1
|
Wang Z, Zhong R, Curran GL, Min P, Lowe VJ, Li L, Kandimalla KK. High-Density Lipoprotein Mimetic Peptide 4F Reduces Toxic Amyloid-Beta Exposure to the Blood-Brain Barrier Endothelium in Alzheimer's Disease Transgenic Mice. Mol Pharm 2024; 21:5661-5671. [PMID: 39394037 DOI: 10.1021/acs.molpharmaceut.4c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Aβ accumulation in the blood-brain barrier (BBB) endothelium, which lines the cerebrovascular lumen, is a significant contributor to cerebrovascular dysfunction in Alzheimer's disease (AD). Reduced high-density lipoprotein (HDL) levels are associated with increased AD risk, and the HDL mimetic peptide 4F has been developed as a promising therapeutic agent to improve cerebrovascular health in AD. In this study, we evaluated the impact of 4F on 125I-Aβ42 blood-to-brain distribution using dynamic SPECT/CT imaging in both wild-type and APP/PS1 transgenic mice. Graphical analysis of the imaging data demonstrated that 4F significantly reduced the blood-to-brain influx rate in wild-type mice and the distribution of 125I-Aβ42 in the BBB endothelium in APP/PS1 mice. To elucidate the molecular mechanisms underlying the effect of 4F, we evaluated its impact on the p38 pathway and its role in mediating Aβ42 trafficking in human BBB endothelial cell monolayers. Treatment with 4F significantly decreased Aβ42 induced p38 activation in BBB endothelial cells. Furthermore, inhibition of p38 kinase significantly reduced endothelial accumulation of fluorescence-labeled Aβ42 and luminal-to-abluminal permeability across the cell monolayer. While our previous publication has hinted at the potential of 4F to reduce Aβ accumulation in the brain parenchyma, the current findings demonstrated the protective effect of 4F in reducing Aβ42 accumulation in the BBB endothelium of AD transgenic mice. These findings revealed the impact of a clinically tested agent, the HDL mimetic peptide 4F, on Aβ exposure to the BBB endothelium and offer novel mechanistic insights into potential therapeutic strategies to treat cerebrovascular dysfunction in AD.
Collapse
Affiliation(s)
- Zengtao Wang
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rui Zhong
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Geoffry L Curran
- Departments of Radiology, Neurology, and Health Sciences, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Paul Min
- Departments of Radiology, Neurology, and Health Sciences, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Val J Lowe
- Departments of Radiology, Neurology, and Health Sciences, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Karunya K Kandimalla
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Zhang XL, Du WH, Qian SX, Lu XD, Yu X, Fang HL, Dong JL, Song M, Sun YY, Wu XQ, Shen YF, Hao YN, Shen MH, Zhou BQ, Wang YP, Xu CY, Jin XC. Glial growth factor 2 treatment alleviates ischemia and reperfusion-damaged integrity of the blood-brain barrier through decreasing Mfsd2a/caveolin-1-mediated transcellular and Pdlim5/YAP/TAZ-mediated paracellular permeability. Acta Pharmacol Sin 2024; 45:2241-2252. [PMID: 38902501 PMCID: PMC11489722 DOI: 10.1038/s41401-024-01323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
The impairment of blood-brain barrier (BBB) integrity is the pathological basis of hemorrhage transformation and vasogenic edema following thrombolysis and endovascular therapy. There is no approved drug in the clinic to reduce BBB damage after acute ischemic stroke (AIS). Glial growth factor 2 (GGF2), a recombinant version of neuregulin-1β that can stimulates glial cell proliferation and differentiation, has been shown to alleviate free radical release from activated microglial cells. We previously found that activated microglia and proinflammatory factors could disrupt BBB after AIS. In this study we investigated the effects of GGF2 on AIS-induced BBB damage as well as the underlying mechanisms. Mouse middle cerebral artery occlusion model was established: mice received a 90-min ischemia and 22.5 h reperfusion (I/R), and were treated with GGF2 (2.5, 12.5, 50 ng/kg, i.v.) before the reperfusion. We showed that GGF2 treatment dose-dependently decreased I/R-induced BBB damage detected by Evans blue (EB) and immunoglobulin G (IgG) leakage, and tight junction protein occludin degradation. In addition, we found that GGF2 dose-dependently reversed AIS-induced upregulation of vesicular transcytosis increase, caveolin-1 (Cav-1) as well as downregulation of major facilitator superfamily domain containing 2a (Mfsd2a). Moreover, GGF2 decreased I/R-induced upregulation of PDZ and LIM domain protein 5 (Pdlim5), an adaptor protein that played an important role in BBB damage after AIS. In addition, GGF2 significantly alleviated I/R-induced reduction of YAP and TAZ, microglial cell activation and upregulation of inflammatory factors. Together, these results demonstrate that GGF2 treatment alleviates the I/R-compromised integrity of BBB by inhibiting Mfsd2a/Cav-1-mediated transcellular permeability and Pdlim5/YAP/TAZ-mediated paracellular permeability.
Collapse
Affiliation(s)
- Xiao-Ling Zhang
- Department of Neurology, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 314033, China
| | - Wei-Hong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Shu-Xia Qian
- Department of Neurology, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 314033, China
| | - Xu-Dong Lu
- Department of Neurology, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 314033, China
| | - Xin Yu
- Department of Neurology, Bengbu Medical College, Bengbu, 233030, China
| | - Hai-Lun Fang
- Department of Neurology, Bengbu Medical College, Bengbu, 233030, China
| | - Jia-Li Dong
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Min Song
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yan-Yun Sun
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xiao-Qiang Wu
- Department of Neurology, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 314033, China
| | - Yu-Fei Shen
- Department of Neurology, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 314033, China
| | - Ya-Nan Hao
- Department of Neurology, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 314033, China
| | - Min-Hui Shen
- Department of Neurology, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 314033, China
| | - Bei-Qun Zhou
- Department of Neurology, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 314033, China
| | - Yan-Ping Wang
- Department of Neurology, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 314033, China.
| | - Cong-Ying Xu
- Department of Neurology, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 314033, China.
| | - Xin-Chun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| |
Collapse
|
3
|
Ostermann PN, Evering TH. The impact of aging on HIV-1-related neurocognitive impairment. Ageing Res Rev 2024; 102:102513. [PMID: 39307316 DOI: 10.1016/j.arr.2024.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Depending on the population studied, HIV-1-related neurocognitive impairment is estimated to impact up to half the population of people living with HIV (PLWH) despite the availability of combination antiretroviral therapy (cART). Various factors contribute to this neurocognitive impairment, which complicates our understanding of the molecular mechanisms involved. Biological aging has been implicated as one factor possibly impacting the development and progression of HIV-1-related neurocognitive impairment. This is increasingly important as the life expectancy of PLWH with virologic suppression on cART is currently projected to be similar to that of individuals not living with HIV. Based on our increasing understanding of the biological aging process on a cellular level, we aim to dissect possible interactions of aging- and HIV-1 infection-induced effects and their role in neurocognitive decline. Thus, we begin by providing a brief overview of the clinical aspects of HIV-1-related neurocognitive impairment and review the accumulating evidence implicating aging in its development (Part I). We then discuss potential interactions between aging-associated pathways and HIV-1-induced effects at the molecular level (Part II).
Collapse
Affiliation(s)
- Philipp Niklas Ostermann
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Teresa Hope Evering
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
4
|
Banks WA, Hansen KM, Erickson MA, Crews FT. High-mobility group box 1 (HMGB1) crosses the BBB bidirectionally. Brain Behav Immun 2023; 111:386-394. [PMID: 37146655 DOI: 10.1016/j.bbi.2023.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023] Open
Abstract
High-mobility group box 1 (HMGB1) is a ubiquitous protein that regulates transcription in the nucleus, and is an endogenous damage-associated molecular pattern molecule that activates the innate immune system. HMGB1 activates the TLR4 and RAGE recepto, inducing downstream signals reminiscent of cytokines that have been found to cross the blood-brain barrier (BBB). Blood HMGB1 increases in stroke, sepsis, senescence, alcohol binge drinking and other conditions. Here, we examined the ability of HMGB1 radioactively labeled with iodine (I-HMGB1) to cross the BBB. We found that I-HMGB1 readily entered into mouse brain from the circulation with a unidirectional influx rate of 0.654 μl/g-min. All brain regions tested took up I-HMGB1; uptake was greatest by the olfactory bulb and least in the striatum. Transport was not reliably inhibited by unlabeled HMGB1 nor by inhibitors of TLR4, TLR2, RAGE, or CXCR4. Uptake was enhanced by co-injection of wheatgerm agglutinin, suggestive of involvement of absorptive transcytosis as a mechanism of transport. Induction of inflammation/neuroinflammation with lipopolysaccharide is known to increase blood HMGB1; we report here that brain transport is also increased by LPS-induced inflammation. Finally, we found that I-HMGB1 was also transported in the brain-to-blood direction, with both unlabeled HMGB1 or lipopolysaccharide increasing the transport rate. These results show that HMGB1 can bidirectionally cross the BBB and that those transport rates are enhanced by inflammation. Such transport provides a mechanism by which HMGB1 levels would impact neuroimmune signaling in both the brain and periphery.
