1
|
Masegosa VM, Navarro X, Herrando-Grabulosa M. ICA-27243 improves neuromuscular function and preserves motoneurons in the transgenic SOD1 G93A mice. Neurotherapeutics 2024; 21:e00319. [PMID: 38262101 DOI: 10.1016/j.neurot.2024.e00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the death of upper and lower motor neurons (MNs). Excessive neuronal excitability has been implicated in MN degeneration; thus, modulation of hyperexcitability appears as a promising therapeutic strategy. Potassium channels are attractive targets since they can be activated at subthreshold voltages and can regulate neuronal excitability. In this study, we assayed the effects of N-(6-Chloro-pyridin-3-yl)-3,4-difluorobenzamide compound, known as ICA-27243, as a potential treatment for ALS. ICA-27243 is a highly selective Kv7.2/7.3 opener used mainly in epilepsy models. In the in vitro model of spinal cord organotypic cultures (SCOCs) exposed to acute excitotoxicity, ICA-27243 prevented MN degeneration at a dose-of 10 μM. Administration of ICA-27243 to transgenic SOD1G93A ALS mice improved the decline of neuromuscular function, maintained locomotion and coordination in the rotarod, decreased spinal MN death and attenuated glial reactivity. In conclusion, we report here for the first time that ICA-27243 is an effective treatment for ALS, emphasizing the potential of targeting Kv channels to reduce neuronal hyperexcitability.
Collapse
Affiliation(s)
- Vera M Masegosa
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Enfermedades Degenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Enfermedades Degenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mireia Herrando-Grabulosa
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Enfermedades Degenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Alavi SMM, Mahdi A, Vila-Rodriguez F, Goetz SM. Identifiability Analysis and Noninvasive Online Estimation of the First-Order Neural Activation Dynamics in the Brain With Closed-Loop Transcranial Magnetic Stimulation. IEEE Trans Biomed Eng 2023; 70:2564-2572. [PMID: 37656637 DOI: 10.1109/tbme.2023.3253674] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
BACKGROUND Neurons demonstrate very distinct nonlinear activation dynamics, influenced by the neuron type, morphology, ion channel expression, and various other factors. The measurement of the activation dynamics can identify the neural target of stimulation and detect deviations, e.g., for diagnosis. This paper describes a tool for closed-loop sequential parameter estimation (SPE) of the activation dynamics through transcranial magnetic stimulation (TMS). The proposed SPE method operates in real time, selects ideal stimulus parameters, detects and processes the response, and concurrently estimates the input-output (IO) curve and the first-order approximation of the activated neural target. OBJECTIVE To develop a method for concurrent SPE of the first-order activation dynamics and IO curve with closed-loop TMS. METHOD First, identifiability of an integrated model of the first-order neural activation dynamics and IO curve is assessed, demonstrating that at least two IO curves need to be acquired with different pulse widths. Then, a two-stage SPE method is proposed. It estimates the IO curve by using Fisher information matrix (FIM) optimization in the first stage and subsequently estimates the membrane time constant as well as the coupling gain in the second stage. The procedure continues in a sequential manner until a stopping rule is satisfied. RESULTS The results of 73 simulation cases confirm the satisfactory estimation of the membrane time constant and coupling gain with average absolute relative errors (AREs) of 6.2% and 5.3%, respectively, with an average of 344 pulses (172 pulses for each IO curve or pulse width). The method estimates the IO curves' lower and upper plateaus, mid-point, and slope with average AREs of 0.2%, 0.7%, 0.9%, and 14.5%, respectively. The conventional time constant estimation method based on the strength-duration (S-D) curve leads to 33.3% ARE, which is 27.0% larger than 6.2% ARE obtained through the proposed real-time FIM-based SPE method in this paper. CONCLUSIONS SPE of the activation dynamics requires acquiring at least two IO curves with different pulse widths, which needs a controllable TMS (cTMS) device with adjustable pulse duration. SIGNIFICANCE The proposed SPE method enhances the cTMS functionality, which can contribute novel insights in research and clinical studies.
Collapse
|
3
|
Alavi SMM, Vila-Rodriguez F, Mahdi A, Goetz SM. A formalism for sequential estimation of neural membrane time constant and input--output curve towards selective and closed-loop transcranial magnetic stimulation. J Neural Eng 2022; 19. [PMID: 36055218 DOI: 10.1088/1741-2552/ac8ed5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/01/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To obtain a formalism for real-time concurrent sequential estimation of neural membrane time constant and input--output (IO) curve with transcranial magnetic stimulation (TMS). APPROACH First, the neural membrane response and depolarization factor, which leads to motor evoked potentials (MEPs) with TMS are analytically computed and discussed. Then, an integrated model is developed which combines the neural membrane time constant and input--output curve. Identifiability of the proposed integrated model is discussed. A condition is derived, which assures estimation of the proposed integrated model. Finally, sequential parameter estimation (SPE) of the neural membrane time constant and IO curve is described through closed-loop optimal sampling and open-loop uniform sampling TMS. Without loss of generality, this paper focuses on a specific case of commercialized TMS pulse shapes. The proposed formalism and SPE method are directly applicable to other pulse shapes. MAIN RESULTS The results confirm satisfactory estimation of the membrane time constant and IO curve parameters. By defining a stopping rule based on five times consecutive convergence of the estimation parameters with a tolerances of 0.01, the membrane time constant and IO curve parameters are estimated with 82 TMS pulses with absolute relative estimation errors (AREs) of less than 4% with the optimal sampling SPE method. At this point, the uniform sampling SPE method leads to AREs up to 16%. The uniform sampling method does not satisfy the stopping rule due to the large estimation variations. SIGNIFICANCE This paper provides a tool for real-time closed-loop SPE of the neural time constant and IO curve, which can contribute novel insights in TMS studies. SPE of the membrane time constant enables selective stimulation, which can be used for advanced brain research, precision medicine and personalized medicine.
