1
|
Shang S, Zhao C, Lin J. Therapeutic potentials of adoptive cell therapy in immune-mediated neuropathy. J Autoimmun 2024; 149:103305. [PMID: 39265193 DOI: 10.1016/j.jaut.2024.103305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/06/2024] [Accepted: 08/23/2024] [Indexed: 09/14/2024]
Abstract
Immune-mediated neuropathy (IMN) is a group of heterogenous neuropathies caused by intricate autoimmune responses. For now, known mechanisms of different IMN subtypes involve the production of autoantibodies, complement activation, enhanced inflammation and subsequent axonal/demyelinating nerve damages. Recent therapeutic studies mainly focus on specific antibodies and small molecule inhibitors previously approved in rheumatoid diseases. Initial strategies based on the pathophysiologic features of IMN should be explored. Adoptive cell therapy (ACT) refers to the emerging immunotherapies in which circulating immunocytes are collected from peripheral blood and modified with killing and immunomodulatory capacities. It consists of chimeric antigen receptor-T cell therapy, T cell receptor-engineered T cell, CAR-Natural killer cell therapy, and others. In the last decade, ACT has demonstrated extraordinary potentials in treating cancers, infectious diseases and autoimmune diseases. Versatile combinations of targets, chimeric domains and effector cells greatly empower ACT to treat complicated immune disorders. In this review, we summarized the advances of ACT and envisioned suitable strategies for different IMN subtypes.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Animals
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/transplantation
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
Collapse
Affiliation(s)
- Siqi Shang
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders (NCND), Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders (NCND), Shanghai, China
| | - Jie Lin
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders (NCND), Shanghai, China.
| |
Collapse
|
2
|
Collet R, Caballero-Ávila M, Querol L. Clinical and pathophysiological implications of autoantibodies in autoimmune neuropathies. Rev Neurol (Paris) 2023; 179:831-843. [PMID: 36907709 DOI: 10.1016/j.neurol.2023.02.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 03/13/2023]
Abstract
Autoimmune neuropathies are a heterogeneous group of rare and disabling diseases in which the immune system targets peripheral nervous system antigens and that respond to immune therapies. This review focuses on Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, multifocal motor neuropathy, polyneuropathy associated with IgM monoclonal gammopathy, and autoimmune nodopathies. Autoantibodies targeting gangliosides, proteins in the node of Ranvier, and myelin-associated glycoprotein have been described in these disorders, defining subgroups of patients with similar clinical features and response to therapy. This topical review describes the role of these autoantibodies in the pathogenesis of autoimmune neuropathies and their clinical and therapeutic importance.
Collapse
Affiliation(s)
- R Collet
- Department of Neurology, Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - M Caballero-Ávila
- Department of Neurology, Hospital Santa Creu i Sant Pau, Barcelona, Spain; Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - L Querol
- Department of Neurology, Hospital Santa Creu i Sant Pau, Barcelona, Spain; Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
3
|
Shastri A, Al Aiyan A, Kishore U, Farrugia ME. Immune-Mediated Neuropathies: Pathophysiology and Management. Int J Mol Sci 2023; 24:7288. [PMID: 37108447 PMCID: PMC10139406 DOI: 10.3390/ijms24087288] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Dysfunction of the immune system can result in damage of the peripheral nervous system. The immunological mechanisms, which include macrophage infiltration, inflammation and proliferation of Schwann cells, result in variable degrees of demyelination and axonal degeneration. Aetiology is diverse and, in some cases, may be precipitated by infection. Various animal models have contributed and helped to elucidate the pathophysiological mechanisms in acute and chronic inflammatory polyradiculoneuropathies (Guillain-Barre Syndrome and chronic inflammatory demyelinating polyradiculoneuropathy, respectively). The presence of specific anti-glycoconjugate antibodies indicates an underlying process of molecular mimicry and sometimes assists in the classification of these disorders, which often merely supports the clinical diagnosis. Now, the electrophysiological presence of conduction blocks is another important factor in characterizing another subgroup of treatable motor neuropathies (multifocal motor neuropathy with conduction block), which is distinct from Lewis-Sumner syndrome (multifocal acquired demyelinating sensory and motor neuropathy) in its response to treatment modalities as well as electrophysiological features. Furthermore, paraneoplastic neuropathies are also immune-mediated and are the result of an immune reaction to tumour cells that express onconeural antigens and mimic molecules expressed on the surface of neurons. The detection of specific paraneoplastic antibodies often assists the clinician in the investigation of an underlying, sometimes specific, malignancy. This review aims to discuss the immunological and pathophysiological mechanisms that are thought to be crucial in the aetiology of dysimmune neuropathies as well as their individual electrophysiological characteristics, their laboratory features and existing treatment options. Here, we aim to present a balance of discussion from these diverse angles that may be helpful in categorizing disease and establishing prognosis.