Collapse
Affiliation(s)
- William A Banks
- Geriatric Research Educational and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, US State; Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA, US State.
| | - Kim M Hansen
- Geriatric Research Educational and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, US State; Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA, US State
| | - Michelle A Erickson
- Geriatric Research Educational and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, US State; Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA, US State
| | - Fulton T Crews
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, US State
| |
Collapse
|
5
|
Abdelsalam M, Ahmed M, Osaid Z, Hamoudi R, Harati R. Insights into Exosome Transport through the Blood-Brain Barrier and the Potential Therapeutical Applications in Brain Diseases. Pharmaceuticals (Basel) 2023; 16:571. [PMID: 37111328 PMCID: PMC10144189 DOI: 10.3390/ph16040571] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Drug delivery to the central nervous system (CNS) is limited due to the presence of the blood-brain barrier (BBB), a selective physiological barrier located at the brain microvessels that regulates the flow of cells, molecules and ions between the blood and the brain. Exosomes are nanosized extracellular vesicles expressed by all cell types and that function as cargos, allowing for communication between the cells. The exosomes were shown to cross or regulate the BBB in healthy and disease conditions. However, the mechanistic pathways by which exosomes cross the BBB have not been fully elucidated yet. In this review, we explore the transport mechanisms of exosomes through the BBB. A large body of evidence suggests that exosome transport through the BBB occurs primarily through transcytosis. The transcytosis mechanisms are influenced by several regulators. Inflammation and metastasis also enhance exosome trafficking across the BBB. We also shed light on the therapeutical applications of exosomes for treating brain diseases. Further investigations are essential to provide clearer insights related to trafficking of exosomes across the BBB and disease treatment.
Collapse
Affiliation(s)
- Manal Abdelsalam
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (M.A.); (M.A.); (Z.O.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Munazza Ahmed
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (M.A.); (M.A.); (Z.O.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Zaynab Osaid
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (M.A.); (M.A.); (Z.O.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Rifat Hamoudi
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Division of Surgery and Interventional Science, University College London, London W1W 7EJ, UK
| | - Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (M.A.); (M.A.); (Z.O.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| |
Collapse
|
6
|
Peng X, Luo Z, He S, Zhang L, Li Y. Blood-Brain Barrier Disruption by Lipopolysaccharide and Sepsis-Associated Encephalopathy. Front Cell Infect Microbiol 2021; 11:768108. [PMID: 34804998 PMCID: PMC8599158 DOI: 10.3389/fcimb.2021.768108] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 12/29/2022] Open
Abstract
As a complex multicellular structure of the vascular system at the central nervous system (CNS), the blood-brain barrier (BBB) separates the CNS from the system circulation and regulates the influx and efflux of substances to maintain the steady-state environment of the CNS. Lipopolysaccharide (LPS), the cell wall component of Gram-negative bacteria, can damage the barrier function of BBB and further promote the occurrence and development of sepsis-associated encephalopathy (SAE). Here, we conduct a literature review of the direct and indirect damage mechanisms of LPS to BBB and the relationship between these processes and SAE. We believe that after LPS destroys BBB, a large number of inflammatory factors and neurotoxins will enter and damage the brain tissue, which will activate brain immune cells to mediate inflammatory response and in turn further destroys BBB. This vicious circle will ultimately lead to the progression of SAE. Finally, we present a succinct overview of the treatment of SAE by restoring the BBB barrier function and summarize novel opportunities in controlling the progression of SAE by targeting the BBB.
Collapse
Affiliation(s)
- Xiaoyao Peng
- Department of Clinical Medicine, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Zhixuan Luo
- Department of Clinical Medicine, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Shuang He
- Department of Clinical Medicine, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Luhua Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ying Li
- Department of Immunology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Transport of Extracellular Vesicles across the Blood-Brain Barrier: Brain Pharmacokinetics and Effects of Inflammation. Int J Mol Sci 2020; 21:ijms21124407. [PMID: 32575812 PMCID: PMC7352415 DOI: 10.3390/ijms21124407] [Citation(s) in RCA: 270] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles can cross the blood–brain barrier (BBB), but little is known about passage. Here, we used multiple-time regression analysis to examine the ability of 10 exosome populations derived from mouse, human, cancerous, and non-cancerous cell lines to cross the BBB. All crossed the BBB, but rates varied over 10-fold. Lipopolysaccharide (LPS), an activator of the innate immune system, enhanced uptake independently of BBB disruption for six exosomes and decreased uptake for one. Wheatgerm agglutinin (WGA) modulated transport of five exosome populations, suggesting passage by adsorptive transcytosis. Mannose 6-phosphate inhibited uptake of J774A.1, demonstrating that its BBB transporter is the mannose 6-phosphate receptor. Uptake rates, patterns, and effects of LPS or WGA were not predicted by exosome source (mouse vs. human) or cancer status of the cell lines. The cell surface proteins CD46, AVβ6, AVβ3, and ICAM-1 were variably expressed but not predictive of transport rate nor responses to LPS or WGA. A brain-to-blood efflux mechanism variably affected CNS retention and explains how CNS-derived exosomes enter blood. In summary, all exosomes tested here readily crossed the BBB, but at varying rates and by a variety of vesicular-mediated mechanisms involving specific transporters, adsorptive transcytosis, and a brain-to-blood efflux system.
Collapse
|
8
|
Xu R, Wang J, Xu J, Song X, Huang H, Feng Y, Fu C. Rhynchophylline Loaded-mPEG-PLGA Nanoparticles Coated with Tween-80 for Preliminary Study in Alzheimer's Disease. Int J Nanomedicine 2020; 15:1149-1160. [PMID: 32110013 PMCID: PMC7035889 DOI: 10.2147/ijn.s236922] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/01/2020] [Indexed: 02/05/2023] Open
Abstract
Purpose Alzheimer’s disease (AD) is a growing concern in the modern society. The current drugs approved by FDA are not very promising. Rhynchophylline (RIN) is a major active tetracyclic oxindole alkaloid stem from traditional Chinese medicine uncaria species, which has potential activities beneficial for the treatment of AD. However, the application of rhynchophylline for AD treatment is restricted by the low water solubility, low concentration in brain tissue and low bioavailability. And there is no study of brain-targeting therapy with RIN. In this work, we prepared rhynchophylline loaded methoxy poly (ethylene glycol)–poly (dl-lactide-co-glycolic acid) (mPEG-PLGA) nanoparticles (NPS-RIN), which coupled with Tween 80 (T80) further for brain targeting delivery (T80-NPS-RIN). Methods Preparation and characterization of T80-NPS-RIN were followed by the detection of transportation across the blood–brain barrier (BBB) model in vitro, biodistribution and neuroprotective effects of nanoparticles. Results The results indicated T80-NPS-RIN could usefully assist RIN to pass through the BBB to the brain. T80-NPS-RIN treatment regulated the activity of neurons in vitro. Conclusion The presented data confirmed that rhynchophylline encapsulated mPEG-PLGA nanoparticles coated with Tween 80 could across through the BBB and exhibited efficient neuroprotective effects. The T80-NPS-RIN nanoparticles have a chance to be an alternative drug to the therapy of AD.
