1
|
Nivoit P, Mathivet T, Wu J, Salemkour Y, Sankar DS, Baudrie V, Bourreau J, Guihot AL, Vessieres E, Lemitre M, Bocca C, Teillon J, Le Gall M, Chipont A, Robidel E, Dhaun N, Camerer E, Reynier P, Roux E, Couffinhal T, Hadoke PWF, Silvestre JS, Guillonneau X, Bonnin P, Henrion D, Dengjel J, Tharaux PL, Lenoir O. Autophagy protein 5 controls flow-dependent endothelial functions. Cell Mol Life Sci 2023; 80:210. [PMID: 37460898 PMCID: PMC10352428 DOI: 10.1007/s00018-023-04859-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023]
Abstract
Dysregulated autophagy is associated with cardiovascular and metabolic diseases, where impaired flow-mediated endothelial cell responses promote cardiovascular risk. The mechanism by which the autophagy machinery regulates endothelial functions is complex. We applied multi-omics approaches and in vitro and in vivo functional assays to decipher the diverse roles of autophagy in endothelial cells. We demonstrate that autophagy regulates VEGF-dependent VEGFR signaling and VEGFR-mediated and flow-mediated eNOS activation. Endothelial ATG5 deficiency in vivo results in selective loss of flow-induced vasodilation in mesenteric arteries and kidneys and increased cerebral and renal vascular resistance in vivo. We found a crucial pathophysiological role for autophagy in endothelial cells in flow-mediated outward arterial remodeling, prevention of neointima formation following wire injury, and recovery after myocardial infarction. Together, these findings unravel a fundamental role of autophagy in endothelial function, linking cell proteostasis to mechanosensing.
Collapse
Affiliation(s)
- Pierre Nivoit
- Inserm, Université Paris Cité, PARCC, 56 Rue Leblanc, 75015, Paris, France
| | - Thomas Mathivet
- Inserm, Université Paris Cité, PARCC, 56 Rue Leblanc, 75015, Paris, France
| | - Junxi Wu
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 ONW, UK
| | - Yann Salemkour
- Inserm, Université Paris Cité, PARCC, 56 Rue Leblanc, 75015, Paris, France
| | | | - Véronique Baudrie
- Inserm, Université Paris Cité, PARCC, 56 Rue Leblanc, 75015, Paris, France
| | - Jennifer Bourreau
- MITOVASC, CNRS UMR 6015, Inserm U1083, Université d'Angers, 49500, Angers, France
| | - Anne-Laure Guihot
- MITOVASC, CNRS UMR 6015, Inserm U1083, Université d'Angers, 49500, Angers, France
| | - Emilie Vessieres
- MITOVASC, CNRS UMR 6015, Inserm U1083, Université d'Angers, 49500, Angers, France
| | - Mathilde Lemitre
- Inserm, Université Paris Cité, PARCC, 56 Rue Leblanc, 75015, Paris, France
| | - Cinzia Bocca
- MITOVASC, CNRS UMR 6015, Inserm U1083, Université d'Angers, 49500, Angers, France
- Département de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire d'Angers, 49500, Angers, France
| | - Jérémie Teillon
- CNRS, Inserm, Bordeaux Imaging Center, BIC, UMS 3420, US 4, Université de Bordeaux, 33000, Bordeaux, France
| | - Morgane Le Gall
- Plateforme Protéomique 3P5-Proteom'IC, Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, 75014, Paris, France
| | - Anna Chipont
- Inserm, Université Paris Cité, PARCC, 56 Rue Leblanc, 75015, Paris, France
| | - Estelle Robidel
- Inserm, Université Paris Cité, PARCC, 56 Rue Leblanc, 75015, Paris, France
| | - Neeraj Dhaun
- Inserm, Université Paris Cité, PARCC, 56 Rue Leblanc, 75015, Paris, France
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Eric Camerer
- Inserm, Université Paris Cité, PARCC, 56 Rue Leblanc, 75015, Paris, France
| | - Pascal Reynier
- MITOVASC, CNRS UMR 6015, Inserm U1083, Université d'Angers, 49500, Angers, France
- Département de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire d'Angers, 49500, Angers, France
| | - Etienne Roux
- Inserm, Biologie Des Maladies Cardiovasculaires, U1034, Université de Bordeaux, 33600, Pessac, France
| | - Thierry Couffinhal
- Inserm, Biologie Des Maladies Cardiovasculaires, U1034, Université de Bordeaux, 33600, Pessac, France
| | - Patrick W F Hadoke
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | | | - Xavier Guillonneau
- Institut de La Vision, INSERM, CNRS, Sorbonne Université, 75012, Paris, France
| | - Philippe Bonnin
- AP-HP, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Hypertension Unit, Université Paris Cité, 75010, Paris, France
| | - Daniel Henrion
- MITOVASC, CNRS UMR 6015, Inserm U1083, Université d'Angers, 49500, Angers, France
| | - Joern Dengjel
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| | | | - Olivia Lenoir
- Inserm, Université Paris Cité, PARCC, 56 Rue Leblanc, 75015, Paris, France.
