1
|
Rodriguez KM, Krishnan C, Palmieri-Smith RM. Number of conditioning trials, but not stimulus intensity, influences operant conditioning of brain responses after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2024. [PMID: 39324365 DOI: 10.1002/ksa.12480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
PURPOSE The primary purpose of this randomized, cross-sectional study was to determine whether operant conditioning of motor evoked torque (MEPTORQUE) in individuals with total knee arthroplasty (TKA) increases quadriceps MEPTORQUE responses within a single session and induces acute corticospinal adaptations by producing sustained increases in MEPTORQUE after training. A secondary purpose was to determine if these changes were affected by the stimulus intensity and number of training trials. METHODS Thirty participants were block-randomized into one of three groups based on the participant's active motor threshold (100%, 120%, and 140%) to evaluate the effect of stimulus intensity. Participants received three blocks of conditioning trials (COND), where they trained to increase their MEPTORQUE. Control (CTRL) transcranial magnetic stimulation pulses were provided before and after each COND block to establish baseline corticospinal excitability and to evaluate the effect of the number of training trials. Two MEPTORQUE recruitment curves were collected to evaluate the effect of up-conditioning on acute corticospinal adaptations. RESULTS TKA participants were able to successfully increase their MEPTORQUE in a single session (F3,81 = 10.719, p < 0.001) and induce acute corticospinal adaptations (F1,27 = 20.029, p < 0.001), indicating sustained increases in quadriceps corticospinal excitability due to operant conditioning. While the stimulus intensity used during training did not affect the ability to increase MEPTORQUE (F2,26 = 0.021, n.s.) or its associated acute adaptations (F2,27 = 0.935, n.s.), the number of training trials significantly influenced these outcomes (F3,81 = 10.719, p < 0.001; F3,81 = 4.379, p = 0.007, respectively). CONCLUSION Operant conditioning is a feasible approach for improving quadriceps corticospinal excitability following TKA. While any of the three stimulus intensities evaluated in this study may be used in future operant conditioning interventions, using a low or moderate stimulus intensity and 150 training trials are recommended to improve treatment efficiency and patient adherence. LEVEL OF EVIDENCE Level II.
Collapse
Affiliation(s)
- Kazandra M Rodriguez
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Chandramouli Krishnan
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, Michigan, USA
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Robotics Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Physical Therapy, College of Health Sciences, University of Michigan-Flint, Flint, Michigan, USA
| | - Riann M Palmieri-Smith
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Rodriguez KM, Moon J, Krishnan C, Palmieri-Smith RM. Conditioning of Motor Evoked Responses After Anterior Cruciate Ligament Reconstruction: Effects of Stimulus Intensity. Sports Health 2024:19417381241257258. [PMID: 38864306 PMCID: PMC11569524 DOI: 10.1177/19417381241257258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Operant conditioning of motor evoked torque (MEPTORQUE) can directly target the corticospinal pathway in patients with anterior cruciate ligament (ACL) reconstruction. However, it remains unclear whether operant conditioning can elicit short-term improvements in corticospinal excitability and whether these improvements are influenced by stimulus intensity. HYPOTHESIS Quadriceps MEPTORQUE responses can be upconditioned in a single session and will elicit short-term adaptations in corticospinal excitability, with higher stimulus intensities eliciting greater effects. STUDY DESIGN Randomized controlled laboratory study. LEVEL OF EVIDENCE Level 2. METHODS Thirty-six participants were assessed during a single session of an operant conditioning protocol. Participants were randomized into 1 of 3 groups for stimulus intensity used during operant conditioning based on the participant's active motor threshold (AMT: 100%, 120%, and 140%). Quadriceps MEPTORQUE amplitude was evaluated during a block of control transcranial magnetic stimulation trials (CTRL) to establish baseline corticospinal excitability, and 3 blocks of conditioning trials (COND) during which participants trained to upcondition their MEPTORQUE. MEPTORQUE recruitment curves were collected to evaluate the effect of operant conditioning on acute corticospinal adaptations. RESULTS Participants with ACL reconstruction could upcondition their MEPTORQUE in a single session (P < 0.01; CTRL, 17.27 ± 1.28; COND, 21.35 ± 1.28 [mean ± standard error [SE] in N·m]), but this ability was not influenced by the stimulus intensity used during training (P = 0.84). Furthermore, significant improvements in corticospinal excitability were observed (P = 0.05; PRE, 687.91 ± 50.15; POST, 761.08 ± 50.15 [mean ± SE in N·m %AMT]), but stimulus intensity did not influence corticospinal adaptations (P = 0.67). CONCLUSION Operant conditioning can elicit short-term neural adaptations in ACL-reconstructed patients. Future operant conditioning paradigms may effectively use any of the 3 stimulus intensities studied herein. CLINICAL RELEVANCE Operant conditioning may be a feasible approach to improve corticospinal excitability after ACL reconstruction.