Collapse
Affiliation(s)
- Ruiling Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Junying Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Juanjuan Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiangrong Song
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, People's Republic of China
| | - Hai Huang
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, People's Republic of China
| | - Yue Feng
- College of Pharmacy, Southwest University for Nationalities, Chengdu 610041, People's Republic of China
| | - Chunmei Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
9
|
Vojdani A, Vojdani E, Herbert M, Kharrazian D. Correlation between Antibodies to Bacterial Lipopolysaccharides and Barrier Proteins in Sera Positive for ASCA and ANCA. Int J Mol Sci 2020; 21:ijms21041381. [PMID: 32085663 PMCID: PMC7073094 DOI: 10.3390/ijms21041381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/10/2020] [Accepted: 02/16/2020] [Indexed: 12/17/2022] Open
Abstract
Individuals with intestinal barrier dysfunction are more prone to autoimmunity. Lipopolysaccharides (LPS) from gut bacteria have been shown to play a role in systemic inflammation, leading to the opening of the gut and blood-brain barrier (BBB). This study aims to measure antibodies against LPS and barrier proteins in samples positive for anti-Saccharomyces cerevisiae antibodies (ASCA) and anti-neutrophil cytoplasmic antibodies (ANCA) and compare them with these same antibodies in controls to determine whether a correlation between LPS and barrier proteins could be found. We obtained 94 ASCA- and 94 ANCA-positive blood samples, as well as 188 blood samples from healthy controls. Samples were assessed for antibodies to LPS, zonulin+occludin, S100B, and aquaporin-4 (AQP4). Results show significant elevation in antibodies in about 30% of ASCA- and ANCA-positive sera and demonstrate positive linear relationships between these antibodies. The findings suggest that individuals positive for ASCA and ANCA have increased odds of developing intestinal and BBB permeability compared to healthy subjects. The levels of LPS antibodies in both ASCA- and ANCA-positive and negative specimens showed from low and moderate to high correlation with antibodies to barrier proteins. This study shows that LPS, by damaging the gut and BBBs, contribute to the extra-intestinal manifestation of IBD. We conclude that IBD patients should be screened for LPS antibodies in an effort to detect or prevent possible barrier damage at the earliest stage possible to abrogate disease symptoms in IBS and associated disorders.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab, Inc. 822 S. Robertson Blvd, Ste 312, Los Angeles, CA 90035, USA
- Department of Preventive Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
- Correspondence: ; Tel.: +1-310-657-1077
| | - Elroy Vojdani
- Regenera Medical, 11860 Wilshire Blvd., Ste. 301, Los Angeles, CA 90025, USA;
| | - Martha Herbert
- Martha Herbert, Pediatric Neurology, Massachusetts General Hospital, Rm CNY149-2nd Floor, Boston, MA 02114, USA;
| | - Datis Kharrazian
- Department of Preventive Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
- Department of Neurology, Harvard Medical, Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| |
Collapse
|
10
|
Sun M, Shinoda Y, Fukunaga K. KY-226 Protects Blood-brain Barrier Function Through the Akt/FoxO1 Signaling Pathway in Brain Ischemia. Neuroscience 2018; 399:89-102. [PMID: 30579831 DOI: 10.1016/j.neuroscience.2018.12.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/12/2018] [Accepted: 12/16/2018] [Indexed: 01/05/2023]
Abstract
KY-226 is a protein tyrosine phosphatase 1B (PTP1B) inhibitor that protects neurons from cerebral ischemic injury. KY-226 restores Akt (protein kinase B) phosphorylation and extracellular signal-regulated kinase (ERK) reduction in transient middle cerebral artery occlusion (tMCAO) damage. However, the mechanisms underlying the neuroprotective effects of KY-226 are unclear. To address this, the effects of KY-226 on blood-brain barrier (BBB) dysfunction were examined in tMCAO mice. KY-226 (10 mg/kg, i.p.) was administered to ICR mice 30 min after 2 h of tMCAO. To assess Akt or ERK involvement, wortmannin (i.c.v.) or U0126 (i.v.), selective inhibitors of PI3K and ERK, respectively, were administered to mice 30 min before ischemia. BBB integrity was assessed by Evans blue leakage 24 h post-reperfusion. The levels of tight junction (TJ) proteins, ZO-1 and occludin, were measured by western blotting; ZO-1 mRNA level was measured by RT-PCR. Compared to vehicle, KY-226 treatment prevented BBB breakdown and reduction in TJ protein levels. KY-226 treatment restored ZO-1 mRNA levels post-reperfusion. Pre-administration of wortmannin or U0126 blocked the protective effects of KY-226 on ZO-1 protein and mRNA reduction in tMCAO mice. In bEnd.3 cells, lipopolysaccharide treatment reduced mRNA and protein levels of ZO-1, an effect rescued by KY-226 treatment. Further, KY-226 treatment restored phosphorylation of pAkt (T308) and its downstream target forkhead box protein O1 (FoxO1) (S256) in bEnd.3 cells. Collectively, we demonstrate that KY-226 protects BBB integrity by restoration of TJ proteins, an effect partly mediated by Akt/FoxO1 pathway activation. Thus, protection of BBB integrity likely underlies KY-226-induced neuroprotection in tMCAO mice.
Collapse
Affiliation(s)
- Meiling Sun
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Japan
| | - Yasuharu Shinoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Japan.
| |
Collapse
|
11
|
Effects of docosahexaenoic acid on locomotor activity in ethanol-treated HIV-1 transgenic rats. J Neurovirol 2017; 24:88-97. [PMID: 29260441 DOI: 10.1007/s13365-017-0597-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/26/2017] [Accepted: 11/01/2017] [Indexed: 01/17/2023]
Abstract
Binge drinking affects the onset and progression of human immunodeficiency virus (HIV)-associated neurological disorders. The HIV-1 transgenic (HIV-1Tg) rat was created with a gag- and pol-deleted HIV-1 viral genome to mimic HIV-infected patients receiving combination anti-retroviral therapy (cART). Docosahexaenoic acid (DHA) is a marine compound that modulates inflammatory responses. Using HIV-1Tg rats subjected to binge exposure to ethanol (EtOH), this study examined whether DHA could reduce the detrimental neurological effects of EtOH and HIV proteins. Young adult male HIV-1Tg and F344 control rats received 4 mL/kg/day saline as a control (Saline group), 20 mg/kg/day DHA (DHA group), 4.8 g/kg/day 52% w/v EtOH (EtOH group), or 4.8 g/kg/day 52% w/v EtOH and 20 mg/kg/d DHA (DHA + EtOH group) by gavage for 5 weeks (n = 6 per group). EtOH was administrated on days 5, 6, and 7 of each week. Locomotor activity (LMA) was assessed using open field tests before and 45, 90, 135, and 180 min after each treatment. Repeated binge EtOH exposure gradually decreased LMA measured before daily treatments in HIV-1Tg and F344 rats, an effect that was reversed by DHA only in the HIV-1Tg rats. Decreased LMA of rats after treatment and under the influence of EtOH was less pronounced, and the reversal effect of DHA did not reach statistical significance. The plasma endotoxin level was significantly higher in HIV-1Tg rats than in F344 rats. IL-6 and IL-18 expression in the striatum was significantly higher in the HIV-1Tg EtOH group than in the F344 EtOH group. DHA significantly decreased the high levels of IL-6, IL-18, and NF-κB expression observed in the HIV-1Tg EtOH group. DHA appears to ameliorate inflammation and consequently lessen the reductions in LMA produced by the combination of EtOH and HIV-1 viral proteins.
Collapse
|
12
|
Logsdon AF, Erickson MA, Rhea EM, Salameh TS, Banks WA. Gut reactions: How the blood-brain barrier connects the microbiome and the brain. Exp Biol Med (Maywood) 2017; 243:159-165. [PMID: 29169241 DOI: 10.1177/1535370217743766] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A growing body of evidence indicates that the microbiome interacts with the central nervous system (CNS) and can regulate many of its functions. One mechanism for this interaction is at the level of the blood-brain barriers (BBBs). In this minireview, we examine the several ways the microbiome is known to interact with the CNS barriers. Bacteria can directly release factors into the systemic circulation or can translocate into blood. Once in the blood, the microbiome and its factors can alter peripheral immune cells to promote interactions with the BBB and ultimately with other elements of the neurovascular unit. Bacteria and their factors or cytokines and other immune-active substances released from peripheral sites under the influence of the microbiome can cross the BBB, alter BBB integrity, change BBB transport rates, or induce release of neuroimmune substances from the barrier cells. Metabolic products produced by the microbiome, such as short-chain fatty acids, can cross the BBB to affect brain function. Through these and other mechanisms, microbiome-BBB interactions can influence the course of diseases as illustrated by multiple sclerosis. Impact statement The connection between the gut microbiome and central nervous system (CNS) disease is not fully understood. Host immune systems are influenced by changes to the microbiota and offers new treatment strategies for CNS disease. Preclinical studies provide evidence of changes to the blood-brain barrier when animals are subject to experimental gut infection or when the animals lack a normal gut microbiome. The intestine also contains a barrier, and bacterial factors can translocate to the blood and interact with host immune cells. These metastatic bacterial factors can signal T-cells to become more CNS penetrant, thus providing a novel intervention for treating CNS disease. Studies in humans show the therapeutic effects of T-cell engineering for the treatment of leukemia, so perhaps a similar approach for CNS disease could prove effective. Future research should begin to define the bacterial species that can cause immune cells to differentiate and how these interactions vary amongst CNS disease models.