| |
Collapse
|
2
|
Hung SH, Kramer S, Werden E, Campbell BCV, Brodtmann A. Pre-stroke Physical Activity and Cerebral Collateral Circulation in Ischemic Stroke: A Potential Therapeutic Relationship? Front Neurol 2022; 13:804187. [PMID: 35242097 PMCID: PMC8886237 DOI: 10.3389/fneur.2022.804187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Favorable cerebral collateral circulation contributes to hindering penumbral tissue from progressing to infarction and is associated with positive clinical outcomes after stroke. Given its clinical importance, improving cerebral collateral circulation is considered a therapeutic target to reduce burden after stroke. We provide a hypothesis-generating discussion on the potential association between pre-stroke physical activity and cerebral collateral circulation in ischemic stroke. The recruitment of cerebral collaterals in acute ischemic stroke may depend on anatomical variations, capacity of collateral vessels to vasodilate, and individual risk factors. Physical activity is associated with improved cerebral endothelial and vascular function related to vasodilation and angiogenic adaptations, and risk reduction in individual risk factors. More research is needed to understand association between cerebral collateral circulation and physical activity. A presentation of different methodological considerations for measuring cerebral collateral circulation and pre-stroke physical activity in the context of acute ischemic stroke is included. Opportunities for future research into cerebral collateral circulation, physical activity, and stroke recovery is presented.
Collapse
Affiliation(s)
- Stanley Hughwa Hung
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Sharon Kramer
- Centre for Quality and Patient Safety Research, Alfred Health Partnership, Melbourne, VIC, Australia.,Faculty of Health, School of Nursing and Midwifery, Deakin University, Geelong, VIC, Australia
| | - Emilio Werden
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Bruce C V Campbell
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Amy Brodtmann
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
3
|
Bonnin P, Kubis N, Charriaut-Marlangue C. Collateral Supply in Preclinical Cerebral Stroke Models. Transl Stroke Res 2021; 13:512-527. [PMID: 34797519 PMCID: PMC9232412 DOI: 10.1007/s12975-021-00969-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 02/01/2023]
Abstract
Enhancing the collateral blood supply during the acute phase of cerebral ischemia may limit both the extension of the core infarct, by rescuing the penumbra area, and the degree of disability. Many imaging techniques have been applied to rodents in preclinical studies, to evaluate the magnitude of collateral blood flow and the time course of responses during the early phase of ischemic stroke. The collateral supply follows several different routes at the base of the brain (the circle of Willis) and its surface (leptomeningeal or pial arteries), corresponding to the proximal and distal collateral pathways, respectively. In this review, we describe and illustrate the cerebral collateral systems and their modifications following pre-Willis or post-Willis occlusion in rodents. We also review the potential pharmaceutical agents for stimulating the collateral blood supply tested to date. The time taken to establish a collateral blood flow supply through the leptomeningeal anastomoses differs between young and adult animals and between different species and genetic backgrounds. Caution is required when transposing preclinical findings to humans, and clinical trials must be performed to check the added value of pharmacological agents for stimulating the collateral blood supply at appropriate time points. However, collateral recruitment appears to be a rapid, beneficial, endogenous mechanism that can be stimulated shortly after artery occlusion. It should be considered a treatment target for use in addition to recanalization strategies.
Collapse
Affiliation(s)
- Philippe Bonnin
- APHP, Physiologie Clinique - Explorations Fonctionnelles, Hôpital Lariboisiere, Université de Paris, 2 rue Ambroise Paré, F-75010, Paris, France. .,INSERM U1148, LVTS, Hôpital Bichat, Université de Paris, F-75018, Paris, France.