Collapse
Affiliation(s)
- S M Mahdi Alavi
- Department of Psychiatry , The University of British Columbia, 2255 Wesbrook Mall, Vancouver, British Columbia, V6T 2A1, CANADA
| | - Fidel Vila-Rodriguez
- Department of Psychiatry , The University of British Columbia Faculty of Medicine, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, British Columbia, V6T 2A1, CANADA
| | - Adam Mahdi
- University of Oxford, Oxford Internet Institute, 1 St Giles, Oxford, Oxfordshire, OX1 2JD, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Stefan M Goetz
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, 200 Trent Drive, Duke University Medical Center, Durham, North Carolina, 27710, UNITED STATES
| |
Collapse
|
4
|
Jørgensen HS, Jensen DB, Dimintiyanova KP, Bonnevie VS, Hedegaard A, Lehnhoff J, Moldovan M, Grondahl L, Meehan CF. Increased Axon Initial Segment Length Results in Increased Na + Currents in Spinal Motoneurones at Symptom Onset in the G127X SOD1 Mouse Model of Amyotrophic Lateral Sclerosis. Neuroscience 2020; 468:247-264. [PMID: 33246068 DOI: 10.1016/j.neuroscience.2020.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/22/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease preferentially affecting motoneurones. Transgenic mouse models have been used to investigate the role of abnormal motoneurone excitability in this disease. Whilst an increased excitability has repeatedly been demonstrated in vitro in neonatal and embryonic preparations from SOD1 mouse models, the results from the only studies to record in vivo from spinal motoneurones in adult SOD1 models have produced conflicting findings. Deficits in repetitive firing have been reported in G93A SOD1(high copy number) mice but not in presymptomatic G127X SOD1 mice despite shorter motoneurone axon initial segments (AISs) in these mice. These discrepancies may be due to the earlier disease onset and prolonged disease progression in G93A SOD1 mice with recordings potentially performed at a later sub-clinical stage of the disease in this mouse. To test this, and to explore how the evolution of excitability changes with symptom onset we performed in vivo intracellular recording and AIS labelling in G127X SOD1 mice immediately after symptom onset. No reductions in repetitive firing were observed showing that this is not a common feature across all ALS models. Immunohistochemistry for the Na+ channel Nav1.6 showed that motoneurone AISs increase in length in G127X SOD1 mice at symptom onset. Consistent with this, the rate of rise of AIS components of antidromic action potentials were significantly faster confirming that this increase in length represents an increase in AIS Na+ channels occurring at symptom onset in this model.
Collapse
Affiliation(s)
- H S Jørgensen
- Department of Neuroscience, University of Copenhagen, Denmark
| | - D B Jensen
- Department of Neuroscience, University of Copenhagen, Denmark
| | | | - V S Bonnevie
- Department of Neuroscience, University of Copenhagen, Denmark
| | - A Hedegaard
- Department of Neuroscience, University of Copenhagen, Denmark
| | - J Lehnhoff
- Department of Neuroscience, University of Copenhagen, Denmark
| | - M Moldovan
- Department of Neuroscience, University of Copenhagen, Denmark
| | - L Grondahl
- Department of Neuroscience, University of Copenhagen, Denmark
| | - C F Meehan
- Department of Neuroscience, University of Copenhagen, Denmark.
| |
Collapse
|
5
|
Hossain MJ, Kendig MD, Wild BM, Issar T, Krishnan AV, Morris MJ, Arnold R. Evidence of Altered Peripheral Nerve Function in a Rodent Model of Diet-Induced Prediabetes. Biomedicines 2020; 8:biomedicines8090313. [PMID: 32872256 PMCID: PMC7555926 DOI: 10.3390/biomedicines8090313] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Peripheral neuropathy (PN) is a debilitating complication of diabetes that affects >50% of patients. Recent evidence suggests that obesity and metabolic disease, which often precede diabetes diagnosis, may influence PN onset and severity. We examined this in a translationally relevant model of prediabetes induced by a cafeteria (CAF) diet in Sprague–Dawley rats (n = 15 CAF versus n = 15 control). Neuropathy phenotyping included nerve conduction, tactile sensitivity, intraepidermal nerve fiber density (IENFD) and nerve excitability testing, an in vivo measure of ion channel function and membrane potential. Metabolic phenotyping included body composition, blood glucose and lipids, plasma hormones and inflammatory cytokines. After 13 weeks diet, CAF-fed rats demonstrated prediabetes with significantly elevated fasting blood glucose, insulin and impaired glucose tolerance as well as obesity and dyslipidemia. Nerve conduction, tactile sensitivity and IENFD did not differ; however, superexcitability was significantly increased in CAF-fed rats. Mathematical modeling demonstrated this was consistent with a reduction in sodium–potassium pump current. Moreover, superexcitability correlated positively with insulin resistance and adiposity, and negatively with fasting high-density lipoprotein cholesterol. In conclusion, prediabetic rats over-consuming processed, palatable foods demonstrated altered nerve function that preceded overt PN. This work provides a relevant model for pathophysiological investigation of diabetic complications.