Collapse
Affiliation(s)
- Aric F Logsdon
- 1 Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98159, USA.,2 Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Michelle A Erickson
- 1 Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98159, USA.,2 Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Elizabeth M Rhea
- 1 Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98159, USA.,2 Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Therese S Salameh
- 1 Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98159, USA.,2 Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - William A Banks
- 1 Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98159, USA.,2 Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| |
Collapse
|
13
|
Varatharaj A, Galea I. The blood-brain barrier in systemic inflammation. Brain Behav Immun 2017; 60:1-12. [PMID: 26995317 DOI: 10.1016/j.bbi.2016.03.010] [Citation(s) in RCA: 707] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/06/2016] [Accepted: 03/15/2016] [Indexed: 12/22/2022] Open
Abstract
The blood-brain barrier (BBB) plays a key role in maintaining the specialized microenvironment of the central nervous system (CNS), and enabling communication with the systemic compartment. BBB changes occur in several CNS pathologies. Here, we review disruptive and non-disruptive BBB changes in systemic infections and other forms of systemic inflammation, and how these changes may affect CNS function in health and disease. We first describe the structure and function of the BBB, and outline the techniques used to study the BBB in vitro, and in animal and human settings. We then summarise the evidence from a range of models linking BBB changes with systemic inflammation, and the underlying mechanisms. The clinical relevance of these BBB changes during systemic inflammation are discussed in the context of clinically-apparent syndromes such as sickness behaviour, delirium, and septic encephalopathy, as well as neurological conditions such as Alzheimer's disease and multiple sclerosis. We review emerging evidence for two novel concepts: (1) a heightened sensitivity of the diseased, versus healthy, BBB to systemic inflammation, and (2) the contribution of BBB changes induced by systemic inflammation to progression of the primary disease process.
Collapse
Affiliation(s)
- Aravinthan Varatharaj
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Mailpoint 806, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, United Kingdom.
| | - Ian Galea
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Mailpoint 806, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, United Kingdom.
| |
Collapse
|
14
|
Rodriguez-Castaño GP, Caro-Quintero A, Reyes A, Lizcano F. Advances in Gut Microbiome Research, Opening New Strategies to Cope with a Western Lifestyle. Front Genet 2017; 7:224. [PMID: 28119734 PMCID: PMC5222858 DOI: 10.3389/fgene.2016.00224] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022] Open
Abstract
The "westernization" of global eating and lifestyle habits is associated with the growing rate of chronic diseases, mainly cardiovascular diseases, cancer, type 2 diabetes mellitus, and respiratory diseases. The primary prevention approach is to make nutritional and behavioral changes, however, there is another important determinant of our health that only recently has been considered and is the presence of beneficial microorganisms and their products in our gastrointestinal tract. Microorganisms living in our body can alter the fate of food, drugs, hormones, and xenobiotics, and recent studies point to the use of microorganisms that can counteract the harmful effects of certain compounds introduced or produced endogenously in our body. This review considers the effects of the western lifestyle on adiposity, glucose metabolism, oxidative markers and inflammation profile, emphasizes on the studies that have investigated bacterial strains and products of their metabolism that are beneficial under this lifestyle, and examines the screening strategies that recent studies are using to select the most promising probiotic isolates. In addition, we consider the relevance of studying the microbiota of metabolically healthy people under a western lifestyle for the understanding of the key components that delay the development of chronic diseases.
Collapse
Affiliation(s)
| | - Alejandro Caro-Quintero
- Corporación de Investigación Agropecuaria CORPOICA, Centro de Investigación Tibaitatá Mosquera, Colombia
| | - Alejandro Reyes
- Department of Biological Sciences, Universidad de los AndesBogotá, Colombia; Center for Genome Sciences and Systems Biology, Washington University School of MedicineSt. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of MedicineSt. Louis, MO, USA
| | - Fernando Lizcano
- Center of Biomedical Research, CIBUS, Universidad de La Sabana Chía, Colombia
| |
Collapse
|
15
|
Banks WA, Gray AM, Erickson MA, Salameh TS, Damodarasamy M, Sheibani N, Meabon JS, Wing EE, Morofuji Y, Cook DG, Reed MJ. Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit. J Neuroinflammation 2015; 12:223. [PMID: 26608623 PMCID: PMC4660627 DOI: 10.1186/s12974-015-0434-1] [Citation(s) in RCA: 404] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/14/2015] [Indexed: 01/31/2023] Open
Abstract
Background Disruption of the blood-brain barrier (BBB) occurs in many diseases and is often mediated by inflammatory and neuroimmune mechanisms. Inflammation is well established as a cause of BBB disruption, but many mechanistic questions remain. Methods We used lipopolysaccharide (LPS) to induce inflammation and BBB disruption in mice. BBB disruption was measured using 14C-sucrose and radioactively labeled albumin. Brain cytokine responses were measured using multiplex technology and dependence on cyclooxygenase (COX) and oxidative stress determined by treatments with indomethacin and N-acetylcysteine. Astrocyte and microglia/macrophage responses were measured using brain immunohistochemistry. In vitro studies used Transwell cultures of primary brain endothelial cells co- or tri-cultured with astrocytes and pericytes to measure effects of LPS on transendothelial electrical resistance (TEER), cellular distribution of tight junction proteins, and permeability to 14C-sucrose and radioactive albumin. Results In comparison to LPS-induced weight loss, the BBB was relatively resistant to LPS-induced disruption. Disruption occurred only with the highest dose of LPS and was most evident in the frontal cortex, thalamus, pons-medulla, and cerebellum with no disruption in the hypothalamus. The in vitro and in vivo patterns of LPS-induced disruption as measured with 14C-sucrose, radioactive albumin, and TEER suggested involvement of both paracellular and transcytotic pathways. Disruption as measured with albumin and 14C-sucrose, but not TEER, was blocked by indomethacin. N-acetylcysteine did not affect disruption. In vivo, the measures of neuroinflammation induced by LPS were mainly not reversed by indomethacin. In vitro, the effects on LPS and indomethacin were not altered when brain endothelial cells (BECs) were cultured with astrocytes or pericytes. Conclusions The BBB is relatively resistant to LPS-induced disruption with some brain regions more vulnerable than others. LPS-induced disruption appears is to be dependent on COX but not on oxidative stress. Based on in vivo and in vitro measures of neuroinflammation, it appears that astrocytes, microglia/macrophages, and pericytes play little role in the LPS-mediated disruption of the BBB.
Collapse
Affiliation(s)
- William A Banks
- Geriatric Research Education and Clinical Center-VA Puget Sound Health Care System, Seattle, WA, USA. .,Division of Gerontology and Geriatric Medicine, Department of Internal Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | - Alicia M Gray
- University of Washington School of Medicine, Seattle, WA, USA.
| | - Michelle A Erickson
- Geriatric Research Education and Clinical Center-VA Puget Sound Health Care System, Seattle, WA, USA. .,Division of Gerontology and Geriatric Medicine, Department of Internal Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | - Therese S Salameh
- Geriatric Research Education and Clinical Center-VA Puget Sound Health Care System, Seattle, WA, USA.
| | - Mamatha Damodarasamy
- Division of Gerontology and Geriatric Medicine, Department of Internal Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | - Nader Sheibani
- Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - James S Meabon
- Mental Health Research Education and Clinical Center-VA Puget Sound Health Care System, Seattle, WA, USA.
| | - Emily E Wing
- Geriatric Research Education and Clinical Center-VA Puget Sound Health Care System, Seattle, WA, USA.
| | - Yoichi Morofuji
- Geriatric Research Education and Clinical Center-VA Puget Sound Health Care System, Seattle, WA, USA. .,Division of Gerontology and Geriatric Medicine, Department of Internal Medicine, University of Washington School of Medicine, Seattle, WA, USA. .,Department of Neurosurgery, University of Nagasaki, Nagasaki, Japan.
| | - David G Cook
- Geriatric Research Education and Clinical Center-VA Puget Sound Health Care System, Seattle, WA, USA.
| | - May J Reed
- Division of Gerontology and Geriatric Medicine, Department of Internal Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
16
|
Alpha Adrenergic Induction of Transport of Lysosomal Enzyme across the Blood-Brain Barrier. PLoS One 2015; 10:e0142347. [PMID: 26545208 PMCID: PMC4636227 DOI: 10.1371/journal.pone.0142347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/20/2015] [Indexed: 01/14/2023] Open
Abstract
The impermeability of the adult blood-brain barrier (BBB) to lysosomal enzymes impedes the ability to treat the central nervous system manifestations of lysosomal storage diseases. Here, we found that simultaneous stimulation of the alpha1 and alpha2 adrenoreceptor restores in adult mice the high rate of transport for the lysosomal enzyme P-GUS that is seen in neonates but lost with development. Beta adrenergics, other monoamines, and acetylcholine did not restore this transport. A high dose (500 microg/mouse) of clonidine, a strong alpha2 and weak alpha1 agonist, was able to act as monotherapy in the stimulation of P-GUS transport. Neither use of alpha1 plus alpha2 agonists nor the high dose clonidine disrupted the BBB to albumin. In situ brain perfusion and immunohistochemistry studies indicated that adrengerics act on transporters already at the luminal surface of brain endothelial cells. These results show that adrenergic stimulation, including monotherapy with clonidine, could be key for CNS enzyme replacement therapy.