Collapse
Affiliation(s)
| | - Jungsun Moon
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Chandramouli Krishnan
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
- Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, Michigan
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Michigan Robotics Institute, University of Michigan, Ann Arbor, Michigan
- Mechanical Engineering, University of Michigan
| | - Riann M. Palmieri-Smith
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
- Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, Michigan
| |
Collapse
|
3
|
Augenstein TE, Oh S, Norris TA, Mekler J, Sethi A, Krishnan C. Corticospinal excitability during motor preparation of upper extremity reaches reflects flexor muscle synergies: A novel principal component-based motor evoked potential analyses. Restor Neurol Neurosci 2024; 42:121-138. [PMID: 38607772 DOI: 10.3233/rnn-231367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Background Previous research has shown that noninvasive brain stimulation can be used to study how the central nervous system (CNS) prepares the execution of a motor task. However, these previous studies have been limited to a single muscle or single degree of freedom movements (e.g., wrist flexion). It is currently unclear if the findings of these studies generalize to multi-joint movements involving multiple muscles, which may be influenced by kinematic redundancy and muscle synergies. Objective The objective of this study was to characterize corticospinal excitability during motor preparation in the cortex prior to functional upper extremity reaches. Methods 20 participants without neurological impairments volunteered for this study. During the experiment, the participants reached for a cup in response to a visual "Go Cue". Prior to movement onset, we used transcranial magnetic stimulation (TMS) to stimulate the motor cortex and measured the changes in motor evoked potentials (MEPs) in several upper extremity muscles. We varied each participant's initial arm posture and used a novel synergy-based MEP analysis to examine the effect of muscle coordination on MEPs. Additionally, we varied the timing of the stimulation between the Go Cue and movement onset to examine the time course of motor preparation. Results We found that synergies with strong proximal muscle (shoulder and elbow) components emerged as the stimulation was delivered closer to movement onset, regardless of arm posture, but MEPs in the distal (wrist and finger) muscles were not facilitated. We also found that synergies varied with arm posture in a manner that reflected the muscle coordination of the reach. Conclusions We believe that these findings provide useful insight into the way the CNS plans motor skills.
Collapse
Affiliation(s)
- Thomas E Augenstein
- Department of Physical Medicine and Rehabilitation, NeuRRo Lab, Michigan Medicine, Ann Arbor, MI, USA
- Department of Robotics, University of Michigan, Ann Arbor, MI, USA
| | - Seonga Oh
- Department of Physical Medicine and Rehabilitation, NeuRRo Lab, Michigan Medicine, Ann Arbor, MI, USA
| | - Trevor A Norris
- Department of Physical Medicine and Rehabilitation, NeuRRo Lab, Michigan Medicine, Ann Arbor, MI, USA
| | | | - Amit Sethi
- Department of Occupational Therapy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chandramouli Krishnan
- Department of Physical Medicine and Rehabilitation, NeuRRo Lab, Michigan Medicine, Ann Arbor, MI, USA
- Department of Robotics, University of Michigan, Ann Arbor, MI, USA
- Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Augenstein TE, Oh S, Norris TA, Mekler J, Sethi A, Krishnan C. Muscle Coordination Matters: Insights into Motor Planning using Corticospinal Responses during Functional Reaching. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540531. [PMID: 37292868 PMCID: PMC10245565 DOI: 10.1101/2023.05.15.540531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The central nervous system (CNS) moves the human body by forming a plan in the primary motor cortex and then executing this plan by activating the relevant muscles. It is possible to study motor planning by using noninvasive brain stimulation techniques to stimulate the motor cortex prior to a movement and examine the evoked responses. Studying the motor planning process can reveal useful information about the CNS, but previous studies have generally been limited to single degree of freedom movements ( e.g., wrist flexion). It is currently unclear if findings in these studies generalize to multi-joint movements, which may be influenced by kinematic redundancy and muscle synergies. Here, our objective was to characterize motor planning in the cortex prior to a functional reach involving the upper extremity. We asked participants to reach for a cup placed in front of them when presented with a visual "Go Cue". Following the go cue, but prior to movement onset, we used transcranial magnetic stimulation (TMS) to stimulate the motor cortex and measured the changes in the magnitudes of evoked responses in several upper extremity muscles (MEPs). We varied each participant's initial arm posture to examine the effect of muscle coordination on MEPs. Additionally, we varied the timing of the stimulation between the go cue and movement onset to examine the time course of changes in the MEPs. We found that the MEPs in all proximal (shoulder and elbow) muscles increased as the stimulation was delivered closer to movement onset, regardless of arm posture, but MEPs in the distal (wrist and finger) muscles were not facilitated or even inhibited. We also found that facilitation varied with arm posture in a manner that reflected the coordination of the subsequent reach. We believe that these findings provide useful insight into the way the CNS plans motor skills.