| | - Nathalie Kubis
- APHP, Physiologie Clinique - Explorations Fonctionnelles, Hôpital Lariboisiere, Université de Paris, 2 rue Ambroise Paré, F-75010, Paris, France.,INSERM U1148, LVTS, Hôpital Bichat, Université de Paris, F-75018, Paris, France
| | | |
Collapse
|
4
|
Nitric oxide and the brain. Part 1: Mechanisms of regulation, transport and effects on the developing brain. Pediatr Res 2021; 89:738-745. [PMID: 32563183 DOI: 10.1038/s41390-020-1017-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/30/2020] [Accepted: 06/02/2020] [Indexed: 11/08/2022]
Abstract
Apart from its known actions as a pulmonary vasodilator, nitric oxide (NO) is a key signal mediator in the neonatal brain. Despite the extensive use of NO for pulmonary artery hypertension (PAH), its actions in the setting of brain hypoxia and ischemia, which co-exists with PAH in 20-30% of affected infants, are not well established. This review focuses on the mechanisms of actions of NO covering the basic, translational, and clinical evidence of its neuroprotective and neurotoxic properties. In this first part, we present the physiology of transport and delivery of NO to the brain and the regulation of cerebrovascular and systemic circulation by NO, as well the role of NO in the development of the immature brain. IMPACT: NO can be transferred from the site of production to the site of action rapidly and affects the central nervous system. Inhaled NO (iNO), a commonly used medication, can have significant effects on the neonatal brain. NO regulates the cerebrovascular and systemic circulation and plays a role in the development of the immature brain. This review describes the properties of NO under physiologic conditions and under stress. The impact of this review is that it describes the effects of NO, especially regarding the vulnerable neonatal brain, and helps understand the conditions that could contribute to neurotoxicity or neuroprotection.
Collapse
|
5
|
Chen CCV, Chang C, Lin MF, Huang GS, Chan WP. Acute ischemic stroke induces magnetic resonance susceptibility signs dominated by endothelial nitric oxide synthase activation. Magn Reson Med 2020; 85:2201-2211. [PMID: 33128486 DOI: 10.1002/mrm.28567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/14/2020] [Accepted: 10/03/2020] [Indexed: 11/08/2022]
Abstract
PURPOSE Acute ischemic stroke induces deoxyhemoglobin accumulation around the ischemic region while activating endothelial nitric oxide synthase (eNOS) coupling and the subsequent release of nitric oxide (NO). Because deoxyhemoglobin is a natural NO spin trap, its interplay with NO could be prominent during acute stroke. Its interaction with NO has been shown to induce overt paramagnetic signals in vitro; our goal was to investigate whether this interplay can be detected using MRI. METHODS To verify the in vivo image effects using the deoxyhemoglobin-NO interaction during acute stroke, eNOS states were manipulated in an animal model of acute ischemia, and the susceptibility signals, cerebral perfusion, and infarction were assessed noninvasively via MR susceptibility weighted imaging (SWI). RESULTS Occlusion of the right middle cerebral artery increased eNOS coupling and susceptibility signals in the ischemic cortex while abolishing regional cerebral blood flow. Pharmacological eNOS blockage led to weakened susceptibility signals in the ischemic cortex as well as worsened tissue survival. Consistently, abolishment of eNOS coupling through genetic editing reduced the regional susceptibility signals in the ischemic cortex, causing large infarcts. CONCLUSION Upregulation of eNOS during acute ischemia sustains tissue viability through the interaction between NO and deoxyhemoglobin. This interplay can be traced in vivo using SWI and can be considered a sensitive marker revealing the delicate oxygenation status of the ischemic tissue, therefore, guiding the management of acute stroke in clinical settings.
Collapse
Affiliation(s)
| | - Chen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taiwan
| | - Ming-Fang Lin
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan
| | - Guo-Shu Huang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wing P Chan
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
6
|
Cerebral Vasodilator Property of Poly(ADP-Ribose) Polymerase Inhibitor (PJ34) in the Neonatal and Adult Mouse Is Mediated by the Nitric Oxide Pathway. Int J Mol Sci 2020; 21:ijms21186569. [PMID: 32911782 PMCID: PMC7555622 DOI: 10.3390/ijms21186569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 12/29/2022] Open
Abstract
The poly(ADP-ribose) polymerase (PARP) inhibitor PJ34 has been reported to improve endothelial dysfunction in the peripheral system. We addressed the role of PJ34 on the vascular tone and vasoreactivity during development in the mouse brain. Blood flows were measured in the basilar trunk using ultrasonography. Cerebral vasoreactivity or vasodilation reserve was estimated as a percentage increase in mean blood flow velocities (mBFV) recorded under normoxia-hypercapnia in control and after PJ34 administration. Non-selective and selective eNOS and nNOS inhibitors were used to evaluate the role of NO-pathway into the hemodynamic effects of PJ34. PJ34 increased mBFVs from 15.8 ± 1.6 to 19.1 ± 1.9 cm/s (p = 0.0043) in neonatal, from 14.6 ± 1.4 to 16.1 ± 0.9 cm/s (p = 0.0049) in adult, and from 15.7 ± 1.7 to 17.5 ± 2.0 cm/s (p = 0.0024) in aged mice 48 h after administration. These PJ34 values were similar to those measured in age-matched control mice under normoxia-hypercapnia. This recruitment was mediated through the activation of constitutive NO synthases in both the neonatal (38.2 ± 6.7 nmol/min/mg protein) and adult (31.5 ± 4.4 nmol/min/mg protein) brain, as compared to age-matched control brain (6.9 ± 0.4 and 6.3 ± 0.7 nmol/min/mg protein), respectively. In addition, quite selective eNOS inhibitor was able to inhibit the recruitment. PJ34 by itself is able to increase cerebral blood flow through the NO-pathway activation at least over 48 h after a single administration.