Collapse
|
17
|
LPS Induces Occludin Dysregulation in Cerebral Microvascular Endothelial Cells via MAPK Signaling and Augmenting MMP-2 Levels. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:120641. [PMID: 26290681 PMCID: PMC4531183 DOI: 10.1155/2015/120641] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/28/2015] [Accepted: 06/29/2015] [Indexed: 12/18/2022]
Abstract
Disrupted blood-brain barrier (BBB) integrity contributes to cerebral edema during central nervous system infection. The current study explored the mechanism of lipopolysaccharide- (LPS-) induced dysregulation of tight junction (TJ) proteins. Human cerebral microvascular endothelial cells (hCMEC/D3) were exposed to LPS, SB203580 (p38MAPK inhibitor), or SP600125 (JNK inhibitor), and cell vitality was determined by MTT assay. The proteins expressions of p38MAPK, JNK, and TJs (occludin and zonula occludens- (ZO-) 1) were determined by western blot. The mRNA levels of TJ components and MMP-2 were measured with quantitative real-time polymerase chain reaction (qRT-PCR), and MMP-2 protein levels were determined by enzyme-linked immunosorbent assay (ELISA). LPS, SB203580, and SP600125 under respective concentrations of 10, 7.69, or 0.22 µg/mL had no effects on cell vitality. Treatment with LPS decreased mRNA and protein levels of occludin and ZO-1 and enhanced p38MAPK and JNK phosphorylation and MMP-2 expression. These effects were attenuated by pretreatment with SB203580 or SP600125, but not in ZO-1 expression. Both doxycycline hyclate (a total MMP inhibitor) and SB-3CT (a specific MMP-2 inhibitor) partially attenuated the LPS-induced downregulation of occludin. These data suggest that MMP-2 overexpression and p38MAPK/JNK pathways are involved in the LPS-mediated alterations of occludin in hCMEC/D3; however, ZO-1 levels are not influenced by p38MAPK/JNK.
Collapse
|
18
|
Yu HY, Cai YB, Liu Z. Activation of AMPK improves lipopolysaccharide-induced dysfunction of the blood–brain barrier in mice. Brain Inj 2015; 29:777-84. [DOI: 10.3109/02699052.2015.1004746] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Yu-Bing Cai
- Department of Otorhinolaryngology, The People’s Hospital of Xishui, Huang-Gang, Hubei, PR China, and
| | - Zhan Liu
- Department of Neurology,
- Department of Gastroenterology, People’s Hospital of Hunan Province, Hunan Normal University, Changsha, Hunan, PR China
| |
Collapse
|
19
|
Hong S, Banks WA. Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications. Brain Behav Immun 2015; 45:1-12. [PMID: 25449672 PMCID: PMC4342286 DOI: 10.1016/j.bbi.2014.10.008] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 12/16/2022] Open
Abstract
Individuals living with HIV who are optimally treated with combination antiretroviral therapy (cART) can now lead an extended life. In spite of this remarkable survival benefit from viral suppression achieved by cART in peripheral blood, the rate of mild to moderate cognitive impairment remains high. A cognitive decline that includes impairments in attention, learning and executive function is accompanied by increased rates of mood disorders that together adversely impact the daily life of those with chronic HIV infection. The evidence is clear that cells in the brain are infected with HIV that has crossed the blood-brain barrier both as cell-free virus and within infected monocytes and T cells. Viral proteins that circulate in blood can induce brain endothelial cells to release cytokines, invoking another source of neuroinflammation. The difficulty of efficient delivery of cART to the central nervous system (CNS) contributes to elevated viral load in the CNS, resulting in a persistent HIV-associated neurocognitive disorders (HAND). The pathogenesis of HAND is multifaceted, and mounting evidence indicates that immune cells play a major role. HIV-infected monocytes and T cells not only infect brain resident cells upon migration into the CNS but also produce proinflammatory cytokines such as TNF and IL-1ß, which in turn, further activate microglia and astrocytes. These activated brain resident cells, along with perivascular macrophages, are the main contributors to neuroinflammation in HIV infection and release neurotoxic factors such as excitatory amino acids and inflammatory mediators, resulting in neuronal dysfunction and death. Cytokines, which are elevated in the blood of patients with HIV infection, may also contribute to brain inflammation by entering the brain from the blood. Host factors such as aging and co-morbid conditions such as cytomegalovirus co-infection and vascular pathology are important factors that affect the HIV-host immune interactions in HAND pathogenesis. By these diverse mechanisms, HIV-1 induces a neuroinflammatory response that is likely to be a major contributor to the cognitive and behavior changes seen in HIV infection.
Collapse
Affiliation(s)
- Suzi Hong
- Department of Psychiatry, University of California San Diego, United States.
| | - William A. Banks
- Geriatric Research Clinical and Education Center, Veterans Affairs Puget Sound Health Care System and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine
| |
Collapse
|
20
|
Banks WA. The blood-brain barrier in neuroimmunology: Tales of separation and assimilation. Brain Behav Immun 2015; 44:1-8. [PMID: 25172555 PMCID: PMC4275374 DOI: 10.1016/j.bbi.2014.08.007] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 01/25/2023] Open
Abstract
Neuroimmunology is concerned with the relations between the central nervous and immune systems and with the mechanisms that drive those relations. The blood-brain barrier (BBB) employs mechanisms that both separate and connect these two systems. In fact, the relative immune privilege of the central nervous system (CNS) is largely attributable to the BBB's ability to prevent the unregulated exchange of immune cells and their secretions between the CNS and blood. Having separated the two systems, the BBB then participates in mechanisms that allow them to influence, communicate, and interact with one another. Likewise, the BBB itself is influenced by immune events that are occurring in the periphery and in the CNS so that these three components (the BBB, the immune system, and the CNS) form neuroimmune axes that adapt to physiological and pathological conditions. To date, four major themes have emerged by which the BBB participates in these neuroimmune axes. The first of these four, the formation of the barrier, acts to separate the immune and central nervous systems. The other three themes provide mechanisms for re-establishing communication: response of the BBB to immunomodulatory molecules (e.g., prostaglandins, cytokines, chemokines, nitric oxide) secreted by immune and CNS cells; the controlled, regulated exchange of chemokines, cytokines, and immune cells between the CNS and the blood (i.e., transport across the BBB); the secretion of immunomodulatory molecules by the BBB, often in a polarized fashion. Taken together, these mechanisms reveal the BBB to be a dynamic, interactive, and adaptable interface between the immune system and the CNS, separating them on the one hand and fostering their interactions on the other hand, adjusting to physiological changes, while being a target for disease processes. This review examines specific examples by which the BBB plays an interactive, defining role in neuroimmunology.
Collapse
Affiliation(s)
- W A Banks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care Center, Seattle, WA, United States; Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA, United States.
