1
|
Li J, Tian C, Yuan S, Yin Z, Wei L, Chen F, Dong X, Liu A, Wang Z, Wu T, Tian C, Niu L, Wang L, Wang P, Xie W, Cao F, Shen H. Neuropathic pain following spinal cord hemisection induced by the reorganization in primary somatosensory cortex and regulated by neuronal activity of lateral parabrachial nucleus. CNS Neurosci Ther 2023; 29:3269-3289. [PMID: 37170721 PMCID: PMC10580357 DOI: 10.1111/cns.14258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
AIMS Neuropathic pain after spinal cord injury (SCI) remains a common and thorny problem, influencing the life quality severely. This study aimed to elucidate the reorganization of the primary sensory cortex (S1) and the regulatory mechanism of the lateral parabrachial nucleus (lPBN) in the presence of allodynia or hyperalgesia after left spinal cord hemisection injury (LHS). METHODS Through behavioral tests, we first identified mechanical allodynia and thermal hyperalgesia following LHS. We then applied two-photon microscopy to observe calcium activity in S1 during mechanical or thermal stimulation and long-term spontaneous calcium activity after LHS. By slice patch clamp recording, the electrophysiological characteristics of neurons in lPBN were explored. Finally, exploiting chemogenetic activation or inhibition of the neurons in lPBN, allodynia or hyperalgesia was regulated. RESULTS The calcium activity in left S1 was increased during mechanical stimulation of right hind limb and thermal stimulation of tail, whereas in right S1 it was increased only with thermal stimulation of tail. The spontaneous calcium activity in right S1 changed more dramatically than that in left S1 after LHS. The lPBN was also activated after LHS, and exploiting chemogenetic activation or inhibition of the neurons in lPBN could induce or alleviate allodynia and hyperalgesia in central neuropathic pain. CONCLUSION The neuronal activity changes in S1 are closely related to limb pain, which has accurate anatomical correspondence. After LHS, the spontaneously increased functional connectivity of calcium transient in left S1 is likely causing the mechanical allodynia in right hind limb and increased neuronal activity in bilateral S1 may induce thermal hyperalgesia in tail. This state of allodynia and hyperalgesia can be regulated by lPBN.
Collapse
Affiliation(s)
- Jing Li
- Department of OrthopedicsTianjin Medical University General HospitalTianjinChina
| | - Chao Tian
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Shiyang Yuan
- Department of OrthopedicsTianjin Medical University General HospitalTianjinChina
| | - Zhenyu Yin
- Department of OrthopedicsTianjin Medical University General HospitalTianjinChina
| | - Liangpeng Wei
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Feng Chen
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Xi Dong
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Aili Liu
- Department of Cellular Biology, School of Basic ScienceTianjin Medical UniversityTianjinChina
| | - Zhenhuan Wang
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Tongrui Wu
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Chunxiao Tian
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Lin Niu
- Department of Cellular Biology, School of Basic ScienceTianjin Medical UniversityTianjinChina
| | - Lei Wang
- Department of PhysiologyZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| | - Pu Wang
- Department of OrthopedicsTianjin Medical University General HospitalTianjinChina
| | - Wanyu Xie
- Department of OrthopedicsTianjin Medical University General HospitalTianjinChina
| | - Fujiang Cao
- Department of OrthopedicsTianjin Medical University General HospitalTianjinChina
| | - Hui Shen
- Department of Cellular Biology, School of Basic ScienceTianjin Medical UniversityTianjinChina
- Innovation Research Institute of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| |
Collapse
|
2
|
Le Ray D, Guayasamin M. How Does the Central Nervous System for Posture and Locomotion Cope With Damage-Induced Neural Asymmetry? Front Syst Neurosci 2022; 16:828532. [PMID: 35308565 PMCID: PMC8927091 DOI: 10.3389/fnsys.2022.828532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/28/2022] Open
Abstract
In most vertebrates, posture and locomotion are achieved by a biomechanical apparatus whose effectors are symmetrically positioned around the main body axis. Logically, motor commands to these effectors are intrinsically adapted to such anatomical symmetry, and the underlying sensory-motor neural networks are correspondingly arranged during central nervous system (CNS) development. However, many developmental and/or life accidents may alter such neural organization and acutely generate asymmetries in motor operation that are often at least partially compensated for over time. First, we briefly present the basic sensory-motor organization of posturo-locomotor networks in vertebrates. Next, we review some aspects of neural plasticity that is implemented in response to unilateral central injury or asymmetrical sensory deprivation in order to substantially restore symmetry in the control of posturo-locomotor functions. Data are finally discussed in the context of CNS structure-function relationship.