Collapse
Affiliation(s)
- Md Jakir Hossain
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.H.); (M.D.K.); (B.M.W.); (M.J.M.)
| | - Michael D. Kendig
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.H.); (M.D.K.); (B.M.W.); (M.J.M.)
| | - Brandon M. Wild
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.H.); (M.D.K.); (B.M.W.); (M.J.M.)
| | - Tushar Issar
- Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia; (T.I.); (A.V.K.)
| | - Arun V. Krishnan
- Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia; (T.I.); (A.V.K.)
| | - Margaret J. Morris
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.H.); (M.D.K.); (B.M.W.); (M.J.M.)
| | - Ria Arnold
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.H.); (M.D.K.); (B.M.W.); (M.J.M.)
- Correspondence: ; Tel.: +61-293858709
| |
Collapse
|
6
|
Moldovan M. Threshold tracking as a tool to study activity-dependent axonal plasticity. Clin Neurophysiol 2020; 131:1381-1382. [PMID: 32224021 DOI: 10.1016/j.clinph.2020.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Mihai Moldovan
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Klein CS, Rymer WZ, Fisher MA. Altered nerve excitability properties after stroke are potentially associated with reduced neuromuscular activation. Clin Neurophysiol 2020; 131:1407-1418. [PMID: 32184063 DOI: 10.1016/j.clinph.2020.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/22/2020] [Accepted: 02/16/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To determine limb differences in motor axon excitability properties in stroke survivors and their relation to maximal electromyographic (EMG) activity. METHODS The median nerve was stimulated to record compound muscle action potentials (CMAP) from the abductor pollicis brevis (APB) in 28 stroke subjects (57.3 ± 7.5 y) and 24 controls (56.7 ± 9.3 y). RESULTS Paretic limb axons differed significantly from non-paretic limb axons including (1) smaller superexcitability and subexcitability, (2) higher threshold during subthreshold depolarizing currents, (3) greater accommodation (S3) to hyperpolarization, and (4) a larger stimulus-response slope. There were smaller differences between the paretic and control limbs. Responses in the paretic limb were reproduced in a model by a 5.6 mV hyperpolarizing shift in the activation voltage of Ih (the current activated by hyperpolarization), together with an 11.8% decrease in nodal Na+ conductance or a 0.9 mV depolarizing shift in the Na+ activation voltage. Subjects with larger deficits in APB maximal voluntary EMG had larger limb differences in excitability properties. CONCLUSIONS Stroke leads to altered modulation of Ih and altered Na+ channel properties that may be partially attributed to a reduction in neuromuscular activation. SIGNIFICANCE Plastic changes occur in the axon node and internode that likely influence axon excitability.
Collapse
Affiliation(s)
- C S Klein
- Guangdong Work Injury Rehabilitation Center, Guangzhou 510440, China; Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL 60611, USA.
| | - W Z Rymer
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL 60611, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - M A Fisher
- Department of Neurology, Hines VAH, Hines, IL 60141, USA; Loyola University Chicago Medical Center, 2160 S. First Ave., Maywood, IL 60153, USA
| |
Collapse
|
8
|
Bonnevie VS, Dimintiyanova KP, Hedegaard A, Lehnhoff J, Grøndahl L, Moldovan M, Meehan CF. Shorter axon initial segments do not cause repetitive firing impairments in the adult presymptomatic G127X SOD-1 Amyotrophic Lateral Sclerosis mouse. Sci Rep 2020; 10:1280. [PMID: 31992746 PMCID: PMC6987224 DOI: 10.1038/s41598-019-57314-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Increases in axonal sodium currents in peripheral nerves are some of the earliest excitability changes observed in Amyotrophic Lateral Sclerosis (ALS) patients. Nothing is known, however, about axonal sodium channels more proximally, particularly at the action potential initiating region - the axon initial segment (AIS). Immunohistochemistry for Nav1.6 sodium channels was used to investigate parameters of AISs of spinal motoneurones in the G127X SOD1 mouse model of ALS in adult mice at presymptomatic time points (~190 days old). In vivo intracellular recordings from lumbar spinal motoneurones were used to determine the consequences of any AIS changes. AISs of both alpha and gamma motoneurones were found to be significantly shorter (by 6.6% and 11.8% respectively) in G127X mice as well as being wider by 9.8% (alpha motoneurones). Measurements from 20–23 day old mice confirmed that this represented a change during adulthood. Intracellular recordings from motoneurones in presymptomatic adult mice, however, revealed no differences in individual action potentials or the cells ability to initiate repetitive action potentials. To conclude, despite changes in AIS geometry, no evidence was found for reduced excitability within the functional working range of firing frequencies of motoneurones in this model of ALS.
