1
|
Molecular Pathology of ALS: What We Currently Know and What Important Information Is Still Missing. Diagnostics (Basel) 2021; 11:diagnostics11081365. [PMID: 34441299 PMCID: PMC8391180 DOI: 10.3390/diagnostics11081365] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/25/2021] [Accepted: 07/25/2021] [Indexed: 12/23/2022] Open
Abstract
Despite an early understanding of amyotrophic lateral sclerosis (ALS) as a disease affecting the motor system, including motoneurons in the motor cortex, brainstem, and spinal cord, today, many cases involving dementia and behavioral disorders are reported. Therefore, we currently divide ALS not only based on genetic predisposition into the most common sporadic variant (90% of cases) and the familial variant (10%), but also based on cognitive and/or behavioral symptoms, with five specific subgroups of clinical manifestation—ALS with cognitive impairment, ALS with behavioral impairment, ALS with combined cognitive and behavioral impairment, the fully developed behavioral variant of frontotemporal dementia in combination with ALS, and comorbid ALS and Alzheimer’s disease (AD). Generally, these cases are referred to as amyotrophic lateral sclerosis-frontotemporal spectrum disorder (ALS-FTSD). Clinical behaviors and the presence of the same pathognomonic deposits suggest that FTLD and ALS could be a continuum of one entity. This review was designed primarily to compare neuropathological findings in different types of ALS relative to their characteristic locations as well as the immunoreactivity of the inclusions, and thus, foster a better understanding of the immunoreactivity, distribution, and morphology of the pathological deposits in relation to genetic mutations, which can be useful in specifying the final diagnosis.
Collapse
|
2
|
Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degenerations: Similarities in Genetic Background. Diagnostics (Basel) 2021; 11:diagnostics11030509. [PMID: 33805659 PMCID: PMC7998502 DOI: 10.3390/diagnostics11030509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 12/27/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating, uniformly lethal progressive degenerative disorder of motor neurons that overlaps with frontotemporal lobar degeneration (FTLD) clinically, morphologically, and genetically. Although many distinct mutations in various genes are known to cause amyotrophic lateral sclerosis, it remains poorly understood how they selectively impact motor neuron biology and whether they converge on common pathways to cause neuronal degeneration. Many of the gene mutations are in proteins that share similar functions. They can be grouped into those associated with cell axon dynamics and those associated with cellular phagocytic machinery, namely protein aggregation and metabolism, apoptosis, and intracellular nucleic acid transport. Analysis of pathways implicated by mutant ALS genes has provided new insights into the pathogenesis of both familial forms of ALS (fALS) and sporadic forms (sALS), although, regrettably, this has not yet yielded definitive treatments. Many genes play an important role, with TARDBP, SQSTM1, VCP, FUS, TBK1, CHCHD10, and most importantly, C9orf72 being critical genetic players in these neurological disorders. In this mini-review, we will focus on the molecular mechanisms of these two diseases.
Collapse
|
3
|
Kovacs GG. Molecular Pathological Classification of Neurodegenerative Diseases: Turning towards Precision Medicine. Int J Mol Sci 2016; 17:ijms17020189. [PMID: 26848654 PMCID: PMC4783923 DOI: 10.3390/ijms17020189] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/21/2016] [Accepted: 01/26/2016] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are characterized by selective dysfunction and loss of neurons associated with pathologically altered proteins that deposit in the human brain but also in peripheral organs. These proteins and their biochemical modifications can be potentially targeted for therapy or used as biomarkers. Despite a plethora of modifications demonstrated for different neurodegeneration-related proteins, such as amyloid-β, prion protein, tau, α-synuclein, TAR DNA-binding protein 43 (TDP-43), or fused in sarcoma protein (FUS), molecular classification of NDDs relies on detailed morphological evaluation of protein deposits, their distribution in the brain, and their correlation to clinical symptoms together with specific genetic alterations. A further facet of the neuropathology-based classification is the fact that many protein deposits show a hierarchical involvement of brain regions. This has been shown for Alzheimer and Parkinson disease and some forms of tauopathies and TDP-43 proteinopathies. The present paper aims to summarize current molecular classification of NDDs, focusing on the most relevant biochemical and morphological aspects. Since the combination of proteinopathies is frequent, definition of novel clusters of patients with NDDs needs to be considered in the era of precision medicine. Optimally, neuropathological categorizing of NDDs should be translated into in vivo detectable biomarkers to support better prediction of prognosis and stratification of patients for therapy trials.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, AKH 4J, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