Collapse
|
3
|
Tazoe T, Perez MA. Abnormal changes in motor cortical maps in humans with spinal cord injury. J Physiol 2021; 599:5031-5045. [PMID: 34192806 PMCID: PMC9109877 DOI: 10.1113/jp281430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/28/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The functional role of motor cortical reorganization following spinal cord injury (SCI) remains largely unknown. Here, we tested motor maps in a hand muscle at rest and during voluntary contraction of the hand with and without voluntary contraction of a proximal arm muscle. Motor map area in participants with SCI decreased during hand voluntary contraction and further decreased during additional contraction of a proximal arm muscle compared with rest. In contrast, motor map area in controls increased during the same motor tasks. Participants with SCI with more severe sensory deficits in the hand showed larger decreases in motor map area. Ten minutes of hand muscle-tendon vibration increased the motor map area during voluntary contraction in SCI participants. These novel findings suggest that abnormal changes in motor cortical maps during voluntary contraction after SCI can be reshaped by sensory input, knowledge that can have implications for rehabilitation. ABSTRACT Motor cortical representations reorganize following cervical spinal cord injury (SCI). The functional role of this reorganization remains largely unknown. Using neuronavigated transcranial magnetic stimulation, we examined motor cortical maps during voluntary contraction in humans with chronic cervical SCI and age-matched controls. We constructed motor maps in the first dorsal interosseous (FDI) muscle at rest and during voluntary contraction of the FDI with and without voluntary contraction of the biceps brachi (BB). The role of sensory input into this reorganization was examined by muscle-tendon vibration. We found that, at rest, motor maps were larger in SCI (22.3 cm2 ) compared with control (12.6 cm2 , P < 0.001) participants. Motor map area increased during voluntary contraction of the FDI (120.7%) and further increased during contraction of the BB (143.9%) compared with rest in control subjects; however, motor map area decreased during voluntary contraction of the FDI (69.5%) and further decreased during contraction of the BB (55.5%) in individuals with SCI. SCI participants with larger decreases in map area during voluntary contraction of the FDI were those with larger sensory deficits in the hand and 10 min of hand muscle-tendon vibration increased motor map area. These results provide the first evidence of abnormal changes in motor cortical maps in humans with chronic SCI during voluntary contraction, suggesting that sensory input can help to reshape this reorganization.
Collapse
Affiliation(s)
- Toshiki Tazoe
- Arms + Hands Lab, Shirley Ryan AbilityLab, Northwestern
University, Chicago, IL 60611 and Hines Veterans Affairs Medical Center, Chicago, IL
60141, USA
- Neural Prosthesis Project, Department of Brain and
Neurosciences, Tokyo Metropolitan Institute of Medial Science, Tokyo 156-8506,
Japan
| | - Monica A. Perez
- Arms + Hands Lab, Shirley Ryan AbilityLab, Northwestern
University, Chicago, IL 60611 and Hines Veterans Affairs Medical Center, Chicago, IL
60141, USA
- The Miami Project to Cure Paralysis, Department of
Neurological Surgery, University of Miami, Miami FL 33136 and Bruce W. Carter
Department of Veterans Affairs Medical Center, Miami, FL 33125, USA
| |
Collapse
|
4
|
Corticospinal Motor Circuit Plasticity After Spinal Cord Injury: Harnessing Neuroplasticity to Improve Functional Outcomes. Mol Neurobiol 2021; 58:5494-5516. [PMID: 34341881 DOI: 10.1007/s12035-021-02484-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition that affects approximately 294,000 people in the USA and several millions worldwide. The corticospinal motor circuitry plays a major role in controlling skilled movements and in planning and coordinating movements in mammals and can be damaged by SCI. While axonal regeneration of injured fibers over long distances is scarce in the adult CNS, substantial spontaneous neural reorganization and plasticity in the spared corticospinal motor circuitry has been shown in experimental SCI models, associated with functional recovery. Beneficially harnessing this neuroplasticity of the corticospinal motor circuitry represents a highly promising therapeutic approach for improving locomotor outcomes after SCI. Several different strategies have been used to date for this purpose including neuromodulation (spinal cord/brain stimulation strategies and brain-machine interfaces), rehabilitative training (targeting activity-dependent plasticity), stem cells and biological scaffolds, neuroregenerative/neuroprotective pharmacotherapies, and light-based therapies like photodynamic therapy (PDT) and photobiomodulation (PMBT). This review provides an overview of the spontaneous reorganization and neuroplasticity in the corticospinal motor circuitry after SCI and summarizes the various therapeutic approaches used to beneficially harness this neuroplasticity for functional recovery after SCI in preclinical animal model and clinical human patients' studies.