Collapse
Affiliation(s)
- V S Bonnevie
- Department of Neuroscience, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - K P Dimintiyanova
- Department of Neuroscience, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - A Hedegaard
- Department of Neuroscience, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - J Lehnhoff
- Department of Neuroscience, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - L Grøndahl
- Department of Neuroscience, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - M Moldovan
- Department of Neuroscience, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - C F Meehan
- Department of Neuroscience, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
9
|
Kiernan MC, Bostock H, Park SB, Kaji R, Krarup C, Krishnan AV, Kuwabara S, Lin CSY, Misawa S, Moldovan M, Sung J, Vucic S, Wainger BJ, Waxman S, Burke D. Measurement of axonal excitability: Consensus guidelines. Clin Neurophysiol 2019; 131:308-323. [PMID: 31471200 DOI: 10.1016/j.clinph.2019.07.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
Measurement of axonal excitability provides an in vivo indication of the properties of the nerve membrane and of the ion channels expressed on these axons. Axonal excitability techniques have been utilised to investigate the pathophysiological mechanisms underlying neurological diseases. This document presents guidelines derived for such studies, based on a consensus of international experts, and highlights the potential difficulties when interpreting abnormalities in diseased axons. The present manuscript provides a state-of-the-art review of the findings of axonal excitability studies and their interpretation, in addition to suggesting guidelines for the optimal performance of excitability studies.
Collapse
Affiliation(s)
- Matthew C Kiernan
- Brain and Mind Centre, University of Sydney and Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney 2006, Australia.
| | - Hugh Bostock
- UCL Queen Square Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Susanna B Park
- Brain and Mind Centre, University of Sydney and Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney 2006, Australia
| | - Ryuji Kaji
- National Utano Hospital, 8-Narutaki Ondoyamacho, Ukyoku, Kyoto 616-8255, Japan
| | - Christian Krarup
- Department of Neuroscience, University of Copenhagen and Department of Clinical Neurophysiology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Arun V Krishnan
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Cindy Shin-Yi Lin
- Brain and Mind Centre, University of Sydney and Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney 2006, Australia
| | - Sonoko Misawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Mihai Moldovan
- Department of Neuroscience, University of Copenhagen and Department of Clinical Neurophysiology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Jiaying Sung
- Taipei Medical University, Wanfang Hospital, Taipei, Taiwan
| | - Steve Vucic
- Department of Neurology, Westmead Hospital, Western Clinical School, University of Sydney, Australia
| | - Brian J Wainger
- Department of Neurology and Anesthesiology, Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Stephen Waxman
- Department of Neurology, Yale Medical School, New Haven, CT 06510, USA; Neurorehabilitation Research Center, Veterans Affairs Hospital, West Haven, CT 06516, USA
| | - David Burke
- Brain and Mind Centre, University of Sydney and Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney 2006, Australia
| |
Collapse
|
10
|
Moldovan M, Alvarez S, Rothe C, Andresen TL, Urquhart A, Lange KHW, Krarup C. An in Vivo Mouse Model to Investigate the Effect of Local Anesthetic Nanomedicines on Axonal Conduction and Excitability. Front Neurosci 2018; 12:494. [PMID: 30093852 PMCID: PMC6070635 DOI: 10.3389/fnins.2018.00494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/02/2018] [Indexed: 11/13/2022] Open
Abstract
Peripheral nerve blocks (PNBs) using local anesthetic (LA) are superior to systemic analgesia for management of post-operative pain. An insufficiently short PNB duration following single-shot LA can be optimized by development of extended release formulations among which liposomes have been shown to be the least toxic. In vivo rodent models for PNB have focused primarily on assessing behavioral responses following LA. In a previous study in human volunteers, we found that it is feasible to monitor the effect of LA in vivo by combining conventional conduction studies with nerve excitability studies. Here, we aimed to develop a mouse model where the same neurophysiological techniques can be used to investigate liposomal formulations of LA in vivo. To challenge the validity of the model, we tested the motor PNB following an unilamellar liposomal formulation, filled with the intermediate-duration LA lidocaine. Experiments were carried out in adult transgenic mice with fluorescent axons and with fluorescent tagged liposomes to allow in vivo imaging by probe-based confocal laser endomicroscopy. Recovery of conduction following LA injection at the ankle was monitored by stimulation of the tibial nerve fibers at the sciatic notch and recording of the plantar compound motor action potential (CMAP). We detected a delayed recovery in CMAP amplitude following liposomal lidocaine, without detrimental systemic effects. Furthermore, CMAP threshold-tracking studies of the distal tibial nerve showed that the increased rheobase was associated with a sequence of excitability changes similar to those found following non-encapsulated lidocaine PNB in humans, further supporting the translational value of the model.
Collapse
Affiliation(s)
- Mihai Moldovan
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - Susana Alvarez
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Christian Rothe
- Department of Anesthesia, Nordsjællands Hospital, Hillerød, Denmark
| | - Thomas L Andresen
- Department for Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
| | - Andrew Urquhart
- Department for Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
| | - Kai H W Lange
- Department of Anesthesia, Nordsjællands Hospital, Hillerød, Denmark
| | - Christian Krarup
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
11
|
Jensen VN, Romer SH, Turner SM, Crone SA. Repeated Measurement of Respiratory Muscle Activity and Ventilation in Mouse Models of Neuromuscular Disease. J Vis Exp 2017. [PMID: 28448001 DOI: 10.3791/55599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Accessory respiratory muscles help to maintain ventilation when diaphragm function is impaired. The following protocol describes a method for repeated measurements over weeks or months of accessory respiratory muscle activity while simultaneously measuring ventilation in a non-anesthetized, freely behaving mouse. The technique includes the surgical implantation of a radio transmitter and the insertion of electrode leads into the scalene and trapezius muscles to measure the electromyogram activity of these inspiratory muscles. Ventilation is measured by whole-body plethysmography, and animal movement is assessed by video and is synchronized with electromyogram activity. Measurements of muscle activity and ventilation in a mouse model of amyotrophic lateral sclerosis are presented to show how this tool can be used to investigate how respiratory muscle activity changes over time and to assess the impact of muscle activity on ventilation. The described methods can easily be adapted to measure the activity of other muscles or to assess accessory respiratory muscle activity in additional mouse models of disease or injury.