Collapse
|
7
|
Bonnin P, Mazighi M, Charriaut-Marlangue C, Kubis N. Early Collateral Recruitment After Stroke in Infants and Adults. Stroke 2019; 50:2604-2611. [DOI: 10.1161/strokeaha.119.025353] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Philippe Bonnin
- From the U965, INSERM, F-75010, Université de Paris, France (P.B.)
- U1148–Laboratory for Vascular and Translational Science, INSERM, F-75018, Université de Paris, France (P.B., M.M., N.K.)
- Service de Physiologie Clinique (P.B., N.K.), AP-HP, Hôpital Lariboisière, Paris, France
| | - Mikaël Mazighi
- U1148–Laboratory for Vascular and Translational Science, INSERM, F-75018, Université de Paris, France (P.B., M.M., N.K.)
- Service de Neurologie (M.M.), AP-HP, Hôpital Lariboisière, Paris, France
- Service de Neurologie, AP-HP, Hôpital Lariboisière, Paris, France (M.M.)
- Service de Neuroradiologie Interventionnelle, Fondation Rothschild, Paris, France (M.M.)
| | | | - Nathalie Kubis
- U1148–Laboratory for Vascular and Translational Science, INSERM, F-75018, Université de Paris, France (P.B., M.M., N.K.)
- Service de Physiologie Clinique (P.B., N.K.), AP-HP, Hôpital Lariboisière, Paris, France
| |
Collapse
|
8
|
Charriaut-Marlangue C, Baud O. A Model of Perinatal Ischemic Stroke in the Rat: 20 Years Already and What Lessons? Front Neurol 2018; 9:650. [PMID: 30131764 PMCID: PMC6090994 DOI: 10.3389/fneur.2018.00650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/19/2018] [Indexed: 12/18/2022] Open
Abstract
Neonatal hypoxia-ischemia (HI) and ischemia are a common cause of neonatal brain injury resulting in cerebral palsy with subsequent learning disabilities and epilepsy. Recent data suggest a higher incidence of focal ischemia-reperfusion located in the middle cerebral artery (MCA) territory in near-term and newborn babies. Pre-clinical studies in the field of cerebral palsy research used, and still today, the classical HI model in the P7 rat originally described by Rice et al. (1). At the end of the 90s, we designed a new model of focal ischemia in the P7 rat to explore the short and long-term pathophysiology of neonatal arterial ischemic stroke, particularly the phenomenon of reperfusion injury and its sequelae (reported in 1998). Cerebral blood-flow and cell death/damage correlates have been fully characterized. Pharmacologic manipulations have been applied to the model to test therapeutic targets. The model has proven useful for the study of seizure occurrence, a clinical hallmark for neonatal ischemia in babies. Main pre-clinical findings obtained within these 20 last years are discussed associated to clinical pattern of neonatal brain damage.
Collapse
Affiliation(s)
| | - Olivier Baud
- INSERM U1141 PROTECT, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France.,Division of Neonatology and Pediatric Intensive Care, Children's Hospital, Geneva University Hospitals (HUG), University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Charriaut-Marlangue C, Besson VC, Baud O. Sexually Dimorphic Outcomes after Neonatal Stroke and Hypoxia-Ischemia. Int J Mol Sci 2017; 19:ijms19010061. [PMID: 29278365 PMCID: PMC5796011 DOI: 10.3390/ijms19010061] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/19/2017] [Accepted: 12/24/2017] [Indexed: 01/21/2023] Open
Abstract
Cohort studies have demonstrated a higher vulnerability in males towards ischemic and/or hypoxic-ischemic injury in infants born near- or full-term. Male sex was also associated with limited brain repair following neonatal stroke and hypoxia-ischemia, leading to increased incidence of long-term cognitive deficits compared to females with similar brain injury. As a result, the design of pre-clinical experiments considering sex as an important variable was supported and investigated because neuroprotective strategies to reduce brain injury demonstrated sexual dimorphism. While the mechanisms underlining these differences between boys and girls remain unclear, several biological processes are recognized to play a key role in long-term neurodevelopmental outcomes: gonadal hormones across developmental stages, vulnerability to oxidative stress, modulation of cell death, and regulation of microglial activation. This review summarizes the current evidence for sex differences in neonatal hypoxic-ischemic and/or ischemic brain injury, considering the major pathways known to be involved in cognitive and behavioral deficits associated with damages of the developing brain.