Collapse
|
5
|
Brown AR, Martinez M. Chronic inactivation of the contralesional hindlimb motor cortex after thoracic spinal cord hemisection impedes locomotor recovery in the rat. Exp Neurol 2021; 343:113775. [PMID: 34081986 DOI: 10.1016/j.expneurol.2021.113775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
After incomplete spinal cord injury (SCI), cortical plasticity is involved in hindlimb locomotor recovery. Nevertheless, whether cortical activity is required for motor map plasticity and recovery remains unresolved. Here, we combined a unilateral thoracic spinal cord injury (SCI) with a cortical inactivation protocol that uncovered a functional role of contralesional cortical activity in hindlimb recovery and ipsilesional map plasticity. In adult rats, left hindlimb paralysis was induced by sectioning half of the spinal cord at the thoracic level (hemisection) and we used a continuous infusion of muscimol (GABAA agonist, 10 mM, 0.11 µl/h) delivered via implanted osmotic pump (n = 9) to chronically inactivate the contralesional hindlimb motor cortex. Hemisected rats with saline infusion served as a SCI control group (n = 8), and intact rats with muscimol infusion served as an inactivation control group (n = 6). Locomotion was assessed in an open field, on a horizontal ladder, and on a treadmill prior to and for three weeks after hemisection. Cortical inactivation after hemisection significantly impeded hindlimb locomotor recovery in all tasks and specifically disrupted the ability of rats to generate proper flexion of the affected hindlimb during stepping compared to SCI controls, with no significant effect of inactivation in intact rats. Chronic and acute (n = 4) cortical inactivation after hemisection also significantly reduced the representation of the affected hindlimb in the ipsilesional motor cortex derived with intracortical microsimulation (ICMS). Our results provide evidence that residual activity in the contralesional hindlimb motor cortex after thoracic hemisection contributes to spontaneous locomotor recovery and map plasticity.
Collapse
Affiliation(s)
- Andrew R Brown
- Département de Neurosciences Groupe de recherche sur le système nerveux central (GRSNC) and Centre Interdisciplinaire de Recherche sur le Cerveau au service de l'Apprentissage (CIRCA), Université de Montréal, Québec, Canada; CIUSSS du Nord-de-l'Île-de-Montréal, Québec, Canada
| | - Marina Martinez
- Département de Neurosciences Groupe de recherche sur le système nerveux central (GRSNC) and Centre Interdisciplinaire de Recherche sur le Cerveau au service de l'Apprentissage (CIRCA), Université de Montréal, Québec, Canada; CIUSSS du Nord-de-l'Île-de-Montréal, Québec, Canada.
| |
Collapse
|
6
|
What is the functional relevance of reorganization in primary motor cortex after spinal cord injury? Neurobiol Dis 2019; 121:286-295. [DOI: 10.1016/j.nbd.2018.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/10/2018] [Indexed: 01/15/2023] Open
|
7
|
Abstract
Spinal cord injury is associated with chronic sensorimotor deficits due to the interruption of ascending and descending tracts between the brain and spinal cord. Functional recovery after anatomically complete spinal cord injury is limited due to the lack of long-distance axonal regeneration of severed fibers in the adult central nervous system. Most spinal cord injuries in humans, however, are anatomically incomplete. Although restorative treatment options for spinal cord injury remain currently limited, research from experimental models of spinal cord injury have revealed a tremendous capability for both spontaneous and treatment-induced plasticity of the corticospinal system that supports functional recovery. We review recent advances in the understanding of corticospinal circuit plasticity after spinal cord injury and concentrate mainly on the hindlimb motor cortex, its corticospinal projections, and the role of spinal mechanisms that support locomotor recovery. First, we discuss plasticity that occurs at the level of motor cortex and the reorganization of cortical movement representations. Next, we explore downstream plasticity in corticospinal projections. We then review the role of spinal mechanisms in locomotor recovery. We conclude with a perspective on harnessing neuroplasticity with therapeutic interventions to promote functional recovery.