Collapse
Affiliation(s)
| | | | - Sarah M Turner
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center
| | - Steven A Crone
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center;
| |
Collapse
|
12
|
Maglemose R, Hedegaard A, Lehnhoff J, Dimintiyanova KP, Moldovan M, Grøndahl L, Meehan CF. Potassium channel abnormalities are consistent with early axon degeneration of motor axons in the G127X SOD1 mouse model of amyotrophic lateral sclerosis. Exp Neurol 2017; 292:154-167. [PMID: 28322742 DOI: 10.1016/j.expneurol.2017.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 02/21/2017] [Accepted: 03/14/2017] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease, which selectively affects upper and lower motoneurones. The underlying pathophysiology of the disease is complex but electrophysiological studies of peripheral nerves in ALS patients as well as human autopsy studies indicate that a potassium channel dysfunction/loss is present early in the symptomatic phase. It remains unclear to what extent potassium channel abnormalities reflect a specific pathogenic mechanism in ALS. The aim of this study was therefore to investigate the temporal changes in the expression and/or function of potassium channels in motoneurones in the adult G127X SOD1 mouse model of ALS, a model which has a very long presymptomatic phase. Evidence from animal models indicates that the early progressive motoneurone dysfunction and degeneration can be largely compensated by motor unit remodeling, delaying the clinical symptom onset. Experiments were therefore performed both before and after symptom onset. Immunohistochemistry of motor axons in the ventral roots of G127X SOD1 mice, was used to investigate juxta-paranodal Kv1.2 potassium channels along with nodal Nav1.6 and the paranodal scaffolding protein Caspr. This allowed an investigation of changes in the distribution of Kv1.2 relative to the general structure of the nodal-paranodal-juxta-paranodal complex. This revealed that the motor axons in the ventral roots of presymptomatic G127X SOD1 mice, already show a disruption in juxta-paranodal Kv1.2 potassium channels. The axonal Kv1.2 disruption was preceded by abnormalities in the distribution of the paranodal scaffolding protein Caspr with the nodal arrangement of Nav1.6 appearing relatively preserved even in symptomatic mice. These changes were accompanied by axon swelling and a slowing of conduction in the peripheral motor axons in symptomatic mice. In vivo electrophysiological intracellular recordings of individual spinal motoneurones revealed that central potassium channel function was preserved or even enhanced with higher amplitude and longer duration after-hyperpolarisations in the G127X SOD1 mice. Our data suggest that the potassium channel abnormalities observed in presymptomatic G127X, rather than representing a specific pathophysiological mechanism targeting potassium channels, most likely reflect early axonal degenerative changes, consistent with the "dying-back" phenomenon observed in other ALS models.
Collapse
Affiliation(s)
- Rikke Maglemose
- Centre for Neuroscience, Copenhagen University, Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Anne Hedegaard
- Centre for Neuroscience, Copenhagen University, Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Janna Lehnhoff
- Centre for Neuroscience, Copenhagen University, Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | | | - Mihai Moldovan
- Centre for Neuroscience, Copenhagen University, Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Lillian Grøndahl
- Centre for Neuroscience, Copenhagen University, Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Claire Francesca Meehan
- Centre for Neuroscience, Copenhagen University, Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
13
|
Arnold R, Moldovan M, Rosberg MR, Krishnan AV, Morris R, Krarup C. Nerve excitability in the rat forelimb: a technique to improve translational utility. J Neurosci Methods 2017; 275:19-24. [DOI: 10.1016/j.jneumeth.2016.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/01/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023]
|
14
|
An oral NaV1.8 blocker improves motor function in mice completely deficient of myelin protein P0. Neurosci Lett 2016; 632:33-8. [PMID: 27530546 DOI: 10.1016/j.neulet.2016.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 01/06/2023]
Abstract
Mice deficient of myelin protein P0 are established models of demyelinating Charcot-Marie-Tooth (CMT) disease. Dysmyelination in these mice is associated with an ectopic expression of the sensory neuron specific sodium channel isoform NaV1.8 on motor axons. We reported that in P0+/-, a model of CMT1B, the membrane dysfunction could be acutely improved by a novel oral NaV1.8 blocker referred to as Compound 31 (C31, Bioorg. Med. Chem. Lett. 2010, 20, 6812; AbbVie Inc.). The aim of this study was to investigate the extent to which C31 treatment could also improve the motor axon function in P0-/-, a CMT model with a much more severe neuropathy. We found that the progressive impairment of motor performance from 1 to 4 months of age in P0-/- could be acutely reversed by C31 treatment. The effect was associated with an improvement of the amplitude of the plantar CMAP evoked by tibial nerve stimulation. The corresponding motor nerve excitability studies by "threshold tracking" showed changes after C31 consistent with attenuation of a resting membrane depolarization. Our data suggest that the depolarizing motor conduction failure in P0-/- could be acutely improved by C31. This provides proof-of-concept that treatment with oral subtype-selective NaV1.8 blockers could be used to improve the motor function in severe forms of demyelinating CMT.
