1
|
Rat dorsal horn neurons primed by stress develop a long-lasting manifest sensitization after a short-lasting nociceptive low back input. Pain Rep 2021; 6:e904. [PMID: 33688602 PMCID: PMC7935483 DOI: 10.1097/pr9.0000000000000904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/29/2020] [Accepted: 01/15/2021] [Indexed: 11/26/2022] Open
Abstract
Background A single injection of nerve growth factor (NGF) into a low back muscle induces a latent sensitization of rat dorsal horn neurons (DHNs) that primes for a manifest sensitization by a subsequent second NGF injection. Repeated restraint stress also causes a latent DHN sensitization. Objective In this study, we investigated whether repeated restraint stress followed by a single NGF injection causes a manifest sensitization of DHNs. Methods Rats were stressed repeatedly in a narrow plastic restrainer (1 hour on 12 consecutive days). Control animals were handled but not restrained. Two days after stress paradigm, behavioral tests and electrophysiological in vivo recordings from single DHNs were performed. Mild nociceptive low back input was induced by a single NGF injection into the lumbar multifidus muscle just before the recording started. Results Restraint stress slightly lowered the low back pressure pain threshold (Cohen d = 0.83). Subsequent NGF injection increased the proportion of neurons responsive to deep low back input (control + NGF: 14%, stress + NGF: 39%; P = 0.041), mostly for neurons with input from outside the low back (7% vs 26%; P = 0.081). There was an increased proportion of neurons with resting activity (28% vs 55%; P = 0.039), especially in neurons having deep input (0% vs 26%; P = 0.004). Conclusions The results indicate that stress followed by a short-lasting nociceptive input causes manifest sensitization of DHNs to deep input, mainly from tissue outside the low back associated with an increased resting activity. These findings on neuronal mechanisms in our rodent model suggest how stress might predispose to radiating pain in patients.
Collapse
|
2
|
Alvarez FJ, Rotterman TM, Akhter ET, Lane AR, English AW, Cope TC. Synaptic Plasticity on Motoneurons After Axotomy: A Necessary Change in Paradigm. Front Mol Neurosci 2020; 13:68. [PMID: 32425754 PMCID: PMC7203341 DOI: 10.3389/fnmol.2020.00068] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Motoneurons axotomized by peripheral nerve injuries experience profound changes in their synaptic inputs that are associated with a neuroinflammatory response that includes local microglia and astrocytes. This reaction is conserved across different types of motoneurons, injuries, and species, but also displays many unique features in each particular case. These reactions have been amply studied, but there is still a lack of knowledge on their functional significance and mechanisms. In this review article, we compiled data from many different fields to generate a comprehensive conceptual framework to best interpret past data and spawn new hypotheses and research. We propose that synaptic plasticity around axotomized motoneurons should be divided into two distinct processes. First, a rapid cell-autonomous, microglia-independent shedding of synapses from motoneuron cell bodies and proximal dendrites that is reversible after muscle reinnervation. Second, a slower mechanism that is microglia-dependent and permanently alters spinal cord circuitry by fully eliminating from the ventral horn the axon collaterals of peripherally injured and regenerating sensory Ia afferent proprioceptors. This removes this input from cell bodies and throughout the dendritic tree of axotomized motoneurons as well as from many other spinal neurons, thus reconfiguring ventral horn motor circuitries to function after regeneration without direct sensory feedback from muscle. This process is modulated by injury severity, suggesting a correlation with poor regeneration specificity due to sensory and motor axons targeting errors in the periphery that likely render Ia afferent connectivity in the ventral horn nonadaptive. In contrast, reversible synaptic changes on the cell bodies occur only while motoneurons are regenerating. This cell-autonomous process displays unique features according to motoneuron type and modulation by local microglia and astrocytes and generally results in a transient reduction of fast synaptic activity that is probably replaced by embryonic-like slow GABA depolarizations, proposed to relate to regenerative mechanisms.