Collapse
Affiliation(s)
- Andrew R Brown
- Département de Neurosciences, Faculté de Médecine, Université de Montréal; Hôpital du Sacré-Coeur de Montréal (CIUSS-NIM), Montréal, Québec, Canada
| | - Marina Martinez
- Département de Neurosciences, Faculté de Médecine, Université de Montréal; Hôpital du Sacré-Coeur de Montréal (CIUSS-NIM), Montréal; Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
8
|
Ipsilesional Motor Cortex Plasticity Participates in Spontaneous Hindlimb Recovery after Lateral Hemisection of the Thoracic Spinal Cord in the Rat. J Neurosci 2018; 38:9977-9988. [PMID: 30301755 DOI: 10.1523/jneurosci.1062-18.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/20/2018] [Accepted: 09/29/2018] [Indexed: 01/08/2023] Open
Abstract
After an incomplete spinal cord injury (SCI) spontaneous motor recovery can occur in mammals, but the underlying neural substrates remain poorly understood. The motor cortex is crucial for skilled motor learning and the voluntary control of movement and is known to reorganize after cortical injury to promote recovery. Motor cortex plasticity has also been shown to parallel the recovery of forelimb function after cervical SCI, but whether cortical plasticity participates in hindlimb recovery after SCI remains unresolved. Using intracortical microstimulation (ICMS) mapping, behavioral and cortical inactivation techniques in the female Long-Evans rat, we evaluated the spontaneous cortical mechanisms of hindlimb motor recovery 1-5 weeks after lateral hemisection of the thoracic (T8) spinal cord that ablated the crossed corticospinal tract (CST) from the contralesional motor cortex while sparing the majority of the CST from the ipsilesional motor cortex. Hemisection initially impaired hindlimb motor function bilaterally but significant recovery occurred during the first 3 weeks. ICMS revealed time-dependent changes in motor cortex organization, characterized by a chronic abolishment of hindlimb motor representation in the contralesional motor cortex and the development of transient bilateral hindlimb representation in the ipsilesional motor cortex 3 weeks after hemisection, when significant behavioral recovery occurred. Consistently, reversible inactivation of the ipsilesional, but not the contralesional motor cortex, during skilled ladder walking 3 weeks after hemisection reinstated deficits in both hindlimbs. These findings indicate that the ipsilesional motor cortex transiently reorganizes after lateral hemisection of the thoracic spinal cord to support recovery of hindlimb motor function.SIGNIFICANCE STATEMENT Partial motor recovery can occur after an incomplete spinal cord injury and is hypothesized to result from the reorganization of spared descending motor pathways. The motor cortex is crucial for the control of voluntary movement and contains topographical movement representations (motor maps) that are highly plastic. We examined the organization of hindlimb motor maps bilaterally after a lateral hemisection of the spinal cord to show that while motor maps are abolished in the deefferented cortex, the spared ipsilesional cortex transiently reorganizes to gain a representation of the affected hindlimb after injury that relates to recovery. This finding demonstrates that plasticity in the ipsilesional motor cortex at early time points after spinal cord hemisection is initially important to support motor recovery.
Collapse
|
9
|
Mohammed H, Hollis ER. Cortical Reorganization of Sensorimotor Systems and the Role of Intracortical Circuits After Spinal Cord Injury. Neurotherapeutics 2018; 15:588-603. [PMID: 29882081 PMCID: PMC6095783 DOI: 10.1007/s13311-018-0638-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
The plasticity of sensorimotor systems in mammals underlies the capacity for motor learning as well as the ability to relearn following injury. Spinal cord injury, which both deprives afferent input and interrupts efferent output, results in a disruption of cortical somatotopy. While changes in corticospinal axons proximal to the lesion are proposed to support the reorganization of cortical motor maps after spinal cord injury, intracortical horizontal connections are also likely to be critical substrates for rehabilitation-mediated recovery. Intrinsic connections have been shown to dictate the reorganization of cortical maps that occurs in response to skilled motor learning as well as after peripheral injury. Cortical networks incorporate changes in motor and sensory circuits at subcortical or spinal levels to induce map remodeling in the neocortex. This review focuses on the reorganization of cortical networks observed after injury and posits a role of intracortical circuits in recovery.
Collapse
Affiliation(s)
- Hisham Mohammed
- Burke Neurological Institute, 785 Mamaroneck Avenue, White Plains, NY, 10605, USA
| | - Edmund R Hollis
- Burke Neurological Institute, 785 Mamaroneck Avenue, White Plains, NY, 10605, USA.
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Development of a System Architecture for Evaluation and Training of Proprioceptive Deficits of the Upper Limb. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2018; 2018:4132820. [PMID: 29552031 PMCID: PMC5818916 DOI: 10.1155/2018/4132820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/07/2017] [Indexed: 11/17/2022]
Abstract
Proprioception plays a fundamental role in maintaining posture and executing movement, and the quantitative evaluation of proprioceptive deficits in poststroke patients is important. But currently it is not widely performed due to the complexity of the evaluation tools required for a reliable assessment. The aims of this pilot study were to (a) develop a system architecture for upper limb evaluation and training of proximal and distal sense of position in the horizontal plane and (b) test the system in healthy and pathological subjects. Two robotic devices for evaluation and training of, respectively, wrist flexion/extension and shoulder-elbow manipulation were employed. The system we developed was applied in a group of 12 healthy subjects and 10 patients after stroke. It was able to quantitatively evaluate upper limb sense of position in the horizontal plane thanks to a set of quantitative parameters assessing position estimation errors, variability, and gain. In addition, it was able to distinguish healthy from pathological conditions. The system could thus be a reliable method to detect changes in the sense of position of patients with sensory deficits after stroke and could enable the implementation of novel training approaches for the recovery of normal proprioception.