| |
Collapse
|
21
|
Activation of AMPK attenuates lipopolysaccharide-impaired integrity and function of blood–brain barrier in human brain microvascular endothelial cells. Exp Mol Pathol 2014; 97:386-92. [DOI: 10.1016/j.yexmp.2014.09.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 08/27/2014] [Accepted: 09/10/2014] [Indexed: 12/27/2022]
|
22
|
Ashraf T, Jiang W, Hoque MT, Henderson J, Wu C, Bendayan R. Role of anti-inflammatory compounds in human immunodeficiency virus-1 glycoprotein120-mediated brain inflammation. J Neuroinflammation 2014; 11:91. [PMID: 24884548 PMCID: PMC4046047 DOI: 10.1186/1742-2094-11-91] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/15/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Neuroinflammation is a common immune response associated with brain human immunodeficiency virus-1 (HIV-1) infection. Identifying therapeutic compounds that exhibit better brain permeability and can target signaling pathways involved in inflammation may benefit treatment of HIV-associated neurological complications. The objective of this study was to implement an in vivo model of brain inflammation by intracerebroventricular administration of the HIV-1 viral coat protein gp120 in rats and to examine anti-inflammatory properties of HIV adjuvant therapies such as minocycline, chloroquine and simvastatin. METHODS Male Wistar rats were administered a single dose of gp120ADA (500 ng) daily for seven consecutive days, intracerebroventricularly, with or without prior intraperitoneal administration of minocycline, chloroquine or simvastatin. Maraviroc, a CCR5 antagonist, was administered intracerebroventricularly prior to gp120 administration for seven days as control. Real-time qPCR was used to assess gene expression of inflammatory markers in the frontal cortex, hippocampus and striatum. Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) secretion in cerebrospinal fluid (CSF) was measured applying ELISA. Protein expression of mitogen-activated protein kinases (MAPKs) (extracellular signal-related kinase 1/2 (ERK1/2), c-Jun N-terminal kinases (JNKs) and P38 kinases (P38Ks)) was detected using immunoblot analysis. Student's t-test and ANOVA were applied to determine statistical significance. RESULTS In gp120ADA-injected rats, mRNA transcripts of interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS) were significantly elevated in the frontal cortex, striatum and hippocampus compared to saline or heat-inactivated gp120-injected controls. In CSF, a significant increase in TNF-α and IL-1β was detected. Maraviroc reduced upregulation of these markers suggesting that the interaction of R5-tropic gp120 to CCR5 chemokine receptor is critical for induction of an inflammatory response. Minocycline, chloroquine or simvastatin attenuated upregulation of IL-1β and iNOS transcripts in different brain regions. In CSF, minocycline suppressed TNF-α and IL-1β secretion, whereas chloroquine attenuated IL-1β secretion. In gp120-injected animals, activation of ERK1/2 and JNKs was observed in the hippocampus and ERK1/2 activation was significantly reduced by the anti-inflammatory agents. CONCLUSIONS Our data demonstrate that anti-inflammatory compounds can completely or partially reverse gp120-associated brain inflammation through an interaction with MAPK signaling pathways and suggest their potential role in contributing towards the prevention and treatment of HIV-associated neurological complications.
Collapse
Affiliation(s)
- Tamima Ashraf
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON M5S 3 M2, Canada
| | - Wenlei Jiang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON M5S 3 M2, Canada
| | - Md Tozammel Hoque
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON M5S 3 M2, Canada
| | - Jeffrey Henderson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON M5S 3 M2, Canada
| | - Chiping Wu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON M5S 3 M2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON M5S 3 M2, Canada
| |
Collapse
|
23
|
Strategies to overcome the barrier: use of nanoparticles as carriers and modulators of barrier properties. Cell Tissue Res 2014; 355:717-26. [DOI: 10.1007/s00441-014-1819-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/16/2014] [Indexed: 12/14/2022]
|
24
|
Dohgu S, Banks WA. Brain pericytes increase the lipopolysaccharide-enhanced transcytosis of HIV-1 free virus across the in vitro blood-brain barrier: evidence for cytokine-mediated pericyte-endothelial cell crosstalk. Fluids Barriers CNS 2013; 10:23. [PMID: 23816186 PMCID: PMC3710206 DOI: 10.1186/2045-8118-10-23] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 06/23/2013] [Indexed: 08/26/2023] Open
Abstract
Background Human immunodeficiency virus-1 (HIV-1) enters the brain by crossing the blood–brain barrier (BBB) as both free virus and within infected immune cells. Previous work showed that activation of the innate immune system with lipopolysaccharide (LPS) enhances free virus transport both in vivo and across monolayer monocultures of brain microvascular endothelial cells (BMECs) in vitro. Methods Here, we used monocultures and co-cultures of brain pericytes and brain endothelial cells to examine the crosstalk between these cell types in mediating the LPS-enhanced permeation of radioactively-labeled HIV-1 (I-HIV) across BMEC monolayers. Results We found that brain pericytes when co-cultured with BMEC monolayers magnified the LPS-enhanced transport of I-HIV without altering transendothelial electrical resistance, indicating that pericytes affected the transcytotic component of HIV-1 permeation. As LPS crosses the BBB poorly if at all, and since pericytes are on the abluminal side of the BBB, we postulated that luminal LPS acts indirectly on pericytes through abluminal secretions from BMECs. Consistent with this, we found that the pattern of secretion of cytokines by pericytes directly exposed to LPS was different than when the pericytes were exposed to the abluminal fluid from LPS-treated BMEC monolayers. Conclusion These results are evidence for a cellular crosstalk in which LPS acts at the luminal surface of the brain endothelial cell, inducing abluminal secretions that stimulate pericytes to release substances that enhance the permeability of the BMEC monolayer to HIV.
Collapse
Affiliation(s)
- Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | | |
Collapse
|
25
|
Species-Dependent Blood-Brain Barrier Disruption of Lipopolysaccharide: Amelioration by Colistin In Vitro and In Vivo. Antimicrob Agents Chemother 2013; 57:4336-4342. [PMID: 23796941 DOI: 10.1128/aac.00765-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/20/2013] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to use in vitro and in vivo models to assess the impact of lipopolysaccharide (LPS) from two different bacterial species on blood-brain barrier (BBB) integrity and brain uptake of colistin. Following repeated administration of LPS from Pseudomonas aeruginosa, the brain-to-plasma ratio of [14C]sucrose in Swiss outbred mice was not significantly increased. Furthermore, while the brain uptake of colistin in mice increased 3-fold following administration of LPS from Salmonella enterica, LPS from P. aeruginosa had no significant effect on colistin brain uptake. This apparent species-dependent effect did not appear to correlate with differences in plasma cytokine levels, as the concentrations of tumor necrosis factor alpha and interleukin-6 following administration of each LPS were not different (P > 0.05). To clarify whether this species-specific effect of LPS was due to direct effects on the BBB, human brain capillary endothelial (hCMEC/D3) cells were treated with LPS from P. aeruginosa or S. enterica and claudin-5 expression was measured by Western blotting. S. enterica LPS significantly (P < 0.05) reduced claudin-5 expression at a concentration of 7.5 μg/ml. In contrast, P. aeruginosa LPS decreased (P < 0.05) claudin-5 expression only at the highest concentration tested (i.e., 30 μg/ml). Coadministration of therapeutic concentrations of colistin ameliorated the S. enterica LPS-induced reduction in claudin-5 expression in hCMEC/D3 cells and the perturbation in BBB function in mice. This study demonstrates that BBB disruption induced by LPS is species dependent, at least between P. aeruginosa and S. enterica, and can be ameliorated by colistin.
Collapse
|
26
|
Seok SM, Kim JM, Park TY, Baik EJ, Lee SH. Fructose-1,6-bisphosphate ameliorates lipopolysaccharide-induced dysfunction of blood-brain barrier. Arch Pharm Res 2013; 36:1149-59. [PMID: 23604722 DOI: 10.1007/s12272-013-0129-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/12/2013] [Indexed: 11/26/2022]
Abstract
Fructose-1,6-bisphosphate (FBP), a glycolytic intermediate, has neuroprotective effects in various brain injury models. However, its effects on blood-brain barrier (BBB) are largely unknown. In this study, we investigated the effects of FBP on lipopolysaccharide (LPS)-induced BBB dysfunction in in vitro BBB model comprising co-culture of mouse brain endothelial cell line, bEnd.3 and mouse primary astrocyte and explored its action mechanism therein involved. LPS induced the impairment of endothelial permeability and transendothelial electrical resistance (TEER). The functional changes were confirmed by alterations in immunostaining for junctional proteins occludin, ZO-1 and VE-cadherin, such as the loss of cortical staining pattern and appearance of intercellular gaps in endothelial cells. Co-administration of FBP alleviated the deleterious effects of LPS on BBB permeability and TEER in a dose dependent manner. And also FBP inhibited the LPS-induced changes in the distribution of endothelial junctional proteins, resulting in the better preservation of monolayer integrity. FBP suppressed the production of reactive oxygen species (ROS) but did not affect cyclooxygenase-2 expression and prostaglandin E₂ production in endothelial cells stimulated with LPS. Taken together, these data suggest that FBP could ameliorate LPS-induced BBB dysfunction through the maintenance of junctional integrity, which might be mediated by downregulation of ROS production.