4
|
Kao PF, Chen YR, Liu XB, DeCarli C, Seeley WW, Jin LW. Detection of TDP-43 oligomers in frontotemporal lobar degeneration-TDP. Ann Neurol 2015; 78:211-21. [PMID: 25921485 DOI: 10.1002/ana.24431] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/22/2015] [Accepted: 04/22/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The proteinaceous inclusions in TDP-43 proteinopathies such as frontotemporal lobar degeneration (FTLD)-TDP are made of high-molecular-weight aggregates of TDP-43. These aggregates have not been classified as amyloids, as prior amyloid staining results were not conclusive. Here we used a specific TDP-43 amyloid oligomer antibody called TDP-O to determine the presence and abundance of TDP-43 oligomers among different subtypes of FTLD-TDP as well as in hippocampal sclerosis (HS), which represents a non-FTLD pathology with TDP-43 inclusions. METHODS Postmortem tissue from the hippocampus and anterior orbital gyrus from 54 prospectively assessed and diagnosed subjects was used for immunostaining with TDP-O. Electron microscopy was used to assess the subcellular locations of TDP-O-decorated structures. RESULTS TDP-43 inclusions staining with TDP-O were present in FTLD-TDP and were most conspicuous for FTLD-TDP type C, the subtype seen in most patients with semantic variant primary progressive aphasia. TDP-O immunoreactivity was absent in the hippocampus of HS patients despite abundant TDP-43 inclusions. Ultrastructurally, TDP-43 oligomers resided in granular or tubular structures, frequently in close proximity to, but not within, neuronal lysosomes. INTERPRETATION TDP-43 forms amyloid oligomers in the human brain, which may cause neurotoxicity in a manner similar to other amyloid oligomers. Oligomer formation may contribute to the conformational heterogeneity of TDP-43 aggregates and mark the different properties of TDP-43 inclusions between FTLD-TDP and HS.
Collapse
Affiliation(s)
- Patricia F Kao
- Department of Pathology and Laboratory Medicine, University of California, Davis, School of Medicine, Sacramento, CA.,Alzheimer's Disease Center, University of California, Davis, School of Medicine, Sacramento, CA
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Xiao-Bo Liu
- Department of Pathology and Laboratory Medicine, University of California, Davis, School of Medicine, Sacramento, CA
| | - Charles DeCarli
- Alzheimer's Disease Center, University of California, Davis, School of Medicine, Sacramento, CA.,Department of Neurology, University of California, Davis, School of Medicine, Sacramento, CA
| | - William W Seeley
- Departments of Neurology and Pathology, University of California, San Francisco, San Francisco, CA
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, University of California, Davis, School of Medicine, Sacramento, CA.,Alzheimer's Disease Center, University of California, Davis, School of Medicine, Sacramento, CA
| |
Collapse
|
5
|
Kovacs GG, Adle-Biassette H, Milenkovic I, Cipriani S, van Scheppingen J, Aronica E. Linking pathways in the developing and aging brain with neurodegeneration. Neuroscience 2014; 269:152-72. [PMID: 24699227 DOI: 10.1016/j.neuroscience.2014.03.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/21/2014] [Accepted: 03/21/2014] [Indexed: 12/12/2022]
Abstract
The molecular and cellular mechanisms, which coordinate the critical stages of brain development to reach a normal structural organization with appropriate networks, are progressively being elucidated. Experimental and clinical studies provide evidence of the occurrence of developmental alterations induced by genetic or environmental factors leading to the formation of aberrant networks associated with learning disabilities. Moreover, evidence is accumulating that suggests that also late-onset neurological disorders, even Alzheimer's disease, might be considered disorders of aberrant neural development with pathological changes that are set up at early stages of development before the appearance of the symptoms. Thus, evaluating proteins and pathways that are important in age-related neurodegeneration in the developing brain together with the characterization of mechanisms important during brain development with relevance to brain aging are of crucial importance. In the present review we focus on (1) aspects of neurogenesis with relevance to aging; (2) neurodegenerative disease (NDD)-associated proteins/pathways in the developing brain; and (3) further pathways of the developing or neurodegenerating brains that show commonalities. Elucidation of complex pathogenetic routes characterizing the earliest stage of the detrimental processes that result in pathological aging represents an essential first step toward a therapeutic intervention which is able to reverse these pathological processes and prevent the onset of the disease. Based on the shared features between pathways, we conclude that prevention of NDDs of the elderly might begin during the fetal and childhood life by providing the mothers and their children a healthy environment for the fetal and childhood development.