Collapse
|
11
|
Thomaty S, Pezard L, Xerri C, Brezun JM. Acute granulocyte macrophage-colony stimulating factor treatment modulates neuroinflammatory processes and promotes tactile recovery after spinal cord injury. Neuroscience 2017; 349:144-164. [DOI: 10.1016/j.neuroscience.2017.02.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 11/25/2022]
|
12
|
Kloefkorn HE, Pettengill TR, Turner SMF, Streeter KA, Gonzalez-Rothi EJ, Fuller DD, Allen KD. Automated Gait Analysis Through Hues and Areas (AGATHA): A Method to Characterize the Spatiotemporal Pattern of Rat Gait. Ann Biomed Eng 2017; 45:711-725. [PMID: 27554674 PMCID: PMC5323432 DOI: 10.1007/s10439-016-1717-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/18/2016] [Indexed: 12/23/2022]
Abstract
While rodent gait analysis can quantify the behavioral consequences of disease, significant methodological differences exist between analysis platforms and little validation has been performed to understand or mitigate these sources of variance. By providing the algorithms used to quantify gait, open-source gait analysis software can be validated and used to explore methodological differences. Our group is introducing, for the first time, a fully-automated, open-source method for the characterization of rodent spatiotemporal gait patterns, termed Automated Gait Analysis Through Hues and Areas (AGATHA). This study describes how AGATHA identifies gait events, validates AGATHA relative to manual digitization methods, and utilizes AGATHA to detect gait compensations in orthopaedic and spinal cord injury models. To validate AGATHA against manual digitization, results from videos of rodent gait, recorded at 1000 frames per second (fps), were compared. To assess one common source of variance (the effects of video frame rate), these 1000 fps videos were re-sampled to mimic several lower fps and compared again. While spatial variables were indistinguishable between AGATHA and manual digitization, low video frame rates resulted in temporal errors for both methods. At frame rates over 125 fps, AGATHA achieved a comparable accuracy and precision to manual digitization for all gait variables. Moreover, AGATHA detected unique gait changes in each injury model. These data demonstrate AGATHA is an accurate and precise platform for the analysis of rodent spatiotemporal gait patterns.
Collapse
Affiliation(s)
- Heidi E Kloefkorn
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, JG56, Gainesville, FL, 32610, USA
| | - Travis R Pettengill
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, JG56, Gainesville, FL, 32610, USA
| | - Sara M F Turner
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Kristi A Streeter
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | | | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Kyle D Allen
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, JG56, Gainesville, FL, 32610, USA.
| |
Collapse
|
13
|
Takeoka A, Vollenweider I, Courtine G, Arber S. Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury. Cell 2015; 159:1626-39. [PMID: 25525880 DOI: 10.1016/j.cell.2014.11.019] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/05/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022]
Abstract
Spinal cord injuries alter motor function by disconnecting neural circuits above and below the lesion, rendering sensory inputs a primary source of direct external drive to neuronal networks caudal to the injury. Here, we studied mice lacking functional muscle spindle feedback to determine the role of this sensory channel in gait control and locomotor recovery after spinal cord injury. High-resolution kinematic analysis of intact mutant mice revealed proficient execution in basic locomotor tasks but poor performance in a precision task. After injury, wild-type mice spontaneously recovered basic locomotor function, whereas mice with deficient muscle spindle feedback failed to regain control over the hindlimb on the lesioned side. Virus-mediated tracing demonstrated that mutant mice exhibit defective rearrangements of descending circuits projecting to deprived spinal segments during recovery. Our findings reveal an essential role for muscle spindle feedback in directing basic locomotor recovery and facilitating circuit reorganization after spinal cord injury.