Collapse
Affiliation(s)
- Christiane Charriaut-Marlangue
- U1141 PROTECT, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France.
| | - Valérie C Besson
- U1141 PROTECT, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France.
- EA4475-Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l'Observatoire, 75006 Paris, France.
| | - Olivier Baud
- U1141 PROTECT, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France.
- Division of Neonatology and Pediatric Intensive Care, Children's University Hospital of Geneva and University of Geneva, 1205 Geneva, Switzerland.
| |
Collapse
|
10
|
Barbaresi P, Mensà E, Bastioli G, Amoroso S. Substance P NK1 receptor in the rat corpus callosum during postnatal development. Brain Behav 2017; 7:e00713. [PMID: 28638718 PMCID: PMC5474716 DOI: 10.1002/brb3.713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
INTRODUCTION The expression of substance P (SP) receptor (neurokinin 1, NK1) was studied in the rat corpus callosum (cc) from postnatal day 0 (the first 24 hr from birth, P0) to P30. METHODS We used immunocytochemistry to study the presence of intracallosal NK1-immunopositive neurons (NK1IP-n) during cc development. RESULTS NK1IP-n first appeared on P5. Their number increased significantly between P5 and P10, it remained almost constant between P10 and P15, then declined slightly until P30. The size of intracallosal NK1IP-n increased constantly from P5 (102.3 μm2) to P30 (262.07 μm2). From P5 onward, their distribution pattern was adult-like, that is, they were more numerous in the lateral and intermediate parts of the cc, and declined to few or none approaching the midline. At P5, intracallosal NK1IP-n had a predominantly round cell bodies with primary dendrites of different thickness from which originated thinner secondary branches. Between P10 and P15, dendrites were longer and more thickly branched, and displayed several varicosities as well as short, thin appendages. Between P20 and P30, NK1IP-n were qualitatively indistinguishable from those of adult animals and could be classified as bipolar (fusiform and rectangular), round-polygonal, and pyramidal (triangular-pyriform). CONCLUSIONS Number of NK1IP-n increase between P5 and P10, then declines, but unlike other intracallosal neurons, NK1IP-n make up a significant population in the adult cc. These findings suggest that NK1IP-n may be involved in the myelination of callosal axons, could play an important role in their pathfinding. Since they are also found in adult rat cc, it is likely that their role changes during lifetime.
Collapse
Affiliation(s)
- Paolo Barbaresi
- Section of Neuroscience and Cell Biology Department of Experimental and Clinical Medicine Marche Polytechnic University Ancona Italy
| | - Emanuela Mensà
- Section of Neuroscience and Cell Biology Department of Experimental and Clinical Medicine Marche Polytechnic University Ancona Italy
| | - Guendalina Bastioli
- Department of Biomedical Sciences and Public Health Marche Polytechnic University Ancona Italy
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health Marche Polytechnic University Ancona Italy
| |
Collapse
|
11
|
Nie X, Lowe DW, Rollins LG, Bentzley J, Fraser JL, Martin R, Singh I, Jenkins D. Sex-specific effects of N-acetylcysteine in neonatal rats treated with hypothermia after severe hypoxia-ischemia. Neurosci Res 2016; 108:24-33. [PMID: 26851769 DOI: 10.1016/j.neures.2016.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 12/16/2015] [Accepted: 01/24/2016] [Indexed: 12/29/2022]
Abstract
Approximately half of moderate to severely hypoxic-ischemic (HI) newborns do not respond to hypothermia, the only proven neuroprotective treatment. N-acetylcysteine (NAC), an antioxidant and glutathione precursor, shows promise for neuroprotection in combination with hypothermia, mitigating post-HI neuroinflammation due to oxidative stress. As mechanisms of HI injury and cell death differ in males and females, sex differences must be considered in translational research of neuroprotection. We assessed the potential toxicity and efficacy of NAC in combination with hypothermia, in male and female neonatal rats after severe HI injury. NAC 50mg/kg/d administered 1h after initiation of hypothermia significantly decreased iNOS expression and caspase 3 activation in the injured hemisphere versus hypothermia alone. However, only females treated with hypothermia +NAC 50mg/kg showed improvement in short-term infarct volumes compared with saline treated animals. Hypothermia alone had no effect in this severe model. When NAC was continued for 6 weeks, significant improvement in long-term neuromotor outcomes over hypothermia treatment alone was observed, controlling for sex. Antioxidants may provide insufficient neuroprotection after HI for neonatal males in the short term, while long-term therapy may benefit both sexes.