Collapse
Affiliation(s)
- Abhishek Shastri
- Central and North West London NHS Foundation Trust, London NW1 3AX, UK
| | - Ahmad Al Aiyan
- Department of Veterinary Medicine, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Uday Kishore
- Department of Veterinary Medicine, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Maria Elena Farrugia
- Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow G51 4TF, UK
| |
Collapse
|
4
|
Cunningham ME, McGonigal R, Barrie JA, Campbell CI, Yao D, Willison HJ. Axolemmal nanoruptures arising from paranodal membrane injury induce secondary axon degeneration in murine Guillain-Barré syndrome. J Peripher Nerv Syst 2023; 28:17-31. [PMID: 36710500 PMCID: PMC10947354 DOI: 10.1111/jns.12532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Abstract
The major determinant of poor outcome in Guillain-Barré syndrome (GBS) is axonal degeneration. Pathways leading to primary axonal injury in the motor axonal variant are well established, whereas mechanisms of secondary axonal injury in acute inflammatory demyelinating polyneuropathy (AIDP) are unknown. We recently developed an autoantibody-and complement-mediated model of murine AIDP, in which prominent injury to glial membranes at the node of Ranvier results in severe disruption to paranodal components. Acutely, axonal integrity was maintained, but over time secondary axonal degeneration occurred. Herein, we describe the differential mechanisms underlying acute glial membrane injury and secondary axonal injury in this model. Ex vivo nerve-muscle explants were injured for either acute or extended periods with an autoantibody-and complement-mediated injury to glial paranodal membranes. This model was used to test several possible mechanisms of axon degeneration including calpain activation, and to monitor live axonal calcium signalling. Glial calpains induced acute disruption of paranodal membrane proteins in the absence of discernible axonal injury. Over time, we observed progressive axonal degeneration which was markedly attenuated by axon-specific calpain inhibition. Injury was unaffected by all other tested methods of protection. Trans-axolemmal diffusion of fluorescent proteins and live calcium imaging studies indirectly demonstrated the presence of nanoruptures in the axon membrane. This study outlines one mechanism by which secondary axonal degeneration arises in the AIDP variant of GBS where acute paranodal loop injury is prominent. The data also support the development of calpain inhibitors to attenuate both primary and secondary axonal degeneration in GBS.
Collapse
Affiliation(s)
| | - Rhona McGonigal
- School of Infection & ImmunityUniversity of GlasgowGlasgowUK
| | | | | | - Denggao Yao
- School of Infection & ImmunityUniversity of GlasgowGlasgowUK
| | | |
Collapse
|
5
|
Negro S, Pirazzini M, Rigoni M. Models and methods to study Schwann cells. J Anat 2022; 241:1235-1258. [PMID: 34988978 PMCID: PMC9558160 DOI: 10.1111/joa.13606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Schwann cells (SCs) are fundamental components of the peripheral nervous system (PNS) of all vertebrates and play essential roles in development, maintenance, function, and regeneration of peripheral nerves. There are distinct populations of SCs including: (1) myelinating SCs that ensheath axons by a specialized plasma membrane, called myelin, which enhances the conduction of electric impulses; (2) non-myelinating SCs, including Remak SCs, which wrap bundles of multiple axons of small caliber, and perysinaptic SCs (PSCs), associated with motor axon terminals at the neuromuscular junction (NMJ). All types of SCs contribute to PNS regeneration through striking morphological and functional changes in response to nerve injury, are affected in peripheral neuropathies and show abnormalities and a diminished plasticity during aging. Therefore, methodological approaches to study and manipulate SCs in physiological and pathophysiological conditions are crucial to expand the present knowledge on SC biology and to devise new therapeutic strategies to counteract neurodegenerative conditions and age-derived denervation. We present here an updated overview of traditional and emerging methodologies for the study of SCs for scientists approaching this research field.
Collapse
Affiliation(s)
- Samuele Negro
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
| | - Marco Pirazzini
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| | - Michela Rigoni
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| |
Collapse
|
6
|
Halstead SK, Gourlay DS, Penderis J, Bianchi E, Dondi M, Wessmann A, Musteata M, Le Chevoir M, Martinez-Anton L, Bhatti SFM, Volk H, Mateo I, Tipold A, Ives E, Pakozdy A, Gutierrez-Quintana R, Brocal J, Whitehead Z, Granger N, Pazzi P, Harcourt-Brown T, José-López R, Rupp S, Schenk HC, Smith P, Gandini G, Menchetti M, Mortera-Balsa V, Rusbridge C, Tauro A, Cozzi F, Deutschland M, Tirrito F, Freeman P, Lowrie M, Jackson MR, Willison HJ, Rupp A. Serum anti-GM2 and anti-GalNAc-GD1a IgG antibodies are biomarkers for acute canine polyradiculoneuritis. J Small Anim Pract 2022; 63:104-112. [PMID: 34791652 DOI: 10.1111/jsap.13439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 08/13/2021] [Accepted: 09/19/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES A previous single-country pilot study indicated serum anti-GM2 and anti-GA1 anti-glycolipid antibodies as potential biomarkers for acute canine polyradiculoneuritis. This study aims to validate these findings in a large geographically heterogenous cohort. MATERIALS AND METHODS Sera from 175 dogs clinically diagnosed with acute canine polyradiculoneuritis, 112 dogs with other peripheral nerve, cranial nerve or neuromuscular disorders and 226 neurologically normal dogs were screened for anti-glycolipid antibodies against 11 common glycolipid targets to determine the immunoglobulin G anti-glycolipid antibodies with the highest combined sensitivity and specificity for acute canine polyradiculoneuritis. RESULTS Anti-GM2 anti-glycolipid antibodies reached the highest combined sensitivity and specificity (sensitivity: 65.1%, 95% confidence interval 57.6 to 72.2%; specificity: 90.2%, 95% confidence interval 83.1 to 95.0%), followed by anti-GalNAc-GD1a anti-glycolipid antibodies (sensitivity: 61.7%, 95% confidence interval 54.1 to 68.9%; specificity: 89.3%, 95% confidence interval 82.0 to 94.3%) and these anti-glycolipid antibodies were frequently present concomitantly. Anti-GA1 anti-glycolipid antibodies were detected in both acute canine polyradiculoneuritis and control animals. Both for anti-GM2 and anti-GalNAc-GD1a anti-glycolipid antibodies, sex was found a significantly associated factor with a female to male odds ratio of 2.55 (1.27 to 5.31) and 3.00 (1.22 to 7.89), respectively. Anti-GalNAc-GD1a anti-glycolipid antibodies were more commonly observed in dogs unable to walk (OR 4.56, 1.56 to 14.87). CLINICAL SIGNIFICANCE Anti-GM2 and anti-GalNAc-GD1a immunoglobulin G anti-glycolipid antibodies represent serum biomarkers for acute canine polyradiculoneuritis.