Collapse
Affiliation(s)
- Aya Takeoka
- Biozentrum, Department of Cell Biology, University of Basel, 4056 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Isabel Vollenweider
- Brain Mind Institute and Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Grégoire Courtine
- Brain Mind Institute and Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Silvia Arber
- Biozentrum, Department of Cell Biology, University of Basel, 4056 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
14
|
Lee KZ, Huang YJ, Tsai IL. Respiratory motor outputs following unilateral midcervical spinal cord injury in the adult rat. J Appl Physiol (1985) 2014; 116:395-405. [DOI: 10.1152/japplphysiol.01001.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The present study was designed to investigate the impact of midcervical spinal cord injury on respiratory outputs and compare respiratory recovery following high- vs. midcervical spinal injury. A unilateral hemisection (Hx) in the spinal cord at C2 or C4 was performed in adult rats. Respiratory behaviors of unanesthetized animals were measured at normoxic baseline and hypercapnia by whole body plethysmography at 1 day and 1, 2, 4, and 8 wk after spinal injury. C2Hx and C4Hx induced a similar rapid shallow breathing pattern at 1 day postinjury. The respiratory frequency of C4Hx animals gradually returned to normal, but the tidal volume from 1 to 8 wk postinjury remained lower than that of the control animals. Linear regression analyses indicated that the tidal volume recovery was greater in the C4Hx animals than in the C2Hx animals at the baseline, but not at hypercapnia. The bilateral phrenic nerve activity was recorded in anesthetized animals under different respiratory drives at 8–9 wk postinjury. The phrenic burst amplitude ipsilateral to the lesion reduced following both high- and midcervical Hx; however, the ability to increase activity was lower in the C4Hx animals than in the C2Hx animals. When the data were normalized by the maximal inspiratory effort during asphyxia, the phrenic burst amplitude enhanced in the C4Hx animals, but reduced in the C2Hx animals compared with the control animals. These results suggest that respiratory deficits are evident following midcervical Hx, and that respiratory recovery and neuroplasticity of phrenic outputs are different following high- vs. midcervical spinal injury.
Collapse
Affiliation(s)
- Kun-Ze Lee
- Department of Biological Sciences, College of Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yi-Jia Huang
- Department of Biological Sciences, College of Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - I-Lun Tsai
- Department of Biological Sciences, College of Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Martinez M, Rossignol S. A dual spinal cord lesion paradigm to study spinal locomotor plasticity in the cat. Ann N Y Acad Sci 2013; 1279:127-34. [PMID: 23531010 DOI: 10.1111/j.1749-6632.2012.06823.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
After a complete spinal cord injury (SCI) at the lowest thoracic level (T13), adult cats trained to walk on a treadmill can recover hindlimb locomotion within 2-3 weeks, resulting from the activity of a spinal circuitry termed the central pattern generator (CPG). The role of this spinal circuitry in the recovery of locomotion after partial SCIs, when part of descending pathways can still access the CPG, is not yet fully understood. Using a dual spinal lesion paradigm (first hemisection at T10 followed three weeks after by a complete spinalization at T13), we showed that major changes occurred in this locomotor spinal circuitry. These plastic changes at the spinal cord level could participate in the recovery of locomotion after partial SCI. This short review describes the main findings of this paradigm in adult cats.
Collapse
Affiliation(s)
- Marina Martinez
- Department of Physiology, Université de Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
16
|
Tandon S, Kambi N, Mohammed H, Jain N. Complete reorganization of the motor cortex of adult rats following long-term spinal cord injuries. Eur J Neurosci 2013; 38:2271-9. [DOI: 10.1111/ejn.12218] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/12/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Shashank Tandon
- National Brain Research Centre; N.H. 8; Manesar; Haryana; 122 051; India
| | - Niranjan Kambi
- National Brain Research Centre; N.H. 8; Manesar; Haryana; 122 051; India
| | - Hisham Mohammed
- National Brain Research Centre; N.H. 8; Manesar; Haryana; 122 051; India
| | - Neeraj Jain
- National Brain Research Centre; N.H. 8; Manesar; Haryana; 122 051; India
| |
Collapse
|
17
|
Langlet C, Bastide B, Canu MH. Hindlimb unloading affects cortical motor maps and decreases corticospinal excitability. Exp Neurol 2012; 237:211-7. [DOI: 10.1016/j.expneurol.2012.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 10/28/2022]
|
18
|
Khaing ZZ, Geissler SA, Jiang S, Milman BD, Aguilar SV, Schmidt CE, Schallert T. Assessing Forelimb Function after Unilateral Cervical Spinal Cord Injury: Novel Forelimb Tasks Predict Lesion Severity and Recovery. J Neurotrauma 2012; 29:488-98. [DOI: 10.1089/neu.2011.2106] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Zin Z. Khaing
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Sydney A. Geissler
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Shan Jiang
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas
| | - Brian D. Milman
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Sandra V. Aguilar
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Christine E. Schmidt
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Timothy Schallert
- The Department of Psychology, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
19
|
Ferguson AR, Stück ED, Nielson JL. Syndromics: a bioinformatics approach for neurotrauma research. Transl Stroke Res 2011; 2:438-54. [PMID: 22207883 PMCID: PMC3236294 DOI: 10.1007/s12975-011-0121-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/14/2011] [Accepted: 10/18/2011] [Indexed: 12/25/2022]
Abstract
Substantial scientific progress has been made in the past 50 years in delineating many of the biological mechanisms involved in the primary and secondary injuries following trauma to the spinal cord and brain. These advances have highlighted numerous potential therapeutic approaches that may help restore function after injury. Despite these advances, bench-to-bedside translation has remained elusive. Translational testing of novel therapies requires standardized measures of function for comparison across different laboratories, paradigms, and species. Although numerous functional assessments have been developed in animal models, it remains unclear how to best integrate this information to describe the complete translational "syndrome" produced by neurotrauma. The present paper describes a multivariate statistical framework for integrating diverse neurotrauma data and reviews the few papers to date that have taken an information-intensive approach for basic neurotrauma research. We argue that these papers can be described as the seminal works of a new field that we call "syndromics", which aim to apply informatics tools to disease models to characterize the full set of mechanistic inter-relationships from multi-scale data. In the future, centralized databases of raw neurotrauma data will enable better syndromic approaches and aid future translational research, leading to more efficient testing regimens and more clinically relevant findings.
