures are formed in the reimplanted roots, and regenerating axons are trapped at sites with high levels of GDNF expression. A high local concentration of GDNF therefore impairs long distance regeneration. These observations show the feasibility of combining neurosurgical repair of avulsed roots with gene-therapeutic approaches. Our data also point to the importance of developing viral vectors that allow regulated expression of neurotrophic factors.
Collapse
Affiliation(s)
- Ruben Eggers
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lang EM, Schlegel N, Reiners K, Hofmann GO, Sendtner M, Asan E. Single-Dose Application of CNTF and BDNF Improves Remyelination of Regenerating Nerve Fibers after C7 Ventral Root Avulsion and Replantation. J Neurotrauma 2008; 25:384-400. [DOI: 10.1089/neu.2007.0396] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Eva M. Lang
- Department of Plastic and Hand Surgery, Albert Ludwigs University, Freiburg, Germany
| | - Nicholas Schlegel
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Karlheinz Reiners
- Department of Neurology, University of Wuerzburg, Wuerzburg, Germany
| | - Gunther O. Hofmann
- Clinic of Trauma Surgery, Friedrich Schiller University, Jena, and BG-TraumaCenter, Halle, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Esther Asan
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
46
|
Schlegel N, Asan E, Hofmann GO, Lang EM. Reactive changes in dorsal roots and dorsal root ganglia after C7 dorsal rhizotomy and ventral root avulsion/replantation in rabbits. J Anat 2007; 210:336-51. [PMID: 17331182 PMCID: PMC2100279 DOI: 10.1111/j.1469-7580.2007.00695.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Current surgical treatment of spinal root injuries aims at reconnecting ventral roots to the spinal cord while severed dorsal roots are generally left untreated. Reactive changes in dorsal root ganglia (DRGs) and in injured dorsal roots after such complex lesions have not been analysed in detail. We studied dorsal root remnants and lesioned DRGs 6 months after C7 dorsal rhizotomy, ventral root avulsion and immediate ventral root replantation in adult rabbits. Replanted ventral roots were fixed to the spinal cord with fibrin glue only or with glue containing ciliary neurotrophic factor and/or brain-derived neurotrophic factor. Varying degrees of degeneration were observed in the deafferented dorsal spinal cord in all experimental groups. In cases with well-preserved morphology, small myelinated axons extended into central tissue protrusions at the dorsal root entry zone, suggesting sprouting of spinal neuron processes into the central dorsal root remnant. In lesioned DRGs, the density of neurons and myelinated axons was not significantly altered, but a slight decrease in the relative frequency of large neurons and an increase of small myelinated axons was noted (significant for axons). Unexpectedly, differences in the degree of these changes were found between control and neurotrophic factor-treated animals. Central axons of DRG neurons formed dorsal root stumps of considerable length which were attached to fibrous tissue surrounding the replanted ventral root. In cases where gaps were apparent in dorsal root sheaths, a subgroup of dorsal root axons entered this fibrous tissue. Continuity of sensory axons with the spinal cord was never observed. Some axons coursed ventrally in the direction of the spinal nerve. Although the animal model does not fully represent the situation in human plexus injuries, the present findings provide a basis for devising further experimental approaches in the treatment of combined motor/sensory root lesions.
Collapse
Affiliation(s)
- N Schlegel
- University of Würzburg, Institute for Anatomy and Cell Biology, Germany
| | | | | | | |
Collapse
|