Collapse
|
5
|
Brown SR, Washabaugh EP, Dutt-Mazumder A, Wojtys EM, Palmieri-Smith RM, Krishnan C. Functional Resistance Training to Improve Knee Strength and Function After Acute Anterior Cruciate Ligament Reconstruction: A Case Study. Sports Health 2020; 13:136-144. [PMID: 33337984 DOI: 10.1177/1941738120955184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Thigh muscle weakness after anterior cruciate ligament reconstruction (ACLR) can persist after returning to activity. While resistance training can improve muscle function, "nonfunctional" training methods are not optimal for inducing transfer of benefits to activities such as walking. Here, we tested the feasibility of a novel functional resistance training (FRT) approach to restore strength and function in an individual with ACLR. HYPOTHESIS FRT would improve knee strength and function after ACLR. STUDY DESIGN Case report. LEVEL OF EVIDENCE Level 5. METHODS A 15-year-old male patient volunteered for an 8-week intervention where he performed 30 minutes of treadmill walking, 3 times per week, while wearing a custom-designed knee brace that provided resistance to the thigh muscles of his ACLR leg. Thigh strength, gait mechanics, and corticospinal and spinal excitability were assessed before and immediately after the 8-week intervention. Voluntary muscle activation was evaluated immediately after the intervention. RESULTS Knee extensor and flexor strength increased in the ACLR leg from pre- to posttraining (130 to 225 N·m [+74%] and 44 to 88 N·m [+99%], respectively) and increases in between-limb extensor and flexor strength symmetry (45% to 92% [+74%] and 47% to 72% [+65%], respectively) were also noted. After the intervention, voluntary muscle activation in the ACLR leg was 72%, compared with the non-ACLR leg at 75%. Knee angle and moment during late stance phase decreased (ie, improved) in the ACLR leg and appeared more similar to the non-ACLR leg after FRT training (18° to 14° [-23.4] and 0.07 to -0.02 N·m·kg-1·m-1 [-122.8%], respectively). Corticospinal and spinal excitability in the ACLR leg decreased (3511 to 2511 [-28.5%] and 0.42 to 0.24 [-43.7%], respectively) from pre- to posttraining. CONCLUSION A full 8 weeks of FRT that targeted both quadriceps and hamstring muscles lead to improvements in strength and gait, suggesting that FRT may constitute a promising and practical alternative to traditional methods of resistance training. CLINICAL RELEVANCE FRT may serve as a viable approach to improve knee strength and function after ACL reconstruction.
Collapse
Affiliation(s)
- Scott R Brown
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Edward P Washabaugh
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.,Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Aviroop Dutt-Mazumder
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Edward M Wojtys
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Riann M Palmieri-Smith
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.,Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.,School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Chandramouli Krishnan
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.,Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,School of Kinesiology, University of Michigan, Ann Arbor, Michigan.,Michigan Robotics Institute, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
6
|
Krishnan C. Effect of paired-pulse stimulus parameters on the two phases of short interval intracortical inhibition in the quadriceps muscle group. Restor Neurol Neurosci 2020; 37:363-374. [PMID: 31306142 DOI: 10.3233/rnn-180894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Short interval intracortical inhibition (SICI) is commonly used to assess inhibition in the motor cortex and is known to be affected by the paired-pulse stimulus parameters (i.e., interstimulus interval [ISI], conditioning stimulus intensity [CSI] and test stimulus intensity [TSI]) used during testing. While the effects of stimulus parameters are well-studied in the upper-extremity, evidence in the lower-extremity is lacking. OBJECTIVE To comprehensively examine the effects of alterations in paired-pulse stimulus parameters on the two phases of SICI in the quadriceps muscle group. METHODS Seventeen adults (8 males, 9 females) volunteered to participate in this study. SICI was examined over a range of CSIs (70-90% active motor threshold [AMT]), TSIs (100-140% AMT), and ISIs (1.0-3.0 ms) using both EMG and torque responses elicited by transcranial magnetic stimulation (TMS). RESULTS The results indicated that SICI at 1.0 ms ISI was best revealed with a CSI of 70% and TSI ≥110% AMT, whereas SICI at 2.5 ms ISI was best revealed with a CSI of 80-90% and a TSI of ≥130% AMT. Unlike upper-extremity muscles, evaluating SICI with a CSI of 70% AMT and an ISI of 1.0 ms produced the greatest inhibition for all TSIs. In general, inhibitory effects were contaminated by facilitatory effects when using a TSI of 100% AMT. CONCLUSIONS The amount of inhibition was dependent on the stimulation parameters used during testing. A CSI of 70% AMT, ISI of 1.0 ms, and TSI of ≥110% AMT appear to be optimal for measuring SICI in the quadriceps muscle; however, other parameters can be used if careful consideration is given to the described interaction between the parameters.
Collapse
Affiliation(s)
- Chandramouli Krishnan
- NeuRRo Lab, Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA.,Michigan Robotics Institute, University of Michigan, Ann Arbor, MI, USA.,School of Kinesiology, University of Michigan, Ann Arbor, MI, USA.,Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Krishnan C, Washabaugh EP, Dutt-Mazumder A, Brown SR, Wojtys EM, Palmieri-Smith RM. Conditioning Brain Responses to Improve Quadriceps Function in an Individual With Anterior Cruciate Ligament Reconstruction. Sports Health 2019; 11:306-315. [PMID: 30951444 DOI: 10.1177/1941738119835163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Persistent quadriceps weakness and activation failure are common in individuals with anterior cruciate ligament (ACL) reconstruction. A growing body of evidence indicates that this chronic quadriceps dysfunction could be partly mediated due to reduced corticospinal excitability. However, current rehabilitation approaches do not directly target corticospinal deficits, which may be critical for restoring optimal clinical outcomes after the surgery. This case study tested the feasibility of operant conditioning of torque responses evoked by transcranial magnetic stimulation (TMS) to improve quadriceps function after ACL reconstruction. HYPOTHESIS Operant conditioning of motor evoked torque responses would improve quadriceps strength, voluntary activation, and corticospinal excitability. STUDY DESIGN Case study and research report. LEVEL OF EVIDENCE Level 5. METHODS A 24-year-old male with an ACL reconstruction (6 months postsurgery) trained for 20 sessions (2-3 times per week for 8 weeks) to increase his TMS-induced motor evoked torque response (MEP torque) of the quadriceps muscles using operant conditioning principles. Knee extensor strength, voluntary quadriceps muscle activation, and quadriceps corticospinal excitability were evaluated at 3 time points: preintervention (pre), 4 weeks (mid), and immediately after the intervention (post). RESULTS The participant was able to successfully condition (ie, increase) the quadriceps MEP torque after 1 training session, and the conditioned MEP torque gradually increased over the course of 20 training sessions to reach about 500% of the initial value at the end of training. The participant's control MEP torque values and corticospinal excitability, which were measured outside of the conditioning paradigm, also increased with training. These changes were paralleled by improvements in knee extensor strength and voluntary quadriceps muscle activation. CONCLUSION This study shows that operant conditioning of MEP torque is a feasible approach to improving quadriceps corticospinal excitability and quadriceps function after ACL reconstruction and encourages further testing in a larger cohort of ACL-reconstructed individuals. CLINICAL RELEVANCE Operant conditioning may serve as a potential therapeutic adjuvant for ACL rehabilitation.