Collapse
Affiliation(s)
- Francisco J Alvarez
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Travis M Rotterman
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States.,Department of Biomedical Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Erica T Akhter
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Alicia R Lane
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Arthur W English
- Department of Cellular Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Timothy C Cope
- Department of Biomedical Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
3
|
Rotterman TM, Akhter ET, Lane AR, MacPherson KP, García VV, Tansey MG, Alvarez FJ. Spinal Motor Circuit Synaptic Plasticity after Peripheral Nerve Injury Depends on Microglia Activation and a CCR2 Mechanism. J Neurosci 2019; 39:3412-3433. [PMID: 30833511 PMCID: PMC6495126 DOI: 10.1523/jneurosci.2945-17.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/03/2019] [Accepted: 02/27/2019] [Indexed: 12/24/2022] Open
Abstract
Peripheral nerve injury results in persistent motor deficits, even after the nerve regenerates and muscles are reinnervated. This lack of functional recovery is partly explained by brain and spinal cord circuit alterations triggered by the injury, but the mechanisms are generally unknown. One example of this plasticity is the die-back in the spinal cord ventral horn of the projections of proprioceptive axons mediating the stretch reflex (Ia afferents). Consequently, Ia information about muscle length and dynamics is lost from ventral spinal circuits, degrading motor performance after nerve regeneration. Simultaneously, there is activation of microglia around the central projections of peripherally injured Ia afferents, suggesting a possible causal relationship between neuroinflammation and Ia axon removal. Therefore, we used mice (both sexes) that allow visualization of microglia (CX3CR1-GFP) and infiltrating peripheral myeloid cells (CCR2-RFP) and related changes in these cells to Ia synaptic losses (identified by VGLUT1 content) on retrogradely labeled motoneurons. Microgliosis around axotomized motoneurons starts and peaks within 2 weeks after nerve transection. Thereafter, this region becomes infiltrated by CCR2 cells, and VGLUT1 synapses are lost in parallel. Immunohistochemistry, flow cytometry, and genetic lineage tracing showed that infiltrating CCR2 cells include T cells, dendritic cells, and monocytes, the latter differentiating into tissue macrophages. VGLUT1 synapses were rescued after attenuating the ventral microglial reaction by removal of colony stimulating factor 1 from motoneurons or in CCR2 global KOs. Thus, both activation of ventral microglia and a CCR2-dependent mechanism are necessary for removal of VGLUT1 synapses and alterations in Ia-circuit function following nerve injuries.SIGNIFICANCE STATEMENT Synaptic plasticity and reorganization of essential motor circuits after a peripheral nerve injury can result in permanent motor deficits due to the removal of sensory Ia afferent synapses from the spinal cord ventral horn. Our data link this major circuit change with the neuroinflammatory reaction that occurs inside the spinal cord following injury to peripheral nerves. We describe that both activation of microglia and recruitment into the spinal cord of blood-derived myeloid cells are necessary for motor circuit synaptic plasticity. This study sheds new light into mechanisms that trigger major network plasticity in CNS regions removed from injury sites and that might prevent full recovery of function, even after successful regeneration.
Collapse
Affiliation(s)
- Travis M Rotterman
- Department of Physiology, Emory University, Atlanta, Georgia 30322, and
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30318
| | - Erica T Akhter
- Department of Physiology, Emory University, Atlanta, Georgia 30322, and
| | - Alicia R Lane
- Department of Physiology, Emory University, Atlanta, Georgia 30322, and
| | | | - Violet V García
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30318
| | - Malú G Tansey
- Department of Physiology, Emory University, Atlanta, Georgia 30322, and
| | | |
Collapse
|
4
|
Hachisuka J, Baumbauer KM, Omori Y, Snyder LM, Koerber HR, Ross SE. Semi-intact ex vivo approach to investigate spinal somatosensory circuits. eLife 2016; 5:e22866. [PMID: 27991851 PMCID: PMC5214752 DOI: 10.7554/elife.22866] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/16/2016] [Indexed: 11/19/2022] Open
Abstract
The somatosensory input that gives rise to the perceptions of pain, itch, cold and heat are initially integrated in the superficial dorsal horn of the spinal cord. Here, we describe a new approach to investigate these neural circuits in mouse. This semi-intact somatosensory preparation enables recording from spinal output neurons, while precisely controlling somatosensory input, and simultaneously manipulating specific populations of spinal interneurons. Our findings suggest that spinal interneurons show distinct temporal and spatial tuning properties. We also show that modality selectivity - mechanical, heat and cold - can be assessed in both retrogradely labeled spinoparabrachial projection neurons and genetically labeled spinal interneurons. Finally, we demonstrate that interneuron connectivity can be determined via optogenetic activation of specific interneuron subtypes. This new approach may facilitate key conceptual advances in our understanding of the spinal somatosensory circuits in health and disease.