Collapse
Affiliation(s)
- Sun Mi Seok
- Department of Physiology, Ajou University School of Medicine, #5, Wonchon-dong, Suwon, 443-749, Republic of Korea
| | | | | | | | | |
Collapse
|
27
|
Green LA, Kim C, Gupta SK, Rajashekhar G, Rehman J, Clauss M. Pentoxifylline reduces tumor necrosis factor-α and HIV-induced vascular endothelial activation. AIDS Res Hum Retroviruses 2012; 28:1207-15. [PMID: 22463742 DOI: 10.1089/aid.2011.0385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Untreated HIV infection is associated with endothelial dysfunction and subsequent cardiovascular disease, likely due to both direct effects of the virus and to indirect effects of systemic inflammation on the vasculature. We have recently shown that treatment with the antiinflammatory agent pentoxifylline (PTX) improved in vivo endothelial function and reduced circulating levels of the inflammatory markers vascular cell adhesion molecule-1 (VCAM-1) and interferon-gamma-induced protein (IP-10) in HIV-infected patients. To delineate the mechanisms underlying this therapeutic effect, we tested whether clinically relevant concentrations of PTX suppress VCAM-1 or IP-10 release in cultivated human lung microvascular endothelial cells. Indeed, we found that tumor necrosis factor (TNF)-α-induced VCAM-1 was reduced with concentrations of PTX in the low nanomolar range, comparable to plasma levels in PTX-treated groups. We also investigated the effect of HIV proteins and found that HIV transactivator of transcription (HIV-Tat) and HIV-envelope-derived recombinant gp120 enhanced TNF-α-induced VCAM-1 gene expression in lung microvascular and coronary macrovascular endothelial cells, respectively. In addition, PTX and a NF-κB-specific inhibitor reduced this enhanced VCAM-1 gene induction in microvascular and macrovascular endothelial cells. These results provide novel insights in how the antiinflammatory agent PTX can directly reduce HIV-associated proinflammatory endothelial activation, which may underlie vascular dysfunction and coronary vascular diseases.
Collapse
Affiliation(s)
- Linden Ann Green
- Department of Cellular and Integrative Physiology and Indiana Center for Vascular Biology and Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Chul Kim
- Department of Cellular and Integrative Physiology and Indiana Center for Vascular Biology and Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Samir K. Gupta
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gangaraju Rajashekhar
- Department of Cellular and Integrative Physiology and Indiana Center for Vascular Biology and Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Ophthalmology Indiana University School of Medicine, Indianapolis, Indiana
| | - Jalees Rehman
- Section of Cardiology, Departments of Medicine and Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Matthias Clauss
- Department of Cellular and Integrative Physiology and Indiana Center for Vascular Biology and Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
28
|
Cardoso FL, Kittel Á, Veszelka S, Palmela I, Tóth A, Brites D, Deli MA, Brito MA. Exposure to lipopolysaccharide and/or unconjugated bilirubin impair the integrity and function of brain microvascular endothelial cells. PLoS One 2012; 7:e35919. [PMID: 22586454 PMCID: PMC3346740 DOI: 10.1371/journal.pone.0035919] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 03/27/2012] [Indexed: 11/21/2022] Open
Abstract
Background Sepsis and jaundice are common conditions in newborns that can lead to brain damage. Though lipopolysaccharide (LPS) is known to alter the integrity of the blood-brain barrier (BBB), little is known on the effects of unconjugated bilirubin (UCB) and even less on the joint effects of UCB and LPS on brain microvascular endothelial cells (BMEC). Methodology/Principal Findings Monolayers of primary rat BMEC were treated with 1 µg/ml LPS and/or 50 µM UCB, in the presence of 100 µM human serum albumin, for 4 or 24 h. Co-cultures of BMEC with astroglial cells, a more complex BBB model, were used in selected experiments. LPS led to apoptosis and UCB induced both apoptotic and necrotic-like cell death. LPS and UCB led to inhibition of P-glycoprotein and activation of matrix metalloproteinases-2 and -9 in mono-cultures. Transmission electron microscopy evidenced apoptotic bodies, as well as damaged mitochondria and rough endoplasmic reticulum in BMEC by either insult. Shorter cell contacts and increased caveolae-like invaginations were noticeable in LPS-treated cells and loss of intercellular junctions was observed upon treatment with UCB. Both compounds triggered impairment of endothelial permeability and transendothelial electrical resistance both in mono- and co-cultures. The functional changes were confirmed by alterations in immunostaining for junctional proteins β-catenin, ZO-1 and claudin-5. Enlargement of intercellular spaces, and redistribution of junctional proteins were found in BMEC after exposure to LPS and UCB. Conclusions LPS and/or UCB exert direct toxic effects on BMEC, with distinct temporal profiles and mechanisms of action. Therefore, the impairment of brain endothelial integrity upon exposure to these neurotoxins may favor their access to the brain, thus increasing the risk of injury and requiring adequate clinical management of sepsis and jaundice in the neonatal period.
Collapse
Affiliation(s)
- Filipa L. Cardoso
- Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Ágnes Kittel
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Szilvia Veszelka
- Laboratory of Molecular Neurobiology, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Inês Palmela
- Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Andrea Tóth
- Laboratory of Molecular Neurobiology, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Dora Brites
- Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Mária A. Deli
- Laboratory of Molecular Neurobiology, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Maria A. Brito
- Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- * E-mail:
| |
Collapse
|
29
|
Erickson MA, Dohi K, Banks WA. Neuroinflammation: a common pathway in CNS diseases as mediated at the blood-brain barrier. Neuroimmunomodulation 2012; 19:121-30. [PMID: 22248728 PMCID: PMC3707010 DOI: 10.1159/000330247] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 06/22/2011] [Indexed: 01/16/2023] Open
Abstract
The blood-brain barrier (BBB) is not simply a physical barrier but a regulatory interface between the central nervous system (CNS) and immune system. The BBB both affects and is affected by the immune system and connects at many levels with the CNS, including the following: (1) the BBB transports cytokines and secretes various substances with neuroinflammatory properties; (2) transporters are altered in disease states including traumatic injury, Alzheimer's disease and inflammatory processes; (3) cytokines and other immune secretions from the cells comprising the BBB are both constitutive and inducible; (4) immune cells are transported across the BBB by the highly regulated process termed diapedesis, which involves communication and interactions between the brain endothelial cells and the immune cells; (5) the neuroimmune system has various effects on the BBB, including modulation of important transport systems and in extreme pathological conditions even disruption of the BBB, and (6) the brain-to-blood efflux transporter P-glycoprotein is altered in inflammatory conditions, thus affecting drug delivery to the brain. In summary, the BBB is an interactive interface that regulates and defines many of the ways that the CNS and the immune system communicate with one another.
Collapse
Affiliation(s)
- Michelle A. Erickson
- Geriatrics Research Education and Clinical Center, Puget Sound Health Care System, Seattle, Wash., USA
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Mo., USA
| | - Kenji Dohi
- Geriatrics Research Education and Clinical Center, Puget Sound Health Care System, Seattle, Wash., USA
- Division of Gerontology and Geriatric Medicine, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Wash., USA
- Department of Emergency and Critical Care Medicine, Showa University School of Medicine, Tokyo, Japan
| | - William A. Banks
- Geriatrics Research Education and Clinical Center, Puget Sound Health Care System, Seattle, Wash., USA
- Division of Gerontology and Geriatric Medicine, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Wash., USA
| |
Collapse
|
30
|
Bertin J, Barat C, Méthot S, Tremblay MJ. Interactions between prostaglandins, leukotrienes and HIV-1: possible implications for the central nervous system. Retrovirology 2012; 9:4. [PMID: 22236409 PMCID: PMC3268096 DOI: 10.1186/1742-4690-9-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 01/11/2012] [Indexed: 12/29/2022] Open
Abstract
In HIV-1-infected individuals, there is often discordance between viremia in peripheral blood and viral load found in the central nervous system (CNS). Although the viral burden is often lower in the CNS compartment than in the plasma, neuroinflammation is present in most infected individuals, albeit attenuated by the current combined antiretroviral therapy. The HIV-1-associated neurological complications are thought to result not only from direct viral replication, but also from the subsequent neuroinflammatory processes. The eicosanoids - prostanoids and leukotrienes - are known as potent inflammatory lipid mediators. They are often present in neuroinflammatory diseases, notably HIV-1 infection. Their exact modulatory role in HIV-1 infection is, however, still poorly understood, especially in the CNS compartment. Nonetheless, a handful of studies have provided evidence as to how these lipid mediators can modulate HIV-1 infection. This review summarizes findings indicating how eicosanoids may influence the progression of neuroAIDS.