Collapse
Affiliation(s)
- Xingju Nie
- Center for Biomedical Imaging, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Danielle W Lowe
- Department of Pediatrics, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Laura Grace Rollins
- Department of Psychology, University of Massachusetts, 100 Morrissey Blvd, Boston, MA 02125, United States.
| | - Jessica Bentzley
- Department of Pediatrics, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Jamie L Fraser
- Medical Genetics Training Program, National Human Genome Research Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-2152, United States.
| | - Renee Martin
- Department of Biostatistics and Epidemiology, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Dorothea Jenkins
- Department of Pediatrics, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| |
Collapse
|
12
|
Leger PL, Bonnin P, Renolleau S, Baud O, Charriaut-Marlangue C. Ischemic postconditioning in cerebral ischemia: Differences between the immature and mature brain? Int J Dev Neurosci 2015; 45:39-43. [PMID: 25777940 DOI: 10.1016/j.ijdevneu.2015.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/12/2015] [Accepted: 03/12/2015] [Indexed: 10/23/2022] Open
Abstract
Ischemic postconditioning (postC), defined as serial mechanical interruptions of blood flow at reperfusion, effectively reduces myocardial infarct size in all species tested so far, including humans. In the brain, ischemic postC leads to controversial results regardless of variations in factors such as onset time of beginning, the duration of ischemia and/or reperfusion, and the number of cycles of occlusion/reperfusion. Thus, many major issues remain to be resolved regarding its protective effects. Future studies should aim to identify the parameters that yield the strongest protection, as well as to understand why the efficacy of ischemic postC differs between models. This review will focus on initial hemodynamic changes and their consequences, and on specific features such as NO-dependent vascular tone and/or prolonged acidosis in cerebral ischemia-reperfusion in order to better understand the dynamics of ischemic postC in the developing brain.
Collapse
Affiliation(s)
- Pierre-Louis Leger
- Univ. Paris Diderot, Sorbonne Paris Cité, INSERM UMR 1141, 75019 Paris, France; PremUp Foundation, 75006 Paris, France; UPMC-Paris6, AP-HP, Hôpital Armand Trousseau, Service de Réanimation Néonatale et Pédiatrique, 75012 Paris, France
| | - Philippe Bonnin
- Univ. Paris Diderot, Sorbonne Paris Cité, AP-HP, Hôpital Lariboisière, Physiologie Clinique, Explorations-Fonctionnelles, 75010 Paris, France; Univ. Paris Diderot, Sorbonne Paris Cité, INSERM, U965, 75010 Paris, France
| | - Sylvain Renolleau
- Univ. Paris Diderot, Sorbonne Paris Cité, INSERM UMR 1141, 75019 Paris, France; Univ. Paris Descartes, AP-HP, CHU Necker-Enfants Malades, Réanimation et USC médico-chirurgicales pédiatriques, 75015 Paris, France
| | - Olivier Baud
- Univ. Paris Diderot, Sorbonne Paris Cité, INSERM UMR 1141, 75019 Paris, France; PremUp Foundation, 75006 Paris, France
| | | |
Collapse
|
13
|
Poittevin M, Bonnin P, Pimpie C, Rivière L, Sebrié C, Dohan A, Pocard M, Charriaut-Marlangue C, Kubis N. Diabetic microangiopathy: impact of impaired cerebral vasoreactivity and delayed angiogenesis after permanent middle cerebral artery occlusion on stroke damage and cerebral repair in mice. Diabetes 2015; 64:999-1010. [PMID: 25288671 DOI: 10.2337/db14-0759] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetes increases the risk of stroke by three, increases related mortality, and delays recovery. We aimed to characterize functional and structural alterations in cerebral microvasculature before and after experimental cerebral ischemia in a mouse model of type 1 diabetes. We hypothesized that preexisting brain microvascular disease in patients with diabetes might partly explain increased stroke severity and impact on outcome. Diabetes was induced in 4-week-old C57Bl/6J mice by intraperitoneal injections of streptozotocin (60 mg/kg). After 8 weeks of diabetes, the vasoreactivity of the neurovascular network to CO2 was abolished and was not reversed by nitric oxide (NO) donor administration; endothelial NO synthase (eNOS) and neuronal NO synthase (nNOS) mRNA, phospho-eNOS protein, nNOS, and phospho-nNOS protein were significantly decreased; angiogenic and vessel maturation factors (vascular endothelial growth factor a [VEGFa], angiopoietin 1 (Ang1), Ang2, transforming growth factor-β [TGF-β], and platelet-derived growth factor-β [PDGF-β]) and blood-brain barrier (BBB) occludin and zona occludens 1 (ZO-1) expression were significantly decreased; and microvessel density was increased without changes in ultrastructural imaging. After permanent focal cerebral ischemia induction, infarct volume and neurological deficit were significantly increased at D1 and D7, and neuronal death (TUNEL+ / NeuN+ cells) and BBB permeability (extravasation of Evans blue) at D1. At D7, CD31+ / Ki67+ double-immunolabeled cells and VEGFa and Ang2 expression were significantly increased, indicating delayed angiogenesis. We show that cerebral microangiopathy thus partly explains stroke severity in diabetes.