Collapse
Affiliation(s)
- S K Halstead
- Neuroimmunology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - D S Gourlay
- Neuroimmunology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - J Penderis
- Vet Extra Neurology, Broadleys Veterinary Hospital, Stirling, FK7 7LE, UK
| | - E Bianchi
- Department of Veterinary Science, University of Parma, 43126, Parma, Italy
| | - M Dondi
- Department of Veterinary Science, University of Parma, 43126, Parma, Italy
| | - A Wessmann
- Neurology and Neurosurgery Service, Pride Veterinary Centre, Pride Park, Derby, DE24 8HX, UK
| | - M Musteata
- Neurology Service, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Iași, 700489, Romania
| | - M Le Chevoir
- Department of Neurology and Neurosurgery, University of Melbourne, Werribee, Victoria, 3030, Australia
| | - L Martinez-Anton
- Chestergates Veterinary Specialists, Telford Court, Chestergates, CH1 6LT, UK
| | - S F M Bhatti
- Small Animal Department, Small Animal Teaching Hospital, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - H Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - I Mateo
- Servicio de Neurología, Hospital Clínico Veterinario - Universidad Alfonso X el Sabio, Madrid, Spain
| | - A Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - E Ives
- Anderson Moores Veterinary Specialists, Hursley, Winchester, SO21 2LL, UK
| | - A Pakozdy
- University Hospital for Small Animals, University of Veterinary Medicine, Vienna, Austria
| | | | - J Brocal
- Wear Referrals Veterinary Hospital, Bradbury, Stockton-on-Tees, TS21 2ES, UK
| | - Z Whitehead
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa
| | - N Granger
- The Royal Veterinary College, University of London, Hatfield, Hertfordshire, UK.,CVS Referrals, Bristol Veterinary Specialists at Highcroft, Bristol, UK
| | - P Pazzi
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa
| | - T Harcourt-Brown
- Langford Veterinary Services, School of Veterinary Sciences, University of Bristol, Lower Langford, BS40 5DU, UK
| | - R José-López
- School of Veterinary Medicine, University of Glasgow, Glasgow, G61 1QH, UK
| | - S Rupp
- Tierklinik Hofheim, 65719, Hofheim, Germany
| | - H C Schenk
- Tierklinik Lüneburg, 21337, Lüneburg, Germany
| | - P Smith
- Hamilton Specialist Referrals, Cressex Business Park, High Wycombe, HP12 3SD, UK
| | - G Gandini
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano dell'Emilia, Italy
| | - M Menchetti
- Neurology and Neurosurgery Division, San Marco Veterinary Clinic, Veggiano, Italy
| | - V Mortera-Balsa
- North Downs Specialist Referrals, 3&4 The Brewerstreet Dairy Business Park, Bletchingley, Surrey, RH1 4QP, UK
| | - C Rusbridge
- Neurology Section, Fitzpatrick Referrals, Godalming, Surrey, GU2 7AL, UK.,School of Veterinary Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7AL, UK
| | - A Tauro
- Chestergates Veterinary Specialists, Telford Court, Chestergates, CH1 6LT, UK
| | - F Cozzi
- Clinica Neurologica Veterinaria, 20148, Milan, Italy
| | | | - F Tirrito
- Clinica Neurologica Veterinaria, 20148, Milan, Italy
| | - P Freeman
- The Queen's Veterinary School Hospital, Cambridge, CB3 0ES, UK
| | - M Lowrie
- Dovecote Veterinary Hospital, Castle Donington, Derby, DE74 2LJ, UK
| | - M R Jackson
- Institute of Cancer Sciences, University of Glasgow, Bearsden, G61 1QH, UK
| | - H J Willison
- Neuroimmunology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - A Rupp
- School of Veterinary Medicine, University of Glasgow, Glasgow, G61 1QH, UK
| |
Collapse
|
7
|
Latrotoxin-Induced Neuromuscular Junction Degeneration Reveals Urocortin 2 as a Critical Contributor to Motor Axon Terminal Regeneration. Int J Mol Sci 2022; 23:ijms23031186. [PMID: 35163106 PMCID: PMC8835473 DOI: 10.3390/ijms23031186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
We used α-Latrotoxin (α-LTx), the main neurotoxic component of the black widow spider venom, which causes degeneration of the neuromuscular junction (NMJ) followed by a rapid and complete regeneration, as a molecular tool to identify by RNA transcriptomics factors contributing to the structural and functional recovery of the NMJ. We found that Urocortin 2 (UCN2), a neuropeptide involved in the stress response, is rapidly expressed at the NMJ after acute damage and that inhibition of CRHR2, the specific receptor of UCN2, delays neuromuscular transmission rescue. Experiments in neuronal cultures show that CRHR2 localises at the axonal tips of growing spinal motor neurons and that its expression inversely correlates with synaptic maturation. Moreover, exogenous UCN2 enhances the growth of axonal sprouts in cultured neurons in a CRHR2-dependent manner, pointing to a role of the UCN2-CRHR2 axis in the regulation of axonal growth and synaptogenesis. Consistently, exogenous administration of UCN2 strongly accelerates the regrowth of motor axon terminals degenerated by α-LTx, thereby contributing to the functional recovery of neuromuscular transmission after damage. Taken together, our results posit a novel role for UCN2 and CRHR2 as a signalling axis involved in NMJ regeneration.