Collapse
Affiliation(s)
- Chandramouli Krishnan
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.,Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,School of Kinesiology, University of Michigan, Ann Arbor, Michigan.,Robotics Institute, University of Michigan, Ann Arbor, Michigan
| | - Edward P Washabaugh
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.,Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Aviroop Dutt-Mazumder
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Scott R Brown
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.,Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Edward M Wojtys
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Riann M Palmieri-Smith
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.,School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
8
|
Washabaugh EP, Treadway E, Gillespie RB, Remy CD, Krishnan C. Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study. Restor Neurol Neurosci 2019; 36:693-708. [PMID: 30400120 DOI: 10.3233/rnn-180830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Robotic rehabilitation is a highly promising approach to recover lost functions after stroke or other neurological disorders. Unfortunately, robotic rehabilitation currently suffers from "motor slacking", a phenomenon in which the human motor system reduces muscle activation levels and movement excursions, ostensibly to minimize metabolic- and movement-related costs. Consequently, the patient remains passive and is not fully engaged during therapy. To overcome this limitation, we envision a new class of body-powered robots and hypothesize that motor slacking could be reduced if individuals must provide the power to move their impaired limbs via their own body (i.e., through the motion of a healthy limb). OBJECTIVE To test whether a body-powered exoskeleton (i.e. robot) could reduce motor slacking during robotic training. METHODS We developed a body-powered robot that mechanically coupled the motions of the user's elbow joints. We tested this passive robot in two groups of subjects (stroke and able-bodied) during four exercise conditions in which we controlled whether the robotic device was powered by the subject or by the experimenter, and whether the subject's driven arm was engaged or at rest. Motor slacking was quantified by computing the muscle activation changes of the elbow flexor and extensor muscles using surface electromyography. RESULTS Subjects had higher levels of muscle activation in their driven arm during self-powered conditions compared to externally-powered conditions. Most notably, subjects unintentionally activated their driven arm even when explicitly told to relax when the device was self-powered. This behavior was persistent throughout the trial and did not wane after the initiation of the trial. CONCLUSIONS Our findings provide novel evidence indicating that motor slacking can be reduced by self-powered robots; thus demonstrating promise for rehabilitation of impaired subjects using this new class of wearable system. The results also serve as a foundation to develop more sophisticated body-powered robots (e.g., with controllable transmissions) for rehabilitation purposes.
Collapse
Affiliation(s)
- Edward P Washabaugh
- NeuRRo Lab, Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Emma Treadway
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - R Brent Gillespie
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.,Michigan Robotics Institute, University of Michigan, Ann Arbor, MI, USA
| | - C David Remy
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.,Michigan Robotics Institute, University of Michigan, Ann Arbor, MI, USA
| | - Chandramouli Krishnan
- NeuRRo Lab, Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Michigan Robotics Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Tan AQ, Dhaher YY. Contralesional Hemisphere Regulation of Transcranial Magnetic Stimulation-Induced Kinetic Coupling in the Poststroke Lower Limb. Front Neurol 2017; 8:373. [PMID: 28824530 PMCID: PMC5545591 DOI: 10.3389/fneur.2017.00373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/17/2017] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The neural constraints underlying hemiparetic gait dysfunction are associated with abnormal kinetic outflow and altered muscle synergy structure. Recent evidence from our lab implicates the lesioned hemisphere in mediating the expression of abnormally coupled hip adduction and knee extension synergy, suggesting a role of cortical networks in the regulation of lower limb motor outflow poststroke. The potential contribution of contralesional hemisphere (CON-H) in regulating paretic leg kinetics is unknown. The purpose of this study is to characterize the effect of CON-H activation on aberrant across-joint kinetic coupling of the ipsilateral lower-extremity muscles poststroke. METHODS Amplitude-matched adductor longus motor-evoked potentials were elicited using single pulse transcranial magnetic stimulation (TMS) of the lesioned (L-H) and CON-Hs during an isometric adductor torque matching task from 11 stroke participants. For 10 control participants, TMS of the contralateral and ipsilateral hemisphere were given during the same task. TMS-induced torques were characterized at the hip and knee joints to determine the differential regulation of abnormal kinetic synergies by each motor cortices. The TMS-induced ratio of knee extension/hip adduction torques was quantified during 40 and 20% of maximum adduction torque. FINDINGS For both the 40 and 20% target adduction tasks, we find that contralesional stimulation significantly reduced but did not eliminate the TMS-induced ratio of knee extension/hip adduction torques for the stroke group (p = 0.0468, p = 0.0396). In contrast, the controls did not present a significantly different TMS-evoked torque following stimulation (p = 0.923) of the hemisphere ipsilateral to the test leg. INTERPRETATION The reduced expression of abnormal across-joint kinetic coupling suggests that the CON-H may contribute an adaptive role in lower limb control poststroke. Future study of neuromodulation paradigms that leverage adaptive CON-H activation may yield clinically relevant gains in lower limb motor function poststroke.
