1
|
Gheidi A, Davidson CJ, Simpson SC, Yahya MA, Sadik N, Mascarin AT, Perrine SA. Norepinephrine depletion in the brain sex-dependently modulates aspects of spatial learning and memory in female and male rats. Psychopharmacology (Berl) 2023; 240:2585-2595. [PMID: 37658879 PMCID: PMC11069163 DOI: 10.1007/s00213-023-06453-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
RATIONALE The contribution of norepinephrine on the different phases of spatial memory processing remains incompletely understood. To address this gap, this study depleted norepinephrine in the brain and then conducted a spatial learning task with multiple phases. METHODS Male and female Wistar rats were administered 50 mg/kg/i.p. of DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine) to deplete norepinephrine. After 10 days, rats were trained on a 20-hole Barnes maze spatial navigation task for 5 days. On the fifth day, animals were euthanized and HPLC was used to confirm depletion of norepinephrine in select brain regions. In Experiment 2, rats underwent a similar Barnes maze procedure that continued beyond day 5 to investigate memory retrieval and updating via a single probe trial and two reversal learning periods. RESULTS Rats did not differ in Barnes maze acquisition between DSP-4 and saline-injected rats; however, initial acquisition differed between the sexes. HPLC analysis confirmed selective depletion of norepinephrine in dorsal hippocampus and cingulate cortex without impact to other monoamines. When retrieval was tested through a probe trial, DSP-4-improved memory retrieval in males but impaired it in females. Cognitive flexibility was transiently impacted by DSP-4 in males only. CONCLUSIONS Despite significantly reducing levels of norepinephrine, DSP-4 had only a modest impact on spatial learning and behavioral flexibility. Memory retrieval and early reversal learning were most affected and in a sex-specific manner. These data suggest that norepinephrine has sex-specific neuromodulatory effects on memory retrieval with a lesser effect on cognitive flexibility and no impact on acquisition of learned behavior.
Collapse
Affiliation(s)
- Ali Gheidi
- Department of Biomedical Sciences, Mercer University School of Medicine, 1550 College St., Macon, GA, 31207, USA.
| | - Cameron J Davidson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Serena C Simpson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Majd A Yahya
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nareen Sadik
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Alixandria T Mascarin
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
2
|
Hippocampal Noradrenaline Is a Positive Regulator of Spatial Working Memory and Neurogenesis in the Rat. Int J Mol Sci 2023; 24:ijms24065613. [PMID: 36982688 PMCID: PMC10052298 DOI: 10.3390/ijms24065613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Loss of noradrenaline (NA)-rich afferents from the Locus Coeruleus (LC) ascending to the hippocampal formation has been reported to dramatically affect distinct aspects of cognitive function, in addition to reducing the proliferation of neural progenitors in the dentate gyrus. Here, the hypothesis that reinstating hippocampal noradrenergic neurotransmission with transplanted LC-derived neuroblasts would concurrently normalize both cognitive performance and adult hippocampal neurogenesis was investigated. Post-natal day (PD) 4 rats underwent selective immunolesioning of hippocampal noradrenergic afferents followed, 4 days later, by the bilateral intrahippocampal implantation of LC noradrenergic-rich or control cerebellar (CBL) neuroblasts. Starting from 4 weeks and up to about 9 months post-surgery, sensory-motor and spatial navigation abilities were evaluated, followed by post-mortem semiquantitative tissue analyses. All animals in the Control, Lesion, Noradrenergic Transplant and Control CBL Transplant groups exhibited normal sensory-motor function and were equally efficient in the reference memory version of the water maze task. By contrast, working memory abilities were seen to be consistently impaired in the Lesion-only and Control CBL-Transplanted rats, which also exhibited a virtually complete noradrenergic fiber depletion and a significant 62–65% reduction in proliferating 5-bromo-2′deoxyuridine (BrdU)-positive progenitors in the dentate gyrus. Notably, the noradrenergic reinnervation promoted by the grafted LC, but not cerebellar neuroblasts, significantly ameliorated working memory performance and reinstated a fairly normal density of proliferating progenitors. Thus, LC-derived noradrenergic inputs may act as positive regulators of hippocampus-dependent spatial working memory possibly via the concurrent maintenance of normal progenitor proliferation in the dentate gyrus.