Collapse
|
8
|
Wu CL, Chao CH, Lin SW, Chien YY, Huang WY, Weng WC, Su FC, Wei YC. Case Report: Plasma Biomarkers Reflect Immune Mechanisms of Guillain-Barré Syndrome. Front Neurol 2021; 12:720794. [PMID: 34539561 PMCID: PMC8446349 DOI: 10.3389/fneur.2021.720794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
This case series reported a group of patients with Guillain-Barré syndrome (GBS) and their plasma cytokine changes before and after immunotherapy. We aimed to understand GBS's pathogenesis and pathophysiology through observing the interval differences of the representative cytokines, which were the thymus and activation regulated chemokine (TARC) for T-cell chemotaxis, CD40 ligand (CD40L) for cosimulation of B and T cells, activated complement component C5/C5a, and brain-derived neurotrophic factor (BDNF) for survival and regenerative responses to nerve injuries. The fluorescence magnetic bead-based multiplexing immunoassay simultaneously quantified the five cytokines in a single sample. From June 2018 to December 2019, we enrolled five GBS patients who had completed before-after blood cytokine measurements. One patient was diagnosed with paraneoplastic GBS and excluded from the following cytokine analysis. The BDNF level decreased consistently in all the patients and made it a potential biomarker for the acute stage of GBS. Interval changes of the other four cytokines were relatively inconsistent and possibly related to interindividual differences in the immune response to GBS triggers, types of GBS variants, and classes of antiganglioside antibodies. In summary, utilizing the multiplexing immunoassay helps in understanding the complex immune mechanisms of GBS and the variation of immune responses in GBS subtypes; this method is feasible for identifying potential biomarkers of GBS.
Collapse
Affiliation(s)
- Chia-Lun Wu
- Department of Neurology, Chang Gung Memorial Hospital, Keelung City, Taiwan
- School of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Chung-Hao Chao
- Department of Neurology, Chang Gung Memorial Hospital, Keelung City, Taiwan
| | - Shun-Wen Lin
- Department of Neurology, Chang Gung Memorial Hospital, Keelung City, Taiwan
| | - Yu-Yi Chien
- Department of Neurology, Chang Gung Memorial Hospital, Keelung City, Taiwan
- School of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Wen-Yi Huang
- Department of Neurology, Chang Gung Memorial Hospital, Keelung City, Taiwan
- School of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Wei-Chieh Weng
- Department of Neurology, Chang Gung Memorial Hospital, Keelung City, Taiwan
- School of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Feng-Chieh Su
- Department of Neurology, Chang Gung Memorial Hospital, Keelung City, Taiwan
| | - Yi-Chia Wei
- Department of Neurology, Chang Gung Memorial Hospital, Keelung City, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung City, Taiwan
| |
Collapse
|
9
|
Cunningham ME, Meehan GR, Robinson S, Yao D, McGonigal R, Willison HJ. Perisynaptic Schwann cells phagocytose nerve terminal debris in a mouse model of Guillain-Barré syndrome. J Peripher Nerv Syst 2020; 25:143-151. [PMID: 32250537 PMCID: PMC8299349 DOI: 10.1111/jns.12373] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/25/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022]
Abstract
In mouse models of acute motor axonal neuropathy, anti-ganglioside antibodies (AGAbs) bind to motor axons, notably the distal nerve, and activate the complement cascade. While complement activation is well studied in this model, the role of inflammatory cells is unknown. Herein we aimed to investigate the contribution of phagocytic cells including macrophages, neutrophils and perisynaptic Schwann cells (pSCs) to distal nerve pathology. To observe this, we first created a subacute injury model of sufficient duration to allow inflammatory cell recruitment. Mice were injected intraperitoneally with an anti-GD1b monoclonal antibody that binds strongly to mouse motor nerve axons. Subsequently, mice received normal human serum as a source of complement. Dosing was titrated to allow humane survival of mice over a period of 3 days, yet still induce the characteristic neurological impairment. Behaviour and pathology were assessed in vivo using whole-body plethysmography and post-sacrifice by immunofluorescence and flow cytometry. ex vivo nerve-muscle preparations were used to investigate the acute phagocytic role of pSCs following distal nerve injury. Following complement activation at distal intramuscular nerve sites in the diaphragm macrophage localisation or numbers are not altered, nor do they shift to a pro- or anti-inflammatory phenotype. Similarly, neutrophils are not significantly recruited. Instead, ex vivo nerve-muscle preparations exposed to AGAb plus complement reveal that pSCs rapidly become phagocytic and engulf axonal debris. These data suggest that pSCs, rather than inflammatory cells, are the major cellular vehicle for axonal debris clearance following distal nerve injury, in contrast to larger nerve bundles where macrophage-mediated clearance predominates.