Collapse
|
15
|
Rosberg MR, Alvarez S, Klein D, Nielsen FC, Martini R, Levinson SR, Krarup C, Moldovan M. Progression of motor axon dysfunction and ectopic Nav1.8 expression in a mouse model of Charcot-Marie-Tooth disease 1B. Neurobiol Dis 2016; 93:201-14. [PMID: 27215377 DOI: 10.1016/j.nbd.2016.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/11/2016] [Accepted: 05/18/2016] [Indexed: 12/13/2022] Open
Abstract
Mice heterozygously deficient for the myelin protein P0 gene (P0+/-) develop a slowly progressing neuropathy modeling demyelinating Charcot-Marie-Tooth disease (CMT1B). The aim of the study was to investigate the long-term progression of motor dysfunction in P0+/- mice at 3, 7, 12 and 20months. By comparison with WT littermates, P0+/- showed a decreasing motor performance with age. This was associated with a progressive reduction in amplitude and increase in latency of the plantar compound muscle action potential (CMAP) evoked by stimulation of the tibial nerve at ankle. This progressive functional impairment was in contrast to the mild demyelinating neuropathy of the tibial nerve revealed by histology. "Threshold-tracking" studies showed impaired motor axon excitability in P0+/- from 3months. With time, there was a progressive reduction in threshold deviations during both depolarizing and hyperpolarizing threshold electrotonus associated with increasing resting I/V slope and increasing strength-duration time constant. These depolarizing features in excitability in P0+/- as well as the reduced CMAP amplitude were absent in P0+/- NaV1.8 knockouts, and could be acutely reversed by selective pharmacologic block of NaV1.8 in P0+/-. Mathematical modeling indicated an association of altered passive cable properties with a depolarizing shift in resting membrane potential and increase in the persistent Na(+) current in P0+/-. Our data suggest that ectopic NaV1.8 expression precipitates depolarizing conduction failure in CMT1B, and that motor axon dysfunction in demyelinating neuropathy is pharmacologically reversible.
Collapse
Affiliation(s)
- Mette R Rosberg
- Institute of Neuroscience and Pharmacology, University of Copenhagen, Denmark; Department of Clinical Neurophysiology, The Neuroscience Center, Copenhagen University Hospital (Rigshospitalet), Denmark
| | - Susana Alvarez
- Institute of Neuroscience and Pharmacology, University of Copenhagen, Denmark; Department of Clinical Neurophysiology, The Neuroscience Center, Copenhagen University Hospital (Rigshospitalet), Denmark
| | - Dennis Klein
- Neurology, Developmental Neurobiology, University of Würzburg, Germany
| | | | - Rudolf Martini
- Neurology, Developmental Neurobiology, University of Würzburg, Germany
| | - S Rock Levinson
- University of Colorado, Denver, Physiology and Biophysics, United States
| | - Christian Krarup
- Institute of Neuroscience and Pharmacology, University of Copenhagen, Denmark; Department of Clinical Neurophysiology, The Neuroscience Center, Copenhagen University Hospital (Rigshospitalet), Denmark
| | - Mihai Moldovan
- Institute of Neuroscience and Pharmacology, University of Copenhagen, Denmark; Department of Clinical Neurophysiology, The Neuroscience Center, Copenhagen University Hospital (Rigshospitalet), Denmark
| |
Collapse
|
16
|
Moldovan M, Rosberg MR, Alvarez S, Klein D, Martini R, Krarup C. Aging-associated changes in motor axon voltage-gated Na + channel function in mice. Neurobiol Aging 2016; 39:128-39. [DOI: 10.1016/j.neurobiolaging.2015.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 12/13/2015] [Accepted: 12/14/2015] [Indexed: 01/17/2023]
|
17
|
Moldovan M, Alvarez S, Rosberg MR, Krarup C. Persistent alterations in active and passive electrical membrane properties of regenerated nerve fibers of man and mice. Eur J Neurosci 2015; 43:388-403. [DOI: 10.1111/ejn.13047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/31/2015] [Accepted: 08/13/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Mihai Moldovan
- Department of Neuroscience and Pharmacology; University of Copenhagen; Copenhagen Denmark
- Department of Clinical Neurophysiology; NF3063 Rigshospitalet 9 Blegdamsvej 2100 Copenhagen Denmark
| | - Susana Alvarez
- Department of Neuroscience and Pharmacology; University of Copenhagen; Copenhagen Denmark
- Department of Clinical Neurophysiology; NF3063 Rigshospitalet 9 Blegdamsvej 2100 Copenhagen Denmark
| | - Mette R. Rosberg
- Department of Neuroscience and Pharmacology; University of Copenhagen; Copenhagen Denmark
- Department of Clinical Neurophysiology; NF3063 Rigshospitalet 9 Blegdamsvej 2100 Copenhagen Denmark
| | - Christian Krarup
- Department of Neuroscience and Pharmacology; University of Copenhagen; Copenhagen Denmark
- Department of Clinical Neurophysiology; NF3063 Rigshospitalet 9 Blegdamsvej 2100 Copenhagen Denmark
| |
Collapse
|
18
|
Mancuso R, Navarro X. Amyotrophic lateral sclerosis: Current perspectives from basic research to the clinic. Prog Neurobiol 2015; 133:1-26. [PMID: 26253783 DOI: 10.1016/j.pneurobio.2015.07.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of upper and lower motoneurons, leading to muscle weakness and paralysis, and finally death. Considerable recent advances have been made in basic research and preclinical therapeutic attempts using experimental models, leading to increasing clinical and translational research in the context of this disease. In this review we aim to summarize the most relevant findings from a variety of aspects about ALS, including evaluation methods, animal models, pathophysiology, and clinical findings, with particular emphasis in understanding the role of every contributing mechanism to the disease for elucidating the causes underlying degeneration of motoneurons and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Renzo Mancuso