Collapse
Affiliation(s)
- Jonathan Bertin
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec - CHUL, 2705 boul, Laurier, Québec (QC), Canada, G1V 4G2
| | | | | | | |
Collapse
|
31
|
Dohgu S, Fleegal-DeMotta MA, Banks WA. Lipopolysaccharide-enhanced transcellular transport of HIV-1 across the blood-brain barrier is mediated by luminal microvessel IL-6 and GM-CSF. J Neuroinflammation 2011; 8:167. [PMID: 22129063 PMCID: PMC3260201 DOI: 10.1186/1742-2094-8-167] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/30/2011] [Indexed: 01/18/2023] Open
Abstract
Elevated levels of cytokines/chemokines contribute to increased neuroinvasion of human immunodeficiency virus type 1 (HIV-1). Previous work showed that lipopolysaccharide (LPS), which is present in the plasma of patients with HIV-1, enhanced transcellular transport of HIV-1 across the blood-brain barrier (BBB) through the activation of p38 mitogen-activated protein kinase (MAPK) signaling in brain microvascular endothelial cells (BMECs). Here, we found that LPS (100 μg/mL, 4 hr) selectively increased interleukin (IL)-6 and granulocyte-macrophage colony-stimulating factor (GM-CSF) release from BMECs. The enhancement of HIV-1 transport induced by luminal LPS was neutralized by treatment with luminal, but not with abluminal, antibodies to IL-6 and GM-CSF without affecting paracellular permeability as measured by transendothelial electrical resistance (TEER). Luminal, but not abluminal, IL-6 or GM-CSF also increased HIV-1 transport. U0126 (MAPK kinase (MEK)1/2 inhibitor) and SB203580 (p38 MAPK inhibitor) decreased the LPS-enhanced release of IL-6 and GM-CSF. These results show that p44/42 and p38 MAPK signaling pathways mediate the LPS-enhanced release of IL-6 and GM-CSF. These cytokines, in turn, act at the luminal surface of the BMEC to enhance the transcellular transport of HIV-1 independently of actions on paracellular permeability.
Collapse
Affiliation(s)
- Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | | | | |
Collapse
|
32
|
Gras G, Kaul M. Molecular mechanisms of neuroinvasion by monocytes-macrophages in HIV-1 infection. Retrovirology 2010; 7:30. [PMID: 20374632 PMCID: PMC2864195 DOI: 10.1186/1742-4690-7-30] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 04/07/2010] [Indexed: 12/12/2022] Open
Abstract
HIV associated neurocognitive disorders and their histopathological correlates largely depend on the continuous seeding of the central nervous system with immune activated leukocytes, mainly monocytes/macrophages from the periphery. The blood-brain-barrier plays a critical role in this never stopping neuroinvasion, although it appears unaltered until the late stage of HIV encephalitis. HIV flux that moves toward the brain thus relies on hijacking and exacerbating the physiological mechanisms that govern blood brain barrier crossing rather than barrier disruption. This review will summarize the recent data describing neuroinvasion by HIV with a focus on the molecular mechanisms involved.
Collapse
Affiliation(s)
- Gabriel Gras
- Institute of Emerging Diseases and Innovative Therapies, Division of Immuno-Virology, CEA, 18 Route du Panorama, F92265 Fontenay-aux Roses, France.
| | | |
Collapse
|
33
|
Banks WA. Mouse models of neurological disorders: a view from the blood-brain barrier. Biochim Biophys Acta Mol Basis Dis 2009; 1802:881-8. [PMID: 19879356 DOI: 10.1016/j.bbadis.2009.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/20/2009] [Accepted: 10/23/2009] [Indexed: 12/16/2022]
Abstract
The number of disease models that involve an aspect of blood-brain barrier (BBB) dysregulation have increased tremendously. The main factors contributing to this expansion have been an increased number of diseases in which the BBB is known to be involved, an increase in the known functions of the BBB, and an increase in the number of models and tools with which those diverse functions can be studied. In many cases, the BBB may be a target of disease; current thinking would include hypertensive encephalopathy and perhaps stroke in this category. Another category are those diseases in which special attributes of the BBB may predispose to disease; for example, the ability of a pathogen to cross the BBB often depends on the pathogen's ability to invoke transcytotic pathways in the brain endothelial or choroid plexus cell. Of special interest are those diseases in which the BBB may be the primary seat of disease or play a major role in the onset or progression of the disease. An increasing number of diseases are so categorized in which BBB dysfunction or dysregulation plays a major role; this review highlights such roles for the BBB including those proposed for Alzheimer's disease and obesity.
Collapse
Affiliation(s)
- William A Banks
- GRECC, Veterans Affairs Medical Center-St. Louis and Saint Louis University School of Medicine, Division of Geriatrics, Department of Internal Medicine, 915 N. Grand Blvd, St. Louis, MO 63106, USA.
| |
Collapse
|
34
|
Banks WA, Erickson MA. The blood-brain barrier and immune function and dysfunction. Neurobiol Dis 2009; 37:26-32. [PMID: 19664708 DOI: 10.1016/j.nbd.2009.07.031] [Citation(s) in RCA: 366] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 07/20/2009] [Accepted: 07/25/2009] [Indexed: 12/20/2022] Open
Abstract
The blood-brain barrier (BBB) is the monocellular interface that divides the peripheral circulation from direct contact with the central nervous system (CNS). This interface consists of several parallel barriers that include most notably the capillary bed of the CNS and the choroid plexus. These barriers at one level create the dichotomy between the circulating factors of the immune system and the components of the CNS only to regulate interactions between the immune and central nervous systems at other levels. The BBB is thus an integral part of the neuroimmune axis. Here, we will consider four aspects of BBB-neuroimmune interactions: BBB disruption as mediated by LPS and cytokines, cytokine transport across the BBB, immune cell trafficking, and effects of lipopolysaccharide (LPS) on various functions of the BBB.
Collapse
Affiliation(s)
- William A Banks
- Geriatrics Research Educational and Clinical Center, Veterans Affairs Medical Center-St. Louis, USA.
| | | |
Collapse
|
35
|
Current World Literature. Curr Opin Neurol 2009; 22:321-9. [DOI: 10.1097/wco.0b013e32832cf9cb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Lu TS, Avraham HK, Seng S, Tachado SD, Koziel H, Makriyannis A, Avraham S. Cannabinoids inhibit HIV-1 Gp120-mediated insults in brain microvascular endothelial cells. THE JOURNAL OF IMMUNOLOGY 2009; 181:6406-16. [PMID: 18941231 DOI: 10.4049/jimmunol.181.9.6406] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
HIV-1 infection has significant effect on the immune system as well as on the nervous system. Breakdown of the blood-brain barrier (BBB) is frequently observed in patients with HIV-associated dementia (HAD) despite lack of productive infection of human brain microvascular endothelial cells (HBMEC). Cellular products and viral proteins secreted by HIV-1 infected cells, such as the HIV-1 Gp120 envelope glycoprotein, play important roles in BBB impairment and HIV-associated dementia development. HBMEC are a major component of the BBB. Using cocultures of HBMEC and human astrocytes as a model system for human BBB as well as in vivo model, we show for the first time that cannabinoid agonists inhibited HIV-1 Gp120-induced calcium influx mediated by substance P and significantly decreased the permeability of HBMEC as well as prevented tight junction protein down-regulation of ZO-1, claudin-5, and JAM-1 in HBMEC. Furthermore, cannabinoid agonists inhibited the transmigration of human monocytes across the BBB and blocked the BBB permeability in vivo. These results demonstrate that cannabinoid agonists are able to restore the integrity of HBMEC and the BBB following insults by HIV-1 Gp120. These studies may lead to better strategies for treatment modalities targeted to the BBB following HIV-1 infection of the brain based on cannabinoid pharmacotherapies.
Collapse
Affiliation(s)
- Tzong-Shi Lu
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Salkeni MA, Lynch JL, Otamis-Price T, Banks WA. Lipopolysaccharide impairs blood-brain barrier P-glycoprotein function in mice through prostaglandin- and nitric oxide-independent pathways. J Neuroimmune Pharmacol 2008; 4:276-82. [PMID: 19039663 DOI: 10.1007/s11481-008-9138-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 11/06/2008] [Indexed: 12/14/2022]
Abstract
P-glycoprotein (P-gp) is a brain-to-blood efflux system that controls the ability of many drugs and endogenous substances to access the brain. In vitro work has shown that inflammatory states mediated through lipopolysaccharide (LPS) and tumor necrosis factor-alpha first impair and then stimulate P-gp activity. Here, we determined whether LPS can affect P-gp function in vivo. Mice treated with a single intraperitoneal injection of LPS (3 mg/kg) showed an inhibition of P-gp function. As assessed by brain perfusion, inhibition began 18 h after LPS administration and lasted until 36 h after administration. P-gp protein was increased by 44%, consistent with P-gp inhibition occurring through post-translational mechanisms. Unlike other effects of LPS on blood-brain barrier function, neither nitric oxide nor prostaglandin inhibition had an effect. We conclude that induction of proinflammatory states as exemplified by LPS treatment can inhibit P-gp function in vivo at the blood-brain barrier.
Collapse
Affiliation(s)
- Mohamad A Salkeni
- Department of Internal Medicine, Division of Geriatrics, Saint Louis University School of Medicine, St Louis, USA
| | | | | | | |
Collapse
|