Collapse
Affiliation(s)
- Madeleine E. Cunningham
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Gavin R. Meehan
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Sophie Robinson
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Denggao Yao
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Rhona McGonigal
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Hugh J. Willison
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
10
|
Negro S, Zanetti G, Mattarei A, Valentini A, Megighian A, Tombesi G, Zugno A, Dianin V, Pirazzini M, Fillo S, Lista F, Rigoni M, Montecucco C. An Agonist of the CXCR4 Receptor Strongly Promotes Regeneration of Degenerated Motor Axon Terminals. Cells 2019; 8:E1183. [PMID: 31575088 PMCID: PMC6829515 DOI: 10.3390/cells8101183] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022] Open
Abstract
The activation of the G-protein coupled receptor CXCR4 by its ligand CXCL12α is involved in a large variety of physiological and pathological processes, including the growth of B cells precursors and of motor axons, autoimmune diseases, stem cell migration, inflammation, and several neurodegenerative conditions. Recently, we demonstrated that CXCL12α potently stimulates the functional recovery of damaged neuromuscular junctions via interaction with CXCR4. This result prompted us to test the neuroregeneration activity of small molecules acting as CXCR4 agonists, endowed with better pharmacokinetics with respect to the natural ligand. We focused on NUCC-390, recently shown to activate CXCR4 in a cellular system. We designed a novel and convenient chemical synthesis of NUCC-390, which is reported here. NUCC-390 was tested for its capability to induce the regeneration of motor axon terminals completely degenerated by the presynaptic neurotoxin α-Latrotoxin. NUCC-390 was found to strongly promote the functional recovery of the neuromuscular junction, as assayed by electrophysiology and imaging. This action is CXCR4 dependent, as it is completely prevented by AMD3100, a well-characterized CXCR4 antagonist. These data make NUCC-390 a strong candidate to be tested in human therapy to promote nerve recovery of function after different forms of neurodegeneration.
Collapse
Affiliation(s)
- Samuele Negro
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy.
| | - Giulia Zanetti
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy.
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua 35131, Italy.
| | - Alice Valentini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua 35131, Italy.
| | - Aram Megighian
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy.
- Padua Neuroscience Institute, Padua 35131, Italy.
| | - Giulia Tombesi
- Department of Biology, University of Padua, Padua 35131, Italy.
| | - Alessandro Zugno
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua 35131, Italy.
| | - Valentina Dianin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua 35131, Italy.
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy.
| | - Silvia Fillo
- Center of Medical and Veterinary Research of the Ministry of Defence, Rome 00184, Italy.
| | - Florigio Lista
- Center of Medical and Veterinary Research of the Ministry of Defence, Rome 00184, Italy.
| | - Michela Rigoni
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy.
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy.
- CNR Institute of Neuroscience, Padua 35131, Italy.
| |
Collapse
|
11
|
Abstract
Since the discovery of an acute monophasic paralysis, later coined Guillain-Barré syndrome, almost 100 years ago, and the discovery of chronic, steroid-responsive polyneuropathy 50 years ago, the spectrum of immune-mediated polyneuropathies has broadened, with various subtypes continuing to be identified, including chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) and multifocal motor neuropathy (MMN). In general, these disorders are speculated to be caused by autoimmunity to proteins located at the node of Ranvier or components of myelin of peripheral nerves, although disease-associated autoantibodies have not been identified for all disorders. Owing to the numerous subtypes of the immune-mediated neuropathies, making the right diagnosis in daily clinical practice is complicated. Moreover, treating these disorders, particularly their chronic variants, such as CIDP and MMN, poses a challenge. In general, management of these disorders includes immunotherapies, such as corticosteroids, intravenous immunoglobulin or plasma exchange. Improvements in clinical criteria and the emergence of more disease-specific immunotherapies should broaden the therapeutic options for these disabling diseases.
Collapse
|
12
|
Axonal damage in central and peripheral nervous system inflammatory demyelinating diseases: common and divergent pathways of tissue damage. Curr Opin Neurol 2018; 29:213-21. [PMID: 27058223 DOI: 10.1097/wco.0000000000000334] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Axonal injury is the pathological correlate of fixed disability in the inflammatory demyelinating disorders of the central and peripheral nervous system. The mechanisms that initiate and propagate neurodegeneration in these conditions are poorly understood, and a lack of available neuroprotective and proreparative therapies represent a significant unmet clinical need. In this article, we review new data pertaining to the convergent and divergent immunological, cellular, and molecular mechanisms that underpin neurodegeneration in multiple sclerosis and the chronic inflammatory demyelinating neuropathies that will inform the development of targeted therapies. RECENT FINDINGS New insights have been gained from recognition of the axon as an integral component of the axon-myelin unit, identification of defects in axonal transport, elucidation of mechanisms of Wallerian degeneration and, in the central nervous system, the appreciation of trans-synaptic axonal degeneration, and widespread cortical synaptopathy. Concurrently, specific immune triggers of axonal injury, particularly in the peripheral immune system; and inhibitors of repair and regrowth, have been identified. SUMMARY Neurodegeneration is a critical determinant of disability in the inflammatory demyelinating diseases of both the central nervous system and peripheral nervous system. Current therapies are restricted to agents that (effectively) treat the inflammatory components of these conditions. Although propagated, and in some instances triggered, by inflammation, axon damage will in future years be treated or prevented with adjuvant, targeted therapies that exploit emerging pathways to neurodegeneration.