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| |
Collapse
|
19
|
Hedegaard A, Lehnhoff J, Moldovan M, Grøndahl L, Petersen NC, Meehan CF. Postactivation depression of the Ia EPSP in motoneurons is reduced in both the G127X SOD1 model of amyotrophic lateral sclerosis and in aged mice. J Neurophysiol 2015; 114:1196-210. [PMID: 26084911 DOI: 10.1152/jn.00745.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 06/17/2015] [Indexed: 12/14/2022] Open
Abstract
Postactivation depression (PActD) of Ia afferent excitatory postsynaptic potentials (EPSPs) in spinal motoneurons results in a long-lasting depression of the stretch reflex. This phenomenon (PActD) is of clinical interest as it has been shown to be reduced in a number of spastic disorders. Using in vivo intracellular recordings of Ia EPSPs in adult mice, we demonstrate that PActD in adult (100-220 days old) C57BL/6J mice is both qualitatively and quantitatively similar to that which has been observed in larger animals with respect to both the magnitude (with ∼20% depression of EPSPs at 0.5 ms after a train of stimuli) and the time course (returning to almost normal amplitudes by 5 ms after the train). This validates the use of mouse models to study PActD. Changes in such excitatory inputs to spinal motoneurons may have important implications for hyperreflexia and/or glutamate-induced excitotoxicity in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). With the use of the G127X SOD1 mutant mouse, an ALS model with a prolonged asymptomatic phase and fulminant symptom onset, we observed that PActD is significantly reduced at both presymptomatic (16% depression) and symptomatic (17.3% depression) time points compared with aged-matched controls (22.4% depression). The PActD reduction was not markedly altered by symptom onset. Comparing these PActD changes at the EPSP with the known effect of the depression on the monosynaptic reflex, we conclude that this is likely to have a much larger effect on the reflex itself (a 20-40% difference). Nevertheless, it should also be accounted that in aged (580 day old) C57BL/6J mice there was also a reduction in PActD although, aging is not usually associated with spasticity.
Collapse
Affiliation(s)
- A Hedegaard
- Department of Neuroscience and Pharmacology, University of Copenhagen, Panum Institute, Copenhagen, Denmark; and
| | - J Lehnhoff
- Department of Neuroscience and Pharmacology, University of Copenhagen, Panum Institute, Copenhagen, Denmark; and
| | - M Moldovan
- Department of Neuroscience and Pharmacology, University of Copenhagen, Panum Institute, Copenhagen, Denmark; and
| | - L Grøndahl
- Department of Neuroscience and Pharmacology, University of Copenhagen, Panum Institute, Copenhagen, Denmark; and
| | - N C Petersen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Panum Institute, Copenhagen, Denmark; and Department of Nutrition, Exercise and Sports, University of Copenhagen, Panum Institute, Copenhagen, Denmark
| | - C F Meehan
- Department of Neuroscience and Pharmacology, University of Copenhagen, Panum Institute, Copenhagen, Denmark; and
| |
Collapse
|
20
|
de Carvalho M, Swash M. Fasciculation potentials and earliest changes in motor unit physiology in ALS. J Neurol Neurosurg Psychiatry 2013; 84:963-8. [PMID: 23418210 DOI: 10.1136/jnnp-2012-304545] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND There is little information on the earliest changes in motor unit (MU) physiology in amyotrophic lateral sclerosis (ALS) and the development of the classical neurophysiological features of ALS over time. OBJECTIVE We studied the earliest abnormalities in MU physiology in ALS and changes over time. DESIGN Observational, cross-sectional and longitudinal study. POPULATION AND METHODS We studied the tibialis anterior (TA) muscle in three groups of subjects; 73 patients with ALS, 10 with benign fasciculation and 37 healthy control subjects. In the ALS group, 61 had normal strength in the TA muscle and 12 had TA muscle strength of 4 on the medical research council scale. In all subjects we evaluated the presence of fasciculation potentials (FPs) and fibrillation/sharp-waves (fibs-sw), and quantified MU potentials (MUPs) and jitter. Twenty-six ALS patients with TA muscle of normal strength were investigated in serial studies. RESULTS FPs were recorded in TA muscles (medical research council 5) of 21 ALS patients with normal MUPs. Longitudinal studies confirmed that the patients presenting with FPs as the only abnormality progressed to MUP instability before large MUPs associated with fibs-sw were detected. FPs from ALS patients with no other neurophysiological change were simpler than in patients in whom there were also fibs-sw and neurogenic MUPs. The complexity of FPs in patients with weak TA muscle was greater than in the latter group. FPs in patients with benign fasciculations were simpler than FPs in ALS patients with normal TA muscle strength. CONCLUSIONS FPs are a very early marker of ALS and anticipate MUP instability or reinnervation, consistent with a very early phase of increased axonal excitability. Later, widespread neuronal dysfunction causes widespread fibs-sw and loss of MUPs with compensatory reinnervation. Our results confirm the importance of FP morphology analysis in the differential diagnosis of ALS and other disorders, and indicate that benign FPs represent a different phenomenon.