Collapse
Affiliation(s)
- Andrew Q. Tan
- Northwestern University Interdepartmental Neuroscience, Northwestern University, Chicago, IL, United States
- Searle Center for the Science of Walking, Shirley Ryan AbilityLab, Chicago, IL, United States
| | - Yasin Y. Dhaher
- Northwestern University Interdepartmental Neuroscience, Northwestern University, Chicago, IL, United States
- Searle Center for the Science of Walking, Shirley Ryan AbilityLab, Chicago, IL, United States
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, United States
| |
Collapse
|
10
|
Maggioni S, Melendez-Calderon A, van Asseldonk E, Klamroth-Marganska V, Lünenburger L, Riener R, van der Kooij H. Robot-aided assessment of lower extremity functions: a review. J Neuroeng Rehabil 2016; 13:72. [PMID: 27485106 PMCID: PMC4969661 DOI: 10.1186/s12984-016-0180-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/21/2016] [Indexed: 01/01/2023] Open
Abstract
The assessment of sensorimotor functions is extremely important to understand the health status of a patient and its change over time. Assessments are necessary to plan and adjust the therapy in order to maximize the chances of individual recovery. Nowadays, however, assessments are seldom used in clinical practice due to administrative constraints or to inadequate validity, reliability and responsiveness. In clinical trials, more sensitive and reliable measurement scales could unmask changes in physiological variables that would not be visible with existing clinical scores.In the last decades robotic devices have become available for neurorehabilitation training in clinical centers. Besides training, robotic devices can overcome some of the limitations in traditional clinical assessments by providing more objective, sensitive, reliable and time-efficient measurements. However, it is necessary to understand the clinical needs to be able to develop novel robot-aided assessment methods that can be integrated in clinical practice.This paper aims at providing researchers and developers in the field of robotic neurorehabilitation with a comprehensive review of assessment methods for the lower extremities. Among the ICF domains, we included those related to lower extremities sensorimotor functions and walking; for each chapter we present and discuss existing assessments used in routine clinical practice and contrast those to state-of-the-art instrumented and robot-aided technologies. Based on the shortcomings of current assessments, on the identified clinical needs and on the opportunities offered by robotic devices, we propose future directions for research in rehabilitation robotics. The review and recommendations provided in this paper aim to guide the design of the next generation of robot-aided functional assessments, their validation and their translation to clinical practice.
Collapse
Affiliation(s)
- Serena Maggioni
- Sensory-Motor Systems (SMS) Lab, Institute of Robotics and Intelligent Systems (IRIS), Department of Health Sciences and Technology (D-HEST), ETH Zürich, Zürich, Switzerland.
- Hocoma AG, Volketswil, Switzerland.
- Spinal Cord Injury Center, Balgrist University Hospital, University Zürich, Zürich, Switzerland.
| | - Alejandro Melendez-Calderon
- Hocoma AG, Volketswil, Switzerland
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| | - Edwin van Asseldonk
- Laboratory of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Verena Klamroth-Marganska
- Sensory-Motor Systems (SMS) Lab, Institute of Robotics and Intelligent Systems (IRIS), Department of Health Sciences and Technology (D-HEST), ETH Zürich, Zürich, Switzerland
- Spinal Cord Injury Center, Balgrist University Hospital, University Zürich, Zürich, Switzerland
| | | | - Robert Riener
- Sensory-Motor Systems (SMS) Lab, Institute of Robotics and Intelligent Systems (IRIS), Department of Health Sciences and Technology (D-HEST), ETH Zürich, Zürich, Switzerland
- Spinal Cord Injury Center, Balgrist University Hospital, University Zürich, Zürich, Switzerland
| | - Herman van der Kooij
- Laboratory of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
11
|
Tan AQ, Shemmell J, Dhaher YY. Downregulating Aberrant Motor Evoked Potential Synergies of the Lower Extremity Post Stroke During TMS of the Contralesional Hemisphere. Brain Stimul 2016; 9:396-405. [PMID: 26927733 DOI: 10.1016/j.brs.2015.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Growing evidence demonstrates unique synergistic signatures in the lower limb (LL) post-stroke, with specific across-plane and across-joint representations. While the inhibitory role of the ipsilateral hemisphere in the upper limb (UL) has been widely reported, examination of the contralesional hemisphere (CON-H) in modulating LL expressions of synergies following stroke is lacking. OBJECTIVE We hypothesize that stimulation of lesioned and contralesional motor cortices will differentially regulate paretic LL motor outflow. We propose a novel TMS paradigm to identify synergistic motor evoked potential (MEP) patterns across multiple muscles. METHODS Amplitude and background activation matched adductor MEPs were elicited using single pulse TMS of L-H and CON-H (control ipsilateral) during an adductor torque matching task from 11 stroke and 10 control participants. Associated MEPs of key synergistic muscles were simultaneously observed. RESULTS By quantifying CON-H/L-H MEP ratios, we characterized a significant targeted inhibition of aberrant MEP coupling between ADD and VM (p = 0.0078) and VL (p = 0.047) exclusive to the stroke group (p = 0.028) that was muscle dependent (p = 0.039). We find TA inhibition in both groups following ipsilateral hemisphere stimulation (p = 0.0014; p = 0.015). CONCLUSION We argue that ipsilaterally mediated attenuation of abnormal synergistic activations post stroke may reflect an adaptive intracortical inhibition. The predominance of sub 3ms interhemispheric MEP latency differences implicates LL ipsilateral corticomotor projections. These findings provide insight into the association between CON-H reorganization and post-stroke LL recovery. While a prevailing view of driving L-H disinhibition for UL recovery seems expedient, presuming analogous LL neuromodulation may require further examination for rehabilitation. This study provides a step toward this goal.