Collapse
|
13
|
Rigoni M, Montecucco C. Animal models for studying motor axon terminal paralysis and recovery. J Neurochem 2017; 142 Suppl 2:122-129. [PMID: 28326543 DOI: 10.1111/jnc.13956] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/16/2022]
Abstract
An extraordinary property of the peripheral nervous system is that nerve terminals can regenerate after damage caused by different physical, chemical, or biological pathogens. Regeneration is the result of a complex and ill-known interplay among the nerve, the glia, the muscle, the basal lamina and, in some cases, the immune system. This phenomenon has been studied using different injury models mainly in rodents, particularly in mice, where a lesion can be produced in a chosen anatomical area. These approaches differ significantly among them for the nature of the lesion and the final outcomes. We have reviewed here the most common experimental models employed to induce motor axon injury, the relative advantages and drawbacks, and the principal read-outs used to monitor the regenerative process. Recently introduced tools for inducing reversible damage to the motor axon terminal that overcome some of the drawbacks of the more classical approaches are also discussed. Animal models have provided precious information about the cellular components involved in the regenerative process and on its electrophysiological features. Methods and tools made available recently allow one to identify and study molecules that are involved in the crosstalk among the components of the endplate. The time-course of the intercellular signaling and of the intracellular pathways activated will draw a picture of the entire process of regeneration as seen from a privileged anatomical site of observation. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Michela Rigoni
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,CNR Institute of Neuroscience, Padua, Italy
| |
Collapse
|
14
|
Mateos-Hernández L, Villar M, Doncel-Pérez E, Trevisan-Herraz M, García-Forcada Á, Ganuza FR, Vázquez J, de la Fuente J. Quantitative proteomics reveals Piccolo as a candidate serological correlate of recovery from Guillain-Barré syndrome. Oncotarget 2016; 7:74582-74591. [PMID: 27776345 PMCID: PMC5342688 DOI: 10.18632/oncotarget.12789] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/13/2016] [Indexed: 02/07/2023] Open
Abstract
Guillain-Barré syndrome (GBS) is an autoimmune-mediated peripheral neuropathy of unknown cause. However, about a quarter of GBS patients have suffered a recent bacterial or viral infection, and axonal forms of the disease are especially common in these patients. Proteomics is a good methodological approach for the discovery of disease biomarkers. Until recently, most proteomics studies of GBS and other neurodegenerative diseases have focused on the analysis of the cerebrospinal fluid (CSF). However, serum represents an attractive alternative to CSF because it is easier to sample and has potential for biomarker discovery. The goal of this research was the identification of serum biomarkers associated with recovery from GBS. To address this objective, a quantitative proteomics approach was used to characterize differences in the serum proteome between a GBS patient and her healthy identical twin in order to lessen variations due to differences in genetic background, and with additional serum samples collected from unrelated GBS (N = 3) and Spinal Cord Injury (SCI) (N = 3) patients with similar medications. Proteomics results were then validated by ELISA using sera from additional GBS patients (N = 5) and healthy individuals (N = 3). All GBS and SCI patients were recovering from the acute phase of the disease. The results showed that Piccolo, a protein that is essential in the maintenance of active zone structure, constitutes a potential serological correlate of recovery from GBS. These results provided the first evidence for the Piccolo´s putative role in GBS, suggesting a candidate target for developing a serological marker of disease recovery.
Collapse
Affiliation(s)
- Lourdes Mateos-Hernández
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | - Ernesto Doncel-Pérez
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | | | - Ángel García-Forcada
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Francisco Romero Ganuza
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
15
|
An animal model of Miller Fisher syndrome: Mitochondrial hydrogen peroxide is produced by the autoimmune attack of nerve terminals and activates Schwann cells. Neurobiol Dis 2016; 96:95-104. [PMID: 27597525 DOI: 10.1016/j.nbd.2016.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 01/08/2023] Open
Abstract
The neuromuscular junction is a tripartite synapse composed of the presynaptic nerve terminal, the muscle and perisynaptic Schwann cells. Its functionality is essential for the execution of body movements and is compromised in a number of disorders, including Miller Fisher syndrome, a variant of Guillain-Barré syndrome: this autoimmune peripheral neuropathy is triggered by autoantibodies specific for the polysialogangliosides GQ1b and GT1a present in motor axon terminals, including those innervating ocular muscles, and in sensory neurons. Their binding to the presynaptic membrane activates the complement cascade, leading to a nerve degeneration that resembles that caused by some animal presynaptic neurotoxins. Here we have studied the intra- and inter-cellular signaling triggered by the binding and complement activation of a mouse monoclonal anti-GQ1b/GT1a antibody to primary cultures of spinal cord motor neurons and cerebellar granular neurons. We found that a membrane attack complex is rapidly assembled following antibody binding, leading to calcium accumulation, which affects mitochondrial functionality. Consequently, using fluorescent probes specific for mitochondrial hydrogen peroxide, we found that this reactive oxygen species is rapidly produced by mitochondria of damaged neurons, and that it triggers the activation of the MAP kinase pathway in Schwann cells. These results throw light on the molecular and cellular pathogenesis of Miller Fisher syndrome, and may well be relevant to other pathologies of the motor axon terminals, including some subtypes of the Guillain Barré syndrome.