Collapse
|
21
|
Peterchev AV, Goetz SM, Westin GG, Luber B, Lisanby SH. Pulse width dependence of motor threshold and input-output curve characterized with controllable pulse parameter transcranial magnetic stimulation. Clin Neurophysiol 2013; 124:1364-72. [PMID: 23434439 PMCID: PMC3664250 DOI: 10.1016/j.clinph.2013.01.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/28/2012] [Accepted: 01/22/2013] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To demonstrate the use of a novel controllable pulse parameter TMS (cTMS) device to characterize human corticospinal tract physiology. METHODS Motor threshold and input-output (IO) curve of right first dorsal interosseus were determined in 26 and 12 healthy volunteers, respectively, at pulse widths of 30, 60, and 120 μs using a custom-built cTMS device. Strength-duration curve rheobase and time constant were estimated from the motor thresholds. IO slope was estimated from sigmoid functions fitted to the IO data. RESULTS All procedures were well tolerated with no seizures or other serious adverse events. Increasing pulse width decreased the motor threshold and increased the pulse energy and IO slope. The average strength-duration curve time constant is estimated to be 196 μs, 95% CI [181 μs, 210 μs]. IO slope is inversely correlated with motor threshold both across and within pulse width. A simple quantitative model explains these dependencies. CONCLUSIONS Our strength-duration time constant estimate compares well to published values and may be more accurate given increased sample size and enhanced methodology. Multiplying the IO slope by the motor threshold may provide a sensitive measure of individual differences in corticospinal tract physiology. SIGNIFICANCE Pulse parameter control offered by cTMS provides enhanced flexibility that can contribute novel insights in TMS studies.
Collapse
Affiliation(s)
- Angel V Peterchev
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
22
|
Peripheral motor axons of SOD1G127X mutant mice are susceptible to activity-dependent degeneration. Neuroscience 2013; 241:239-49. [DOI: 10.1016/j.neuroscience.2013.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 02/11/2013] [Accepted: 03/06/2013] [Indexed: 12/12/2022]
|
23
|
Shibuta Y, Shimatani Y, Nodera H, Izumi Y, Kaji R. Increased variability of axonal excitability in amyotrophic lateral sclerosis. Clin Neurophysiol 2013; 124:2046-53. [PMID: 23726502 DOI: 10.1016/j.clinph.2013.02.117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/30/2013] [Accepted: 02/18/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is characterised by the increased excitability of motoneurons and heterogeneous loss of axons. The heterogeneous nature of the disease process among fibres may show variability of excitability in ALS. METHODS Multiple nerve excitability tests were performed in 28 ALS patients and 23 control subjects, by tracking at the varying threshold levels (10%, 20%, 40% and 60% of maximum amplitudes). RESULTS In normal controls, excitability measures at low target levels have the following characteristics compared to those at high target levels: longer strength-duration time constant, greater threshold reduction during depolarising currents and smaller threshold increase to hyperpolarising currents. ALS patients had less clear amplitude dependency of the parameters than the controls, indicating variability of axonal excitability. Three ALS patients demonstrated greater target-amplitude-dependent threshold changes in threshold electrotonus than controls, suggesting selective axonal hyperexcitability. CONCLUSIONS Some of the ALS patients had variable axonal excitability at different target amplitudes, suggesting preferential hyperexcitability in the axons with low target amplitude levels. SIGNIFICANCE Variable membrane potentials of motor axons in ALS may be assessed by recording excitability testing at different target amplitude levels.
Collapse
Affiliation(s)
- Yoshiko Shibuta
- Department of Neurology, Tokushima University, Tokushima, Japan
| | | | | | | | | |
Collapse
|
24
|
Over-expression of N-type calcium channels in cortical neurons from a mouse model of Amyotrophic Lateral Sclerosis. Exp Neurol 2012; 247:349-58. [PMID: 23142186 DOI: 10.1016/j.expneurol.2012.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 10/24/2012] [Accepted: 11/02/2012] [Indexed: 12/13/2022]
Abstract
Voltage-gated Ca(2+) channels (VGCCs) mediate calcium entry into neuronal cells in response to membrane depolarisation and play an essential role in a variety of physiological processes. In Amyotrophic Lateral Sclerosis (ALS), a fatal neurodegenerative disease caused by motor neuron degeneration in the brain and spinal cord, intracellular calcium dysregulation has been shown, while no studies have been carried out on VGCCs. Here we show that the subtype N-type Ca(2+) channels are over expressed in G93A cultured cortical neurons and in motor cortex of G93A mice compared to Controls. In fact, by western blotting, immunocytochemical and electrophysiological experiments, we observe higher membrane expression of N-type Ca(2+) channels in G93A neurons compared to Controls. G93A cortical neurons filled with calcium-sensitive dye Fura-2, show a net calcium entry during membrane depolarization that is significantly higher compared to Control. Analysis of neuronal vitality following the exposure of neurons to a high K(+) concentration (25 mM, 5h), shows a significant reduction of G93A cellular survival compared to Controls. N-type channels are involved in the G93A higher mortality because ω-conotoxin GVIA (1 μM), which selectively blocks these channels, is able to abolish the higher G93A mortality when added to the external medium. These data provide robust evidence for an excess of N-type Ca(2+) expression in G93A cortical neurons which induces a higher mortality following membrane depolarization. These results may be central to the understanding of pathogenic pathways in ALS and provide novel molecular targets for the design of rational therapies for the ALS disorder.
Collapse
|