Collapse
|
3
|
Pintus R, Riggi M, Cannarozzo C, Valeri A, de Leo G, Romano M, Gulino R, Leanza G. Essential role of hippocampal noradrenaline in the regulation of spatial working memory and TDP-43 tissue pathology. J Comp Neurol 2018; 526:1131-1147. [PMID: 29355945 DOI: 10.1002/cne.24397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/26/2022]
Abstract
Extensive loss of noradrenaline-containing neurons and fibers is a nearly invariant feature of Alzheimer's Disease (AD). However, the exact noradrenergic contribution to cognitive and histopathological changes in AD is still unclear. Here, this issue was addressed following selective lesioning and intrahippocampal implantation of embryonic noradrenergic progenitors in developing rats. Starting from about 3 months and up to 12 months post-surgery, animals underwent behavioral tests to evaluate sensory-motor, as well as spatial learning and memory, followed by post-mortem morphometric analyses. At 9 months, Control, Lesioned and Lesion + Transplant animals exhibited equally efficient sensory-motor and reference memory performance. Interestingly, working memory abilities were seen severely impaired in Lesion-only rats and fully recovered in Transplanted rats, and appeared partly lost again 2 months after ablation of the implanted neuroblasts. Morphological analyses confirmed the almost total lesion-induced noradrenergic neuronal and terminal fiber loss, the near-normal reinnervation of the hippocampus promoted by the transplants, and its complete removal by the second lesion. Notably, the noradrenergic-rich transplants normalized also the nuclear expression of the transactive response DNA-binding protein 43 (TDP-43) in various hippocampal subregions, whose cytoplasmic (i.e., pathological) occurrence appeared dramatically increased as a result of the lesions. Thus, integrity of ascending noradrenergic inputs to the hippocampus may be required for the regulation of specific aspects of learning and memory and to prevent TDP-43 tissue pathology.
Collapse
Affiliation(s)
- Roberta Pintus
- B.R.A.I.N. Lab for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Margherita Riggi
- B.R.A.I.N. Lab for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Cecilia Cannarozzo
- B.R.A.I.N. Lab for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Andrea Valeri
- B.R.A.I.N. Lab for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Gioacchino de Leo
- B.R.A.I.N. Lab for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Maurizio Romano
- B.R.A.I.N. Lab for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania, Italy
| | - Giampiero Leanza
- B.R.A.I.N. Lab for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy.,Department of Drug Sciences, University of Catania, Catania, Italy
| |
Collapse
|
4
|
Weitemier AZ, McHugh TJ. Noradrenergic modulation of evoked dopamine release and pH shift in the mouse dorsal hippocampus and ventral striatum. Brain Res 2017; 1657:74-86. [DOI: 10.1016/j.brainres.2016.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 01/24/2023]
|
5
|
Wang Y, Musich PR, Cui K, Zou Y, Zhu MY. Neurotoxin-induced DNA damage is persistent in SH-SY5Y cells and LC neurons. Neurotox Res 2015; 27:368-83. [PMID: 25724887 DOI: 10.1007/s12640-015-9521-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 01/11/2015] [Accepted: 01/22/2015] [Indexed: 12/19/2022]
Abstract
Degeneration of the noradrenergic neurons has been reported in the brain of patients suffering from neurodegenerative diseases. However, their pathological characteristics during the neurodegenerative course and underlying mechanisms remain to be elucidated. In the present study, we used the neurotoxin camptothecin (CPT) to induce the DNA damage response in neuroblastoma SH-SY5Y cells, normal fibroblast cells, and primarily cultured locus coeruleus (LC) and raphe neurons to examine cellular responses and repair capabilities after neurotoxin exposure. To our knowledge, the present study is the first to show that noradrenergic SH-SY5Y cells are more sensitive to CPT-induced DNA damage and deficient in DNA repair, as compared to fibroblast cells. Furthermore, similar to SH-SY5Y cells, primarily cultured LC neurons are more sensitive to CPT-induced DNA damage and show a deficiency in repairing this damage. Moreover, while N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) exposure also results in DNA damage in cultured LC neurons, neither CPT nor DSP4 induce DNA damage in neuronal cultures from the raphe nuclei. Taken together, noradrenergic SH-SY5Y cells and LC neurons are sensitive to CPT-induced DNA damage and exhibit a repair deficiency, providing a mechanistic explanation for the pathological characteristics of LC degeneration when facing endogenous and environmental DNA-damaging insults in vivo.