Collapse
|
16
|
Mori A, Nodera H, Takamatsu N, Maruyama-Saladini K, Osaki Y, Shimatani Y, Kaji R. Sonographic evaluation of peripheral nerves in subtypes of Guillain-Barré syndrome. J Neurol Sci 2016; 364:154-9. [PMID: 27084237 DOI: 10.1016/j.jns.2016.03.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/25/2016] [Accepted: 03/22/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Sonography of peripheral nerves can depict alteration of nerve sizes that could reflect inflammation and edema in inflammatory and demyelinating neuropathies. Guillain-Barré syndrome (GBS). Information on sonographic comparison of an axonal subtype (acute motor [and sensory] axonal neuropathy [AMAN and AMSAN]) and a demyelinating subtype (acute inflammatory demyelinating polyneuropathy [AIDP]) has been sparse. MATERIAL AND METHODS Sonography of peripheral nerves and cervical nerve roots were prospectively recorded in patients with GBS who were within three weeks of disease onset. RESULTS Five patients with AIDP and nine with AMAN (n=6)/AMSAN (n=3) were enrolled. The patients with AIDP showed evidence of greater degrees of demyelination (e.g., slower conduction velocities and increased distal latencies) than those with AMAN/AMSAN. The patients with AIDP tended to show enlarged nerves in the proximal segments and in the cervical roots, whereas the patients with AMAN/AMSAN had greater enlargement in the distal neve segment, especially in the median nerve (P = 0.03; Wrist-axilla cross-sectional ratio). CONCLUSION In this small study, two subtypes of GBS showed different patterns of involvement that might reflect different pathomechanisms.
Collapse
Affiliation(s)
- Atsuko Mori
- Department of Neurology, Tokushima University, Tokushima, Japan
| | - Hiroyuki Nodera
- Department of Neurology, Tokushima University, Tokushima, Japan.
| | - Naoko Takamatsu
- Department of Neurology, Tokushima University, Tokushima, Japan
| | | | - Yusuke Osaki
- Department of Neurology, Tokushima University, Tokushima, Japan
| | | | - Ryuji Kaji
- Department of Neurology, Tokushima University, Tokushima, Japan
| |
Collapse
|
17
|
Abstract
Flaccid nonambulatory tetraparesis or tetraplegia is an infrequent neurologic presentation; it is characteristic of neuromuscular disease (lower motor neuron [LMN] disease) rather than spinal cord disease. Paresis beginning in the pelvic limbs and progressing to the thoracic limbs resulting in flaccid tetraparesis or tetraplegia within 24 to 72 hours is a common presentation of peripheral nerve or neuromuscular junction disease. Complete body flaccidity develops with severe decrease or complete loss of spinal reflexes in pelvic and thoracic limbs. Animals with acute generalized LMN tetraparesis commonly show severe motor dysfunction in all limbs and severe generalized weakness in all muscles.
Collapse
Affiliation(s)
- Sònia Añor
- Facultat de Veterinària, Department of Animal Medicine and Surgery, Veterinary School, Autonomous University of Barcelona, Bellaterra, Barcelona 08193, Spain.
| |
Collapse
|
18
|
Hashemilar M, Barzegar M, Nikanfar M, Bonyadi MR, Goldust M, Ramouz A, Ebrahimi F. Evaluating the status of antiganglioside antibodies in children with Guillain-Barré syndrome. Neuroimmunomodulation 2014; 21:64-8. [PMID: 24280640 DOI: 10.1159/000355830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 09/02/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Antiganglioside antibodies have been reported to play a role in the pathophysiology of Guillain-Barré syndrome (GBS). METHODS This case-control study was designed to evaluate the status of antiganglioside antibodies in children with GBS. The study included 50 patients suffering from GBS as the case group and 30 children as the control group. Clinical information such as demographic data and recent digestive or respiratory infection (within the last month) was collected for all patients, and paraclinical studies including cerebrospinal fluid examination and electrophysiology were conducted by a subspecialized physician. Anti-GM1, anti-GQ1 and anti-GD1a antibodies were measured with ELISA and the EUROLINE method. RESULTS The mean age of patients in the case and control groups was 5.3 ± 3.8 and 5.4 ± 3.4 years, respectively. With the EUROLINE method, the results obtained for anti-GM1 were significant (p = 0.007); however, the p values for anti-GQ1a and anti-GQ1b were not significant (0.051 vs. 0.94), while with ELISA, comparing all three antibodies in both the case and control groups showed statistically significant results, with a p < 0.05. CONCLUSION EUROLINE is a new method used to evaluate antibodies in immune system diseases, but it is not useful for all antibodies specific to GBS, as the analysis was significant with a p value of 0.007 for anti-GM2.