Collapse
Affiliation(s)
- Adam R. Ferguson
- Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110 USA
| | - Ellen D. Stück
- Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110 USA
| | - Jessica L. Nielson
- Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110 USA
| |
Collapse
|
20
|
Filli L, Zörner B, Weinmann O, Schwab ME. Motor deficits and recovery in rats with unilateral spinal cord hemisection mimic the Brown-Sequard syndrome. ACTA ACUST UNITED AC 2011; 134:2261-73. [PMID: 21752788 DOI: 10.1093/brain/awr167] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cervical incomplete spinal cord injuries often lead to severe and persistent impairments of sensorimotor functions and are clinically the most frequent type of spinal cord injury. Understanding the motor impairments and the possible functional recovery of upper and lower extremities is of great importance. Animal models investigating motor dysfunction following cervical spinal cord injury are rare. We analysed the differential spontaneous recovery of fore- and hindlimb locomotion by detailed kinematic analysis in adult rats with unilateral C4/C5 hemisection, a lesion that leads to the Brown-Séquard syndrome in humans. The results showed disproportionately better performance of hindlimb compared with forelimb locomotion; hindlimb locomotion showed substantial recovery, whereas the ipsilesional forelimb remained in a very poor functional state. Such a differential motor recovery pattern is also known to occur in monkeys and in humans after similar spinal cord lesions. On the lesioned side, cortico-, rubro-, vestibulo- and reticulospinal tracts and the important modulatory serotonergic, dopaminergic and noradrenergic fibre systems were interrupted by the lesion. In an attempt to facilitate locomotion, different monoaminergic agonists were injected intrathecally. Injections of specific serotonergic and noradrenergic agonists in the chronic phase after the spinal cord lesion revealed remarkable, although mostly functionally negative, modulations of particular parameters of hindlimb locomotion. In contrast, forelimb locomotion was mostly unresponsive to these agonists. These results, therefore, show fundamental differences between fore- and hindlimb spinal motor circuitries and their functional dependence on remaining descending inputs and exogenous spinal excitation. Understanding these differences may help to develop future therapeutic strategies to improve upper and lower limb function in patients with incomplete cervical spinal cord injuries.
Collapse
Affiliation(s)
- Linard Filli
- Brain Research Institute, University and ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | | | | | | |
Collapse
|
21
|
Martinez M, Brezun JM, Xerri C. Sensorimotor experience influences recovery of forelimb abilities but not tissue loss after focal cortical compression in adult rats. PLoS One 2011; 6:e16726. [PMID: 21359230 PMCID: PMC3040209 DOI: 10.1371/journal.pone.0016726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/22/2010] [Indexed: 11/23/2022] Open
Abstract
Sensorimotor activity has been shown to play a key role in functional outcome after extensive brain damage. This study was aimed at assessing the influence of sensorimotor experience through subject-environment interactions on the time course of both lesion and gliosis volumes as well as on the recovery of forelimb sensorimotor abilities following focal cortical injury. The lesion consisted of a cortical compression targeting the forepaw representational area within the primary somatosensory cortex of adult rats. After the cortical lesion, rats were randomly subjected to various postlesion conditions: unilateral C5-C6 dorsal root transection depriving the contralateral cortex from forepaw somatosensory inputs, standard housing or an enriched environment promoting sensorimotor experience and social interactions. Behavioral tests were used to assess forelimb placement during locomotion, forelimb-use asymmetry, and forepaw tactile sensitivity. For each group, the time course of tissue loss was described and the gliosis volume over the first postoperative month was evaluated using an unbiased stereological method. Consistent with previous studies, recovery of behavioral abilities was found to depend on post-injury experience. Indeed, increased sensorimotor activity initiated early in an enriched environment induced a rapid and more complete behavioral recovery compared with standard housing. In contrast, severe deprivation of peripheral sensory inputs led to a delayed and only partial sensorimotor recovery. The dorsal rhizotomy was found to increase the perilesional gliosis in comparison to standard or enriched environments. These findings provide further evidence that early sensory experience has a beneficial influence on the onset and time course of functional recovery after focal brain injury.