Collapse
Affiliation(s)
- Yan Wang
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37604, USA
| | | | | | | | | |
Collapse
|
6
|
Morawski M, Hartlage-Rübsamen M, Jäger C, Waniek A, Schilling S, Schwab C, McGeer PL, Arendt T, Demuth HU, Roßner S. Distinct glutaminyl cyclase expression in Edinger-Westphal nucleus, locus coeruleus and nucleus basalis Meynert contributes to pGlu-Abeta pathology in Alzheimer's disease. Acta Neuropathol 2010; 120:195-207. [PMID: 20383514 PMCID: PMC2892616 DOI: 10.1007/s00401-010-0685-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/31/2010] [Accepted: 04/02/2010] [Indexed: 12/11/2022]
Abstract
Glutaminyl cyclase (QC) was discovered recently as the enzyme catalyzing the pyroglutamate (pGlu or pE) modification of N-terminally truncated Alzheimer’s disease (AD) Aβ peptides in vivo. This modification confers resistance to proteolysis, rapid aggregation and neurotoxicity and can be prevented by QC inhibitors in vitro and in vivo, as shown in transgenic animal models. However, in mouse brain QC is only expressed by a relatively low proportion of neurons in most neocortical and hippocampal subregions. Here, we demonstrate that QC is highly abundant in subcortical brain nuclei severely affected in AD. In particular, QC is expressed by virtually all urocortin-1-positive, but not by cholinergic neurons of the Edinger–Westphal nucleus, by noradrenergic locus coeruleus and by cholinergic nucleus basalis magnocellularis neurons in mouse brain. In human brain, QC is expressed by both, urocortin-1 and cholinergic Edinger–Westphal neurons and by locus coeruleus and nucleus basalis Meynert neurons. In brains from AD patients, these neuronal populations displayed intraneuronal pE-Aβ immunoreactivity and morphological signs of degeneration as well as extracellular pE-Aβ deposits. Adjacent AD brain structures lacking QC expression and brains from control subjects were devoid of such aggregates. This is the first demonstration of QC expression and pE-Aβ formation in subcortical brain regions affected in AD. Our results may explain the high vulnerability of defined subcortical neuronal populations and their central target areas in AD as a consequence of QC expression and pE-Aβ formation.
Collapse
|
7
|
Salehi A, Faizi M, Colas D, Valletta J, Laguna J, Takimoto-Kimura R, Kleschevnikov A, Wagner SL, Aisen P, Shamloo M, Mobley WC. Restoration of Norepinephrine-Modulated Contextual Memory in a Mouse Model of Down Syndrome. Sci Transl Med 2009; 1. [DOI: 10.1126/scitranslmed.3000258] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Cognitive deficits in mice with a Down syndrome–like genetic defect can be reversed with precursors to the neurotransmitter norepinephrine.
Collapse
Affiliation(s)
- A. Salehi
- Department of Neurology and Neurological Sciences, Stanford Medical School, Stanford, CA 94305, USA
| | - M. Faizi
- Behavioral and Functional Neuroscience Laboratory, Stanford Medical School, Stanford, CA 94305, USA
| | - D. Colas
- Department of Biology, Stanford Medical School, Stanford, CA 94305, USA
| | - J. Valletta
- Department of Neurology and Neurological Sciences, Stanford Medical School, Stanford, CA 94305, USA
| | - J. Laguna
- Department of Neurology and Neurological Sciences, Stanford Medical School, Stanford, CA 94305, USA
| | - R. Takimoto-Kimura
- Department of Neurology and Neurological Sciences, Stanford Medical School, Stanford, CA 94305, USA
| | - A. Kleschevnikov
- Department of Neurology and Neurological Sciences, Stanford Medical School, Stanford, CA 94305, USA
| | - S. L. Wagner
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - P. Aisen
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - M. Shamloo
- Behavioral and Functional Neuroscience Laboratory, Stanford Medical School, Stanford, CA 94305, USA
| | - W. C. Mobley
- Department of Neurology and Neurological Sciences, Stanford Medical School, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Heneka MT. Noradrenergic denervation facilitates the release of acetylcholine and serotonin in the hippocampus: Towards a mechanism underlying upregulations described in MCI patients. Exp Neurol 2009; 217:237-9. [DOI: 10.1016/j.expneurol.2009.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 03/13/2009] [Indexed: 11/24/2022]
|