Collapse
Affiliation(s)
- Andrew Q Tan
- Northwestern University Interdepartmental Neuroscience, Northwestern University, Chicago, IL, USA; Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA.
| | - Jon Shemmell
- School of Physical Education, Sport and Exercise Science, University of Otago, Dunedin, New Zealand
| | - Yasin Y Dhaher
- Northwestern University Interdepartmental Neuroscience, Northwestern University, Chicago, IL, USA; Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA; Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
| |
Collapse
|
12
|
A Novel Application of Eddy Current Braking for Functional Strength Training During Gait. Ann Biomed Eng 2016; 44:2760-73. [PMID: 26817456 DOI: 10.1007/s10439-016-1553-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/13/2016] [Indexed: 10/22/2022]
Abstract
Functional strength training is becoming increasingly popular when rehabilitating individuals with neurological injury such as stroke or cerebral palsy. Typically, resistance during walking is provided using cable robots or weights that are secured to the distal shank of the subject. However, there exists no device that is wearable and capable of providing resistance across the joint, allowing over ground gait training. In this study, we created a lightweight and wearable device using eddy current braking to provide resistance to the knee. We then validated the device by having subjects wear it during a walking task through varying resistance levels. Electromyography and kinematics were collected to assess the biomechanical effects of the device on the wearer. We found that eddy current braking provided resistance levels suitable for functional strength training of leg muscles in a package that is both lightweight and wearable. Applying resistive forces at the knee joint during gait resulted in significant increases in muscle activation of many of the muscles tested. A brief period of training also resulted in significant aftereffects once the resistance was removed. These results support the feasibility of the device for functional strength training during gait. Future research is warranted to test the clinical potential of the device in an injured population.
Collapse
|
13
|
Claflin ES, Krishnan C, Khot SP. Emerging treatments for motor rehabilitation after stroke. Neurohospitalist 2015; 5:77-88. [PMID: 25829989 DOI: 10.1177/1941874414561023] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although numerous treatments are available to improve cerebral perfusion after acute stroke and prevent recurrent stroke, few rehabilitation treatments have been conclusively shown to improve neurologic recovery. The majority of stroke survivors with motor impairment do not recover to their functional baseline, and there remains a need for novel neurorehabilitation treatments to minimize long-term disability, maximize quality of life, and optimize psychosocial outcomes. In recent years, several novel therapies have emerged to restore motor function after stroke, and additional investigational treatments have also shown promise. Here, we familiarize the neurohospitalist with emerging treatments for poststroke motor rehabilitation. The rehabilitation treatments covered in this review will include selective serotonin reuptake inhibitor medications, constraint-induced movement therapy, noninvasive brain stimulation, mirror therapy, and motor imagery or mental practice.
Collapse
Affiliation(s)
- Edward S Claflin
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI, USA
| | - Chandramouli Krishnan
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI, USA
| | - Sandeep P Khot
- Department of Neurology, University of Washington, Seattle, WA, USA
| |
Collapse
|
14
|
Santello M, Lang CE. Are movement disorders and sensorimotor injuries pathologic synergies? When normal multi-joint movement synergies become pathologic. Front Hum Neurosci 2015; 8:1050. [PMID: 25610391 PMCID: PMC4285090 DOI: 10.3389/fnhum.2014.01050] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 12/15/2014] [Indexed: 12/27/2022] Open
Abstract
The intact nervous system has an exquisite ability to modulate the activity of multiple muscles acting at one or more joints to produce an enormous range of actions. Seemingly simple tasks, such as reaching for an object or walking, in fact rely on very complex spatial and temporal patterns of muscle activations. Neurological disorders such as stroke and focal dystonia affect the ability to coordinate multi-joint movements. This article reviews the state of the art of research of muscle synergies in the intact and damaged nervous system, their implications for recovery and rehabilitation, and proposes avenues for research aimed at restoring the nervous system’s ability to control movement.