Collapse
Affiliation(s)
- Mazyar Hashemilar
- Department of Neurology, Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | | | | |
Collapse
|
19
|
Rupp A, Cunningham ME, Yao D, Furukawa K, Willison HJ. The effects of age and ganglioside composition on the rate of motor nerve terminal regeneration following antibody-mediated injury in mice. Synapse 2013; 67:382-9. [PMID: 23401234 PMCID: PMC4495252 DOI: 10.1002/syn.21648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/01/2013] [Indexed: 01/08/2023]
Abstract
Gangliosides are glycosphingolipids highly enriched in neural plasma membranes, where they mediate a diverse range of functions and can act as targets for auto-antibodies present in human immune-mediated neuropathy sera. The ensuing autoimmune injury results in axonal and motor nerve terminal (mNT) degeneration. Both aging and ganglioside-deficiency have been linked to impaired axonal regeneration. To assess the effects of age and ganglioside expression on mNT regeneration in an autoimmune injury paradigm, anti-ganglioside antibodies and complement were applied to young adult and aged mice wildtype (WT) mice, mice deficient in either b- and c-series (GD3sKO) or mice deficient in all complex gangliosides (GM2sKO). The extent of mNT injury and regeneration was assessed immediately or after 5 days, respectively. Depending on ganglioside expression and antibody-specificity, either a selective mNT injury or a combined injury of mNTs and neuromuscular glial cells was elicited. Immediately after induction of the injury, between 1.5% and 11.8% of neuromuscular junctions (NMJs) in the young adult groups exhibited healthy mNTs. Five days later, most NMJs, regardless of age and strain, had recovered their mNTs. No significant differences could be observed between young and aged WT and GM2sKO mice; aged GD3sKO showed a mildly impaired rate of mNT regeneration when compared with their younger counterparts. Comparable rates were observed between all strains in the young and the aged mice. In summary, the rate of mNT regeneration following anti-ganglioside antibody and complement-mediated injury does not differ majorly between young adult and aged mice irrespective of the expression of particular gangliosides.
Collapse
Affiliation(s)
- Angie Rupp
- Neuroimmunology Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
Rupp A, Galban-Horcajo F, Bianchi E, Dondi M, Penderis J, Cappell J, Burgess K, Matiasek K, McGonigal R, Willison HJ. Anti-GM2 ganglioside antibodies are a biomarker for acute canine polyradiculoneuritis. J Peripher Nerv Syst 2013; 18:75-88. [PMID: 23521648 PMCID: PMC4854321 DOI: 10.1111/jns5.12011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Acute canine polyradiculoneuritis (ACP) is considered to be the canine equivalent of the human peripheral nerve disorder Guillain-Barré syndrome (GBS); an aetiological relationship, however, remains to be demonstrated. In GBS, anti-glycolipid antibodies (Abs) are considered as important disease mediators. To address the possibility of common Ab biomarkers, the sera of 25 ACP dogs, 19 non-neurological, and 15 epileptic control dogs were screened for IgG Abs to 10 glycolipids and their 1 : 1 heteromeric complexes using combinatorial glycoarrays. Anti-GM2 ganglioside Abs were detected in 14/25 ACP dogs, and anti-GA1 Abs in one further dog. All controls except for one were negative for anti-glycolipid Abs. In this cohort of cases and controls, the glycoarray screen reached a diagnostic sensitivity of 60% and a specificity of 97%; a lower sensitivity (32%) was reported using a conventional glycolipid ELISA. To address the possible pathogenic role for anti-GM2 Abs in ACP, we identified GM2 in canine sciatic nerve by both mass spectrometry and thin layer chromatography overlay. In immunohistological studies, GM2 was localized predominantly to the abaxonal Schwann cell membrane. The presence of anti-GM2 Abs in ACP suggests that it may share a similar pathophysiology with GBS, for which it could thus be considered a naturally occurring animal model.
Collapse
Affiliation(s)
- Angie Rupp
- Neuroimmunology Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Francesc Galban-Horcajo
- Neuroimmunology Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ezio Bianchi
- Veterinary Teaching Hospital, University of Parma, Parma, Italy
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Maurizio Dondi
- Veterinary Teaching Hospital, University of Parma, Parma, Italy
| | - Jacques Penderis
- School of Veterinary Medicine, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Joanna Cappell
- Neuroimmunology Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Glasgow Polyomics, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Karl Burgess
- Glasgow Polyomics, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Department of Veterinary Clinical Sciences, Ludwig-Maximilians-University, Munich, Germany
| | - Rhona McGonigal
- Neuroimmunology Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Hugh J. Willison
- Neuroimmunology Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Over the past 25 years, many autoantibodies directed against peripheral nerve glycan and protein antigens have been described. Principally through this area of research, significant advances have been achieved in the understanding of the pathophysiology of inflammatory neuropathies. More evidence constantly continues to emerge supporting the role of antibodies in pathogenesis. This review reports the recent studies highlighting the complex association between autoantibodies directed against various peripheral nerve antigens and immune polyneuropathies. RECENT FINDINGS The discovery of serum antibodies directed against ganglioside and glycolipid complexes has generated huge interest in this area of research. The expectation that nodal proteins are important targets continues to be pursued in line with the improvements in detection methodology. Basic studies continue to support a direct role for autoantibodies in neuropathy pathogenesis. SUMMARY Discovery of new target epitopes has not only raised hopes for further improvement in our understanding of pathophysiology and availability of new diagnostic markers, but also for future targeted therapies. Further studies are required to elucidate the precise pathological and clinical significance of these new antibodies.
Collapse
|
22
|
|