Collapse
Affiliation(s)
- Marine Poittevin
- Université Paris Diderot, Sorbonne Paris Cité, Angiogenesis and Translational Research Center, INSERM U965, Paris, France
| | - Philippe Bonnin
- Université Paris Diderot, Sorbonne Paris Cité, Angiogenesis and Translational Research Center, INSERM U965, Paris, France Service de Physiologie Clinique, AP-HP, Hôpital Lariboisière, Paris, France
| | - Cynthia Pimpie
- Université Paris Diderot, Sorbonne Paris Cité, Angiogenesis and Translational Research Center, INSERM U965, Paris, France
| | - Léa Rivière
- Université Paris Diderot, Sorbonne Paris Cité, Angiogenesis and Translational Research Center, INSERM U965, Paris, France
| | | | - Anthony Dohan
- Université Paris Diderot, Sorbonne Paris Cité, Angiogenesis and Translational Research Center, INSERM U965, Paris, France
| | - Marc Pocard
- Université Paris Diderot, Sorbonne Paris Cité, Angiogenesis and Translational Research Center, INSERM U965, Paris, France
| | | | - Nathalie Kubis
- Université Paris Diderot, Sorbonne Paris Cité, Angiogenesis and Translational Research Center, INSERM U965, Paris, France Service de Physiologie Clinique, AP-HP, Hôpital Lariboisière, Paris, France
| |
Collapse
|
14
|
Posada-Duque RA, Barreto GE, Cardona-Gomez GP. Protection after stroke: cellular effectors of neurovascular unit integrity. Front Cell Neurosci 2014; 8:231. [PMID: 25177270 PMCID: PMC4132372 DOI: 10.3389/fncel.2014.00231] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/24/2014] [Indexed: 12/16/2022] Open
Abstract
Neurological disorders are prevalent worldwide. Cerebrovascular diseases (CVDs), which account for 55% of all neurological diseases, are the leading cause of permanent disability, cognitive and motor disorders and dementia. Stroke affects the function and structure of blood-brain barrier, the loss of cerebral blood flow regulation, oxidative stress, inflammation and the loss of neural connections. Currently, no gold standard treatments are available outside the acute therapeutic window to improve outcome in stroke patients. Some promising candidate targets have been identified for the improvement of long-term recovery after stroke, such as Rho GTPases, cell adhesion proteins, kinases, and phosphatases. Previous studies by our lab indicated that Rho GTPases (Rac and RhoA) are involved in both tissue damage and survival, as these proteins are essential for the morphology and movement of neurons, astrocytes and endothelial cells, thus playing a critical role in the balance between cell survival and death. Treatment with a pharmacological inhibitor of RhoA/ROCK blocks the activation of the neurodegeneration cascade. In addition, Rac and synaptic adhesion proteins (p120 catenin and N-catenin) play critical roles in protection against cerebral infarction and in recovery by supporting the neurovascular unit and cytoskeletal remodeling activity to maintain the integrity of the brain parenchyma. Interestingly, neuroprotective agents, such as atorvastatin, and CDK5 silencing after cerebral ischemia and in a glutamate-induced excitotoxicity model may act on the same cellular effectors to recover neurovascular unit integrity. Therefore, future efforts must focus on individually targeting the structural and functional roles of each effector of neurovascular unit and the interactions in neural and non-neural cells in the post-ischemic brain and address how to promote the recovery or prevent the loss of homeostasis in the short, medium and long term.