Collapse
Affiliation(s)
- Marina Martinez
- CNRS UMR 6149, Integrative and Adaptive Neurosciences, Pôle 3 C, IFR 131, University of Provence, Marseilles, France
| | - Jean-Michel Brezun
- CNRS UMR 6149, Integrative and Adaptive Neurosciences, Pôle 3 C, IFR 131, University of Provence, Marseilles, France
| | - Christian Xerri
- CNRS UMR 6149, Integrative and Adaptive Neurosciences, Pôle 3 C, IFR 131, University of Provence, Marseilles, France
| |
Collapse
|
22
|
Martinez M, Rossignol S. Changes in CNS structures after spinal cord lesions implications for BMI. PROGRESS IN BRAIN RESEARCH 2011; 194:191-202. [PMID: 21867804 DOI: 10.1016/b978-0-444-53815-4.00007-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is well established that a spinal circuitry can generate locomotor movements of the hindlimbs in absence of descending supraspinal inputs. This is based, among others, on the observation that after a complete spinalization, cats can walk with the hindlimbs on a treadmill. Does this spinal pattern generator (CPG) also participate in the recovery of locomotion after a partial spinal cord lesion (SCI)? After such SCI, functional reorganization can occur spontaneously along the whole neuraxis, namely the spinal cord circuitry below the lesion (CPG) and in supraspinal structures still partially connected to the spinal cord. This review focuses mainly on the capacity of the spinal and supraspinal structures to reorganize spontaneously after incomplete SCI in animals (rats and cats). BMI approaches to foster recovery of functions after various types of SCI should take into account these changes at the various levels of the CNS.
Collapse
Affiliation(s)
- M Martinez
- Department of Physiology, Groupe de Recherche sur le Système Nerveux Central, Faculty of Medicine, Université de Montréal, SensoriMotor Rehabilitation Research Team of the Canadian Institute for Health Research, Montréal, Québec, Canada
| | | |
Collapse
|
23
|
Yague JG, Foffani G, Aguilar J. Cortical hyperexcitability in response to preserved spinothalamic inputs immediately after spinal cord hemisection. Exp Neurol 2010; 227:252-63. [PMID: 21093438 DOI: 10.1016/j.expneurol.2010.11.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 11/09/2010] [Indexed: 01/27/2023]
Abstract
Chronic injury of the main somatosensory pathways ascending along the spinal cord - the dorsal columns and the spinothalamic tract - can produce both changes in the organization of cortical somatotopic maps and neuropathic pain. Little is known, however, about the early neurophysiological changes occurring immediately after injury. We bilaterally recorded the neural activity of the hindpaw representation of the primary somatosensory cortex evoked by stimuli delivered to the hindpaws before and immediately after a thoracic spinal cord hemisection in anesthetized rats. This unilateral spinal cord injury allowed us to separately investigate the cortical effects of deafferenting the dorsal column (stimuli ipsilateral to the hemisection) or the spinothalamic tract (stimuli contralateral to the hemisection). The hemisection produced immediate bilateral changes in the cortical responses evoked by stimuli delivered to the hindpaw ipsilateral to the hemisection (deafferented dorsal column): an expected loss of classical short-latency cortical responses, accompanied by an unexpected appearance of long-latency activations. At the population level, these activations reflected a progressive stimulus-induced transition of the hindpaw somatosensory cortex from up-and-down states to a sustained activated state. At the single-cell level, these cortical activations resembled the "wind-up" typically observed - with the same type of stimuli - in the dorsal horn cells originating the spinothalamic tract. Virtually no changes were observed in the responses evoked by stimuli delivered to the hindpaw contralateral to the hemisection (deafferented spinothalamic tract). These results suggest that spinal cord hemisection immediately produces an abnormal hyperexcitability of the primary somatosensory cortex in response to preserved spinothalamic inputs from the hindpaw. This immediate cortical hyperexcitability could be important to understand the long-term development of cortical reorganization and neuropathic pain after incomplete spinal cord lesions.
Collapse
Affiliation(s)
- J G Yague
- Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | | | | |
Collapse
|