Collapse
Affiliation(s)
- Junichi Hachisuka
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, United States
| | - Kyle M Baumbauer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, United States
| | - Yu Omori
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, United States
| | - Lindsey M Snyder
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, United States
| | - H Richard Koerber
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, United States
| | - Sarah E Ross
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
5
|
Hoheisel U, Vogt MA, Palme R, Gass P, Mense S. Immobilization stress sensitizes rat dorsal horn neurons having input from the low back. Eur J Pain 2015; 19:861-70. [PMID: 25690929 DOI: 10.1002/ejp.682] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND Stress is known to promote several forms of muscle pain including non-specific low back pain. However, the question if stress alone activates nociceptive central neurons has not been studied systematically. Here, we investigated the influence of repeated immobilization stress on dorsal horn neurons and behaviour in the rat. METHODS The stress consisted of immobilization in a narrow tube for 1 h on 12 days. Single dorsal horn neurons were recorded with microelectrodes introduced into the spinal segment L2. In this segment, about 14% of the neurons responded to mechanical stimulation of the subcutaneous soft tissues of the low back in naïve rats. The neurons often behaved like wide dynamic range cells in that they had a low mechanical threshold and showed graded responses to noxious stimuli. RESULTS The stress-induced changes in neuronal response behaviour were (1) appearance of new receptive fields in the deep tissues of the hindlimb, (2) increased input from deep soft tissues, but unchanged input from the skin and (3) significant increase in resting activity. Surprisingly, the pressure-pain threshold of the low back remained unchanged, although dorsal horn neurons were sensitized. In the open field test, the rats showed signs of increased anxiety. CONCLUSIONS This study shows that stress alone is sufficient to sensitize dorsal horn neurons. The data may explain the enhanced pain low back patients report when they are under stress. The increased resting discharge may lead to spontaneous pain.
Collapse
Affiliation(s)
- U Hoheisel
- Centre for Biomedicine and Medical Technology Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | | | | |
Collapse
|
6
|
Arbat-Plana A, Torres-Espín A, Navarro X, Udina E. Activity dependent therapies modulate the spinal changes that motoneurons suffer after a peripheral nerve injury. Exp Neurol 2014; 263:293-305. [PMID: 25448160 DOI: 10.1016/j.expneurol.2014.10.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 12/11/2022]
Abstract
Injury of a peripheral nerve not only leads to target denervation, but also induces massive stripping of spinal synapses on axotomized motoneurons, with disruption of spinal circuits. Even when regeneration is successful, unspecific reinnervation and the limited reconnection of the spinal circuits impair functional recovery. The aim of this study was to describe the changes that axotomized motoneurons suffer after peripheral nerve injury and how activity-dependent therapies and neurotrophic factors can modulate these events. We observed a marked decrease in glutamatergic synapses, with a maximum peak at two weeks post-axotomy, which was only partially reversed with time. This decrease was accompanied by an increase in gephyrin immunoreactivity and a disintegration of perineuronal nets (PNNs) surrounding the motoneurons. Direct application of neurotrophins at the proximal stump was not able to reverse these effects. In contrast, activity-dependent treatment, in the form of treadmill running, reduced the observed destructuring of perineuronal nets and the loss of glutamatergic synapses two weeks after injury. These changes were proportional to the intensity of the exercise protocol. Blockade of sensory inputs from the homolateral hindlimb also reduced PNN immunoreactivity around intact motoneurons, and in that case treadmill running did not reverse that loss, suggesting that the effects of exercise on motoneuron PNN depend on increased sensory activity. Preservation of motoneuron PNN and reduction of synaptic stripping by exercise could facilitate the maintenance of the spinal circuitry and benefit functional recovery after peripheral nerve injury.