Collapse
Affiliation(s)
- G G Kovacs
- Institute of Neurology, Medical University of Vienna, Austria.
| | - H Adle-Biassette
- Inserm U1141, F-75019 Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 676, F-75019 Paris, France; Department of Pathology, Lariboisière Hospital, APHP, Paris, France
| | - I Milenkovic
- Institute of Neurology, Medical University of Vienna, Austria
| | | | - J van Scheppingen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| | - E Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, The Netherlands; SEIN - Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| |
Collapse
|
6
|
Jadhav S, Zilka N, Novak M. Protein truncation as a common denominator of human neurodegenerative foldopathies. Mol Neurobiol 2013; 48:516-32. [PMID: 23516100 DOI: 10.1007/s12035-013-8440-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/05/2013] [Indexed: 12/13/2022]
Abstract
Neurodegenerative foldopathies are characterized by aberrant folding of diseased modified proteins, which are major constituents of the intracellular and extracellular lesions. These lesions correlate with the cognitive and/or motor impairment seen in these diseases. The majority of the disease modified proteins in neurodegenerative foldopathies belongs to the group of proteins termed as intrinsically disordered proteins (IDPs). Several independent studies have showed that abnormal protein processing constitutes the key pathological feature of these disorders. The current review focuses on protein truncation as a common denominator of neurodegenerative foldopathies, which is considered to be the major driving force behind the pathological metamorphosis of brain IDPs. The aim of the review is to emphasize the key role of the protein truncation in the pathogenic pathways of neurodegenerative diseases. A deeper understanding of the complex downstream processing of the IDPs, resulting in the generation of pathologically modified proteins might be a prerequisite for the successful therapeutic strategies of several fatal neurodegenerative diseases.
Collapse
Affiliation(s)
- Santosh Jadhav
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska cesta 9, 845 10, Bratislava, Slovak Republic
| | | | | |
Collapse
|
7
|
Intraneuronal immunoreactivity for the prion protein distinguishes a subset of E200K genetic from sporadic Creutzfeldt-Jakob Disease. J Neuropathol Exp Neurol 2012; 71:223-32. [PMID: 22318125 DOI: 10.1097/nen.0b013e318248aa70] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Recently, we reported widespread intraneuronal prion protein (PrP) immunoreactivity in genetic Creutzfeldt-Jakob disease (CJD) associated with the E200K mutation. Here, we evaluated 6 cases ofsporadic CJD MM type 1, 5 MV type 2, and 7 VV type 2 and compared their anatomical appearance with that of 29 E200K genetic CJD (gCJD) cases. We also performed double immunolabeling for ubiquitin, p62, early endosomal marker rab5, and immunogold electronmicroscopy in 3 cases. We identified 4 morphological types of intraneuronal PrP immunoreactivity: one type, defined as multiple globular structures, was significantly associated with a subset of E200K gCJD cases and was distinct from the intraneuronal small dotlike PrP immunoreactivity seen in sporadic CJD. Whereas the latter colocalized with rab5, there were single large (7.5 μm-15 μm) globular inclusion body-like structures detected predominantly but not exclusively in E200K gCJD; these were immunoreactive in part for ubiquitin and p62 and showed focal γ-tubulin immunoreactivity, suggesting aggresome features. Ultrastructural examination using immunogold revealed PrP localization in aggresome-like structures and in autophagic vacuoles. These findings suggest that the permanent production of mutant PrP in the E200K gCJD cases overwhelms the ubiquitin-proteasome system and shifts the balance toward selectivemacroautophagy and/or to ubiquitinated inclusion body and aggresome formation as a cytoprotective effort to sequester the mutant protein.
Collapse
|
8
|
Puri R, Suzuki T, Yamakawa K, Ganesh S. Dysfunctions in endosomal–lysosomal and autophagy pathways underlie neuropathology in a mouse model for Lafora disease. Hum Mol Genet 2011; 21:175-84. [DOI: 10.1093/hmg/ddr452] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
9
|
Current world literature. Curr Opin Neurol 2011; 24:511-6. [PMID: 21900773 DOI: 10.1097/wco.0b013e32834be5c1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|