Collapse
Affiliation(s)
- Marco Santello
- Neural Control of Movement Laboratory, School of Biological and Health Systems Engineering, Arizona State University , Tempe, AZ , USA
| | - Catherine E Lang
- Program in Physical Therapy, Program in Occupational Therapy, Department of Neurology, Washington University School of Medicine in St. Louis , St. Louis, MO , USA
| |
Collapse
|
15
|
Krishnan C, Santos L, Peterson MD, Ehinger M. Safety of noninvasive brain stimulation in children and adolescents. Brain Stimul 2014; 8:76-87. [PMID: 25499471 DOI: 10.1016/j.brs.2014.10.012] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/03/2014] [Accepted: 10/21/2014] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Noninvasive brain stimulation (NIBS) techniques such as transcranial magnetic stimulation (TMS) and transcranial current stimulation (tCS) have the potential to mitigate a variety of symptoms associated with neurological and psychiatric conditions, including stroke, cerebral palsy, autism, depression, and Tourette syndrome. While the safety of these modalities has been established in adults, there is a paucity of research assessing the safety of NIBS among children. OBJECTIVE To examine the existing literature regarding the safety of NIBS techniques in children and adolescents with neurologic and neuropsychiatric disorders. METHODS An electronic search was performed on online databases for studies using NIBS in individuals less than 18 years of age. Non-English publications, diagnostic studies, electroconvulsive therapy, single/dual pulse TMS studies, and reviews were excluded. Adverse events reported in the studies were carefully examined and synthesized to understand the safety and tolerability of NIBS among children and adolescents. RESULTS The data from 48 studies involving more than 513 children/adolescents (2.5-17.8 years of age) indicate that the side effects of NIBS were, in general, mild and transient [TMS: headache (11.5%), scalp discomfort (2.5%), twitching (1.2%), mood changes (1.2%), fatigue (0.9%), tinnitus (0.6%); tCS: tingling (11.5%), itching (5.8%), redness (4.7%), scalp discomfort (3.1%)] with relatively few serious adverse events. CONCLUSION Our findings indicate that both repetitive TMS and tCS are safe modalities in children and adolescents with various neurological conditions, especially when safety guidelines are followed. The incidence of adverse events appears to be similar to that observed in adults; however, further studies with longer treatment and follow-up periods are needed to better understand the benefits and tolerance of long-term use of NIBS in children.
Collapse
Affiliation(s)
- Chandramouli Krishnan
- Department of Physical Medicine and Rehabilitation, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Luciana Santos
- Department of Physical Medicine and Rehabilitation, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mark D Peterson
- Department of Physical Medicine and Rehabilitation, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Margaret Ehinger
- Department of Physical Medicine and Rehabilitation, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Sakuma K, Ohata K, Izumi K, Shiotsuka Y, Yasui T, Ibuki S, Ichihashi N. Relation between abnormal synergy and gait in patients after stroke. J Neuroeng Rehabil 2014; 11:141. [PMID: 25257123 PMCID: PMC4189205 DOI: 10.1186/1743-0003-11-141] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/18/2014] [Indexed: 11/16/2022] Open
Abstract
Background The abnormal synergy seen in patients after stroke is considered to limit the ability of these patients. However, in the lower extremity, antigravity torque generation rather than precise movement is needed for functions such as sit-to-stand movement and gait. Therefore, the ability to generate torque may be important either as a primary movement or as an abnormal synergy. We attempted to quantify the torque generation in the lower limb, selectively and as an abnormal synergy, and its relation with gait. Methods Selectively generated plantar flexion torque in the ankle and plantar flexion torque secondarily generated accompanying maximal hip extension (i.e., torque generated with abnormal synergy) were measured in subjects after stroke and control subjects. In subjects after stroke, secondary torque generation while controlling hip extension torque as 25%, 50%, and 75% of the maximal hip extension was also measured. The relation of torque generation with the gait speed and timed-up-and go test (TUG) was also analyzed. Results In subjects after stroke, there was no difference between the amount of plantar flexion torque generated secondarily and the selectively generated torque, whereas the selective torque was significantly greater in control subjects. Pearson product–moment correlation coefficient analysis revealed that TUG speed is related to secondarily generated torque accompanying maximal hip extension but not with selectively generated torque. Conclusion Secondarily generated torque was found to be a factor that affects TUG speed, and the ability to generate torque even through abnormal synergy may help for gait ability in subjects after stroke. Electronic supplementary material The online version of this article (doi:10.1186/1743-0003-11-141) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaoru Sakuma
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Temesi J, Gruet M, Rupp T, Verges S, Millet GY. Resting and active motor thresholds versus stimulus-response curves to determine transcranial magnetic stimulation intensity in quadriceps femoris. J Neuroeng Rehabil 2014; 11:40. [PMID: 24655366 PMCID: PMC3976163 DOI: 10.1186/1743-0003-11-40] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 03/04/2014] [Indexed: 01/07/2023] Open
Abstract
Background Transcranial magnetic stimulation (TMS) is a widely-used investigative technique in motor cortical evaluation. Recently, there has been a surge in TMS studies evaluating lower-limb fatigue. TMS intensity of 120-130% resting motor threshold (RMT) and 120% active motor threshold (AMT) and TMS intensity determined using stimulus–response curves during muscular contraction have been used in these studies. With the expansion of fatigue research in locomotion, the quadriceps femoris is increasingly of interest. It is important to select a stimulus intensity appropriate to evaluate the variables, including voluntary activation, being measured in this functionally important muscle group. This study assessed whether selected quadriceps TMS stimulus intensity determined by frequently employed methods is similar between methods and muscles. Methods Stimulus intensity in vastus lateralis, rectus femoris and vastus medialis muscles was determined by RMT, AMT (i.e. during brief voluntary contractions at 10% maximal voluntary force, MVC) and maximal motor-evoked potential (MEP) amplitude from stimulus–response curves during brief voluntary contractions at 10, 20 and 50% MVC at different stimulus intensities. Results Stimulus intensity determined from a 10% MVC stimulus–response curve and at 120 and 130% RMT was higher than stimulus intensity at 120% AMT (lowest) and from a 50% MVC stimulus–response curve (p < 0.05). Stimulus intensity from a 20% MVC stimulus–response curve was similar to 120% RMT and 50% MVC stimulus–response curve. Mean stimulus intensity for stimulus–response curves at 10, 20 and 50% MVC corresponded to approximately 135, 115 and 100% RMT and 180, 155 and 130% AMT, respectively. Selected stimulus intensity was similar between muscles for all methods (p > 0.05). Conclusions Similar optimal stimulus intensity and maximal MEP amplitudes at 20 and 50% MVC and the minimal risk of residual fatigue at 20% MVC suggest that a 20% MVC stimulus–response curve is appropriate for determining TMS stimulus intensity in the quadriceps femoris. The higher selected stimulus intensities at 120-130% RMT have the potential to cause increased coactivation and discomfort and the lower stimulus intensity at 120% AMT may underestimate evoked responses. One muscle may also act as a surrogate in determining optimal quadriceps femoris stimulation intensity.