Collapse
Affiliation(s)
- Ariadna Arbat-Plana
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Abel Torres-Espín
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Xavier Navarro
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Esther Udina
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| |
Collapse
|
7
|
Pagnussat AS, Michaelsen SM, Achaval M, Ilha J, Hermel EES, Back FP, Netto CA. Effect of skilled and unskilled training on nerve regeneration and functional recovery. Braz J Med Biol Res 2012; 45:753-62. [PMID: 22584636 PMCID: PMC3854247 DOI: 10.1590/s0100-879x2012007500084] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 04/24/2012] [Indexed: 11/21/2022] Open
Abstract
The most disabling aspect of human peripheral nerve injuries, the majority of which affect the upper limbs, is the loss of skilled hand movements. Activity-induced morphological and electrophysiological remodeling of the neuromuscular junction has been shown to influence nerve repair and functional recovery. In the current study, we determined the effects of two different treatments on the functional and morphological recovery after median and ulnar nerve injury. Adult Wistar male rats weighing 280 to 330 g at the time of surgery (N = 8-10 animals/group) were submitted to nerve crush and 1 week later began a 3-week course of motor rehabilitation involving either "skilled" (reaching for small food pellets) or "unskilled" (walking on a motorized treadmill) training. During this period, functional recovery was monitored weekly using staircase and cylinder tests. Histological and morphometric nerve analyses were used to assess nerve regeneration at the end of treatment. The functional evaluation demonstrated benefits of both tasks, but found no difference between them (P > 0.05). The unskilled training, however, induced a greater degree of nerve regeneration as evidenced by histological measurement (P < 0.05). These data provide evidence that both of the forelimb training tasks used in this study can accelerate functional recovery following brachial plexus injury.
Collapse
Affiliation(s)
- A S Pagnussat
- Departamento de Fisioterapia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil.
| | | | | | | | | | | | | |
Collapse
|
8
|
Bartus K, James ND, Bosch KD, Bradbury EJ. Chondroitin sulphate proteoglycans: key modulators of spinal cord and brain plasticity. Exp Neurol 2011; 235:5-17. [PMID: 21871887 DOI: 10.1016/j.expneurol.2011.08.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 07/15/2011] [Accepted: 08/08/2011] [Indexed: 01/08/2023]
Abstract
Chondroitin sulphate proteoglycans (CSPGs) are a family of inhibitory extracellular matrix molecules that are highly expressed during development, where they are involved in processes of pathfinding and guidance. CSPGs are present at lower levels in the mature CNS, but are highly concentrated in perineuronal nets where they play an important role in maintaining stability and restricting plasticity. Whilst important for maintaining stable connections, this can have an adverse effect following insult to the CNS, restricting the capacity for repair, where enhanced synapse formation leading to new connections could be functionally beneficial. CSPGs are also highly expressed at CNS injury sites, where they can restrict anatomical plasticity by inhibiting sprouting and reorganisation, curbing the extent to which spared systems may compensate for the loss function of injured pathways. Modification of CSPGs, usually involving enzymatic degradation of glycosaminoglycan chains from the CSPG molecule, has received much attention as a potential strategy for promoting repair following spinal cord and brain injury. Pre-clinical studies in animal models have demonstrated a number of reparative effects of CSPG modification, which are often associated with functional recovery. Here we discuss the potential of CSPG modification to stimulate restorative plasticity after injury, reviewing evidence from studies in the brain, the spinal cord and the periphery.
Collapse
Affiliation(s)
- K Bartus
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, SE1 1UL, UK.
| | | | | | | |
Collapse
|
9
|
Effects of activity-dependent strategies on regeneration and plasticity after peripheral nerve injuries. Ann Anat 2011; 193:347-53. [DOI: 10.1016/j.aanat.2011.02.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/14/2011] [Accepted: 02/24/2011] [Indexed: 12/27/2022]
|
10
|
Asensio-Pinilla E, Udina E, Jaramillo J, Navarro X. Electrical stimulation combined with exercise increase axonal regeneration after peripheral nerve injury. Exp Neurol 2009; 219:258-65. [PMID: 19500575 DOI: 10.1016/j.expneurol.2009.05.034] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 04/24/2009] [Accepted: 05/22/2009] [Indexed: 12/11/2022]
Abstract
Although injured peripheral axons are able to regenerate, functional recovery is usually poor after nerve transection. In this study we aim to elucidate the role of neuronal activity, induced by nerve electrical stimulation and by exercise, in promoting axonal regeneration and modulating plasticity in the spinal cord after nerve injury. Four groups of adult rats were subjected to sciatic nerve transection and suture repair. Two groups received electrical stimulation (3 V, 0.1 ms at 20 Hz) for 1 h, immediately after injury (ESa) or during 4 weeks (1 h daily; ESc). A third group (ES+TR) received 1 h electrical stimulation and was submitted to treadmill running during 4 weeks (5 m/min, 2 h daily). A fourth group performed only exercise (TR), whereas an untreated group served as control (C). Nerve conduction, H reflex and algesimetry tests were performed at 1, 3, 5, 7 and 9 weeks after surgery, to assess muscle reinnervation and changes in excitability of spinal cord circuitry. Histological analysis was made at the end of the follow-up. Groups that received acute ES and/or were forced to exercise in the treadmill showed higher levels of muscle reinnervation and increased numbers of regenerated myelinated axons when compared to control animals or animals that received chronic ES. Combining ESa with treadmill training significantly improved muscle reinnervation during the initial phase. The facilitation of the monosynaptic H reflex in the injured limb was reduced in all treated groups, suggesting that the maintenance of activity helps to prevent the development of hyperreflexia.