Collapse
Affiliation(s)
| | | | | | | | - Guillaume Y Millet
- Laboratoire de Physiologie de l'Exercice, Université de Lyon, Saint-Etienne F-42023, France.
| |
Collapse
|
18
|
Wright ZA, Rymer WZ, Slutzky MW. Reducing Abnormal Muscle Coactivation After Stroke Using a Myoelectric-Computer Interface: A Pilot Study. Neurorehabil Neural Repair 2013; 28:443-51. [PMID: 24376069 DOI: 10.1177/1545968313517751] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background A significant factor in impaired movement caused by stroke is the inability to activate muscles independently. Although the pathophysiology behind this abnormal coactivation is not clear, reducing the coactivation could improve overall arm function. A myoelectric computer interface (MCI), which maps electromyographic signals to cursor movement, could be used as a treatment to help retrain muscle activation patterns. Objective To investigate the use of MCI training to reduce abnormal muscle coactivation in chronic stroke survivors. Methods A total of 5 healthy participants and 5 stroke survivors with hemiparesis participated in multiple sessions of MCI training. The level of arm impairment in stroke survivors was assessed using the upper-extremity portion of the Fugl-Meyer Motor Assessment (FMA-UE). Participants performed isometric activations of up to 5 muscles. Activation of each muscle was mapped to different directions of cursor movement. The MCI specifically targeted 1 pair of muscles in each participant for reduction of coactivation. Results Both healthy participants and stroke survivors learned to reduce abnormal coactivation of the targeted muscles with MCI training. Out of 5 stroke survivors, 3 exhibited objective reduction in arm impairment as well (improvement in FMA-UE of 3 points in each of these patients). Conclusions These results suggest that the MCI was an effective tool in directly retraining muscle activation patterns following stroke.
Collapse
Affiliation(s)
- Zachary A Wright
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - W Zev Rymer
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA
| | - Marc W Slutzky
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA
| |
Collapse
|
19
|
Krishnan C, Ranganathan R, Kantak SS, Dhaher YY, Rymer WZ. Active robotic training improves locomotor function in a stroke survivor. J Neuroeng Rehabil 2012; 9:57. [PMID: 22906099 PMCID: PMC3480863 DOI: 10.1186/1743-0003-9-57] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 08/02/2012] [Indexed: 11/10/2022] Open
Abstract
Background Clinical outcomes after robotic training are often not superior to conventional therapy. One key factor responsible for this is the use of control strategies that provide substantial guidance. This strategy not only leads to a reduction in volitional physical effort, but also interferes with motor relearning. Methods We tested the feasibility of a novel training approach (active robotic training) using a powered gait orthosis (Lokomat) in mitigating post-stroke gait impairments of a 52-year-old male stroke survivor. This gait training paradigm combined patient-cooperative robot-aided walking with a target-tracking task. The training lasted for 4-weeks (12 visits, 3 × per week). The subject’s neuromotor performance and recovery were evaluated using biomechanical, neuromuscular and clinical measures recorded at various time-points (pre-training, post-training, and 6-weeks after training). Results Active robotic training resulted in considerable increase in target-tracking accuracy and reduction in the kinematic variability of ankle trajectory during robot-aided treadmill walking. These improvements also transferred to overground walking as characterized by larger propulsive forces and more symmetric ground reaction forces (GRFs). Training also resulted in improvements in muscle coordination, which resembled patterns observed in healthy controls. These changes were accompanied by a reduction in motor cortical excitability (MCE) of the vastus medialis, medial hamstrings, and gluteus medius muscles during treadmill walking. Importantly, active robotic training resulted in substantial improvements in several standard clinical and functional parameters. These improvements persisted during the follow-up evaluation at 6 weeks. Conclusions The results indicate that active robotic training appears to be a promising way of facilitating gait and physical function in moderately impaired stroke survivors.
Collapse
Affiliation(s)
- Chandramouli Krishnan
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, 60611 IL, USA.
| | | | | | | | | |
Collapse
|