Collapse
Affiliation(s)
- Elena Asensio-Pinilla
- Group of Neuroplasticity and Regeneration, Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | |
Collapse
|
11
|
Navarro X. Chapter 27: Neural plasticity after nerve injury and regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 87:483-505. [PMID: 19682656 DOI: 10.1016/s0074-7742(09)87027-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Injuries to the peripheral nerves result in partial or total loss of motor, sensory, and autonomic functions in the denervated segments of the body due to the interruption of axons, degeneration of distal nerve fibers, and eventual death of axotomized neurons. Functional deficits caused by nerve injuries can be compensated by reinnervation of denervated targets by regenerating injured axons or by collateral branching of undamaged axons, and remodeling of nervous system circuitry related to the lost functions. Plasticity of central connections may compensate functionally for the lack of adequate target reinnervation; however, plasticity has limited effects on disturbed sensory localization or fine motor control after injuries, and may even result in maladaptive changes, such as neuropathic pain and hyperreflexia. After axotomy, neurons shift from a transmitter to a regenerative phenotype, activating molecular pathways that promote neuronal survival and axonal regeneration. Peripheral nerve injuries also induce a cascade of events, at the molecular, cellular, and system levels, initiated by the injury and progressing throughout plastic changes at the spinal cord, brainstem nuclei, thalamus, and brain cortex. Mechanisms involved in these changes include neurochemical changes, functional alterations of excitatory and inhibitory synaptic connections, sprouting of new connections, and reorganization of sensory and motor central maps. An important direction for research is the development of therapeutic strategies that enhance axonal regeneration, promote selective target reinnervation, and are also able to modulate central nervous system reorganization, amplifying positive adaptive changes that improve functional recovery and also reducing undesirable effects.
Collapse
Affiliation(s)
- Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| |
Collapse
|
12
|
Vivó M, Puigdemasa A, Casals L, Asensio E, Udina E, Navarro X. Immediate electrical stimulation enhances regeneration and reinnervation and modulates spinal plastic changes after sciatic nerve injury and repair. Exp Neurol 2008; 211:180-93. [PMID: 18316076 DOI: 10.1016/j.expneurol.2008.01.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 01/19/2008] [Accepted: 01/25/2008] [Indexed: 12/23/2022]
Abstract
We have studied whether electrical stimulation immediately after nerve injury may enhance axonal regeneration and modulate plastic changes at the spinal cord level underlying the appearance of hyperreflexia. Two groups of adult rats were subjected to sciatic nerve section followed by suture repair. One group (ES) received electrical stimulation (3 V, 0.1 ms at 20 Hz) for 1 h after injury. A second group served as control (C). Nerve conduction, H reflex, motor evoked potentials, and algesimetry tests were performed at 1, 3, 5, 7 and 9 weeks after surgery, to assess muscle reinnervation and changes in excitability of spinal cord circuitry. The electrophysiological results showed higher levels of reinnervation, and histological results a significantly higher number of regenerated myelinated fibers in the distal tibial nerve in group ES in comparison with group C. The monosynaptic H reflex was facilitated in the injured limb, to a higher degree in group C than in group ES. The amplitudes of motor evoked potentials were similar in both groups, although the MEP/M ratio was increased in group C compared to group ES, indicating mild central motor hyperexcitability. Immunohistochemical labeling of sensory afferents in the spinal cord dorsal horn showed prevention of the reduction in expression of substance P at one month postlesion in group ES. In conclusion, brief electrical stimulation applied after sciatic nerve injury promotes axonal regeneration over a long distance and reduces facilitation of spinal motor responses.
Collapse
Affiliation(s)
- Meritxell Vivó
- Group of Neuroplasticity and Regeneration, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Urazaev AK, Arganda S, Muller KJ, Sahley CL. Lasting changes in a network of interneurons after synapse regeneration and delayed recovery of sensitization. Neuroscience 2007; 150:915-25. [PMID: 18031937 DOI: 10.1016/j.neuroscience.2007.09.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 09/26/2007] [Accepted: 10/05/2007] [Indexed: 12/15/2022]
Abstract
Regeneration of neuronal circuits cannot be successful without restoration of full function, including recovery of behavioral plasticity, which we have found is delayed after regeneration of specific synapses. Experiments were designed to measure neuronal changes that may underlie recovery of function. Sensitization of the leech withdrawal reflex is a non-associative form of learning that depends on the S-interneuron. Cutting an S-cell axon in Faivre's nerve disrupted the capacity for sensitization. The S-cell axon regenerated its electrical synapse with its homologous cell after 3-4 weeks, but the capacity for sensitization was delayed for an additional 2-3 weeks. In the present experiments another form of non-associative conditioning, dishabituation, was also eliminated by S-cell axotomy; it returned following regeneration. Semi-intact preparations were made for behavioral studies, and chains of ganglia with some skin were used for intracellular recording and skin stimulation. In both preparations there was a similar time-course, during 6 weeks, of a lesion-induced decrease and delayed restoration of both S-cell action potential threshold to depolarizing pulses and S-cell firing in response to test stimuli. However, the ability of sensitizing stimuli to decrease S-cell threshold and enhance S-cell activity in response to test stimuli did not fully return after regeneration, indicating that there were lasting changes in the circuit extending beyond the period necessary for full recovery of behavior. Intracellular recordings from the axotomized S-cell revealed a shift in the usual balance of excitatory and inhibitory input, with inhibition enhanced. These results indicate that loss of behavioral plasticity of reflexive shortening following axotomy in the S-cell chain may be related to reduced S-cell activity, and that additional processes underlie full recovery of sensitization of the whole body shortening reflex.
Collapse
Affiliation(s)
- A K Urazaev
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
14
|
Navarro X, Vivó M, Valero-Cabré A. Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol 2007; 82:163-201. [PMID: 17643733 DOI: 10.1016/j.pneurobio.2007.06.005] [Citation(s) in RCA: 619] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 02/18/2007] [Accepted: 06/14/2007] [Indexed: 01/01/2023]
Abstract
Injuries to the peripheral nerves result in partial or total loss of motor, sensory and autonomic functions conveyed by the lesioned nerves to the denervated segments of the body, due to the interruption of axons continuity, degeneration of nerve fibers distal to the lesion and eventual death of axotomized neurons. Injuries to the peripheral nervous system may thus result in considerable disability. After axotomy, neuronal phenotype switches from a transmitter to a regenerative state, inducing the down- and up-regulation of numerous cellular components as well as the synthesis de novo of some molecules normally not expressed in adult neurons. These changes in gene expression activate and regulate the pathways responsible for neuronal survival and axonal regeneration. Functional deficits caused by nerve injuries can be compensated by three neural mechanisms: the reinnervation of denervated targets by regeneration of injured axons, the reinnervation by collateral branching of undamaged axons, and the remodeling of nervous system circuitry related to the lost functions. Plasticity of central connections may compensate functionally for the lack of specificity in target reinnervation; plasticity in human has, however, limited effects on disturbed sensory localization or fine motor control after injuries, and may even result in maladaptive changes, such as neuropathic pain, hyperreflexia and dystonia. Recent research has uncovered that peripheral nerve injuries induce a concurrent cascade of events, at the systemic, cellular and molecular levels, initiated by the nerve injury and progressing throughout plastic changes at the spinal cord, brainstem relay nuclei, thalamus and brain cortex. Mechanisms for these changes are ubiquitous in central substrates and include neurochemical changes, functional alterations of excitatory and inhibitory connections, atrophy and degeneration of normal substrates, sprouting of new connections, and reorganization of somatosensory and motor maps. An important direction for ongoing research is the development of therapeutic strategies that enhance axonal regeneration, promote selective target reinnervation, but are also able to modulate central nervous system reorganization, amplifying those positive adaptive changes that help to improve functional recovery but also diminishing undesirable consequences.
Collapse
Affiliation(s)
- X Navarro
- Group of Neuroplasticity and Regeneration, Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
| | | | | |
Collapse
|