Collapse
Affiliation(s)
- Rafael Andres Posada-Duque
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Faculty of Medicine, Sede de Investigación Universitaria (SIU), University of Antioquia UdeA Medellín, Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana Bogotá D.C., Colombia
| | - Gloria Patricia Cardona-Gomez
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Faculty of Medicine, Sede de Investigación Universitaria (SIU), University of Antioquia UdeA Medellín, Colombia
| |
Collapse
|
15
|
Walter LT, Higa GSV, Schmeltzer C, Sousa E, Kinjo ER, Rüdiger S, Hamassaki DE, Cerchiaro G, Kihara AH. Functional regulation of neuronal nitric oxide synthase expression and activity in the rat retina. Exp Neurol 2014; 261:510-7. [PMID: 25116452 DOI: 10.1016/j.expneurol.2014.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/16/2014] [Accepted: 07/29/2014] [Indexed: 11/19/2022]
Abstract
In the nervous system within physiological conditions, nitric oxide (NO) production depends on the activity of nitric oxide synthases (NOSs), and particularly on the expression of the neuronal isoform (nNOS). In the sensory systems, the role of NO is poorly understood. In this study, we identified nNOS-positive cells in the inner nuclear layer (INL) of the rat retina, with distinct characteristics such as somata size, immunolabeling level and location. Employing mathematical cluster analysis, we determined that nNOS amacrine cells are formed by two distinct populations. We next investigated the molecular identity of these cells, which did not show colocalization with calbindin (CB), choline acetyltransferase (ChAT), parvalbumin (PV) or protein kinase C (PKC), and only partial colocalization with calretinin (CR), revealing the accumulation of nNOS in specific amacrine cell populations. To access the functional, circuitry-related roles of these cells, we performed experiments after adaptation to different ambient light conditions. After 24h of dark-adaptation, we detected a subtle, yet statistically significant decrease in nNOS transcript levels, which returned to steady-state levels after 24h of normal light-dark cycle, revealing that nNOS expression is governed by ambient light conditions. Employing electron paramagnetic resonance (EPR), we demonstrated that dark-adaptation decreases NO production in the retina. Furthermore, nNOS accumulation changed in the dark-adapted retinas, with a general reduction in the inner plexiform layer. Finally, computational analysis based on clustering techniques revealed that dark-adaptation differently affected both types of nNOS-positive amacrine cells. Taken together, our data disclosed functional regulation of nNOS expression and activity, disclosing new circuitry-related roles of nNOS-positive cells. More importantly, this study indicated unsuspected roles for NO in the sensory systems, particularly related to adaptation to ambient demands.
Collapse
Affiliation(s)
- Lais Takata Walter
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Brazil
| | - Guilherme Shigueto Vilar Higa
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Brazil; Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| | | | - Erica Sousa
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Brazil
| | - Erika Reime Kinjo
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Brazil
| | - Sten Rüdiger
- Institute of Physics, Humboldt University at Berlin, Germany
| | - Dânia Emi Hamassaki
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| | - Giselle Cerchiaro
- Núcleo de Cognição e Sistemas Complexos, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Brazil
| | - Alexandre Hiroaki Kihara
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Brazil; Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil.
| |
Collapse
|
16
|
Hsu YC, Chang YC, Lin YC, Sze CI, Huang CC, Ho CJ. Cerebral microvascular damage occurs early after hypoxia-ischemia via nNOS activation in the neonatal brain. J Cereb Blood Flow Metab 2014; 34:668-76. [PMID: 24398931 PMCID: PMC3982088 DOI: 10.1038/jcbfm.2013.244] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/16/2013] [Indexed: 11/09/2022]
Abstract
Microvascular injury early after hypoxic ischemia (HI) may contribute to neonatal brain damage. N-methyl-D-aspartate receptor overstimulation activates neuronal nitric oxide synthases (nNOS). We hypothesized that microvascular damage occurs early post-HI via nNOS activation and contributes to brain injury. Postpartum day-7 rat pups were treated with 7-nitroindazole (7-NI) or aminoguanidine (AG) before or after HI. Electron microscopy was performed to measure neuronal and endothelial cell damage. There were vascular lumen narrowing at 1 hour, pyknotic neurons at 3 hours, and extensive neuronal damage and loss of vessels at 24 hours post HI. Early after reoxygenation, there were neurons with heterochromatic chromatin and endothelial cells with enlarged nuclei occluding the lumen. There was also increased 3-nitrotyrosin in the microvessels and decreased cerebral blood perfusion. 7-NI and AG treatment before hypoxia provided complete and partial neuroprotection, respectively. Early post-reoxygenation, the AG group showed significantly increased microvascular nitrosative stress, microvascular interruptions, swollen nuclei that narrowed the vascular lumen, and decreased cerebral perfusion. The 7-NI group showed significantly decreased microvascular nitrosative stress, patent vascular lumen, and increased cerebral perfusion. Our results indicate that microvascular damage occurs early and progressively post HI. Neuronal nitric oxide synthases activation contributes to microvascular damage and decreased cerebral perfusion early after reoxygenation and worsens brain damage.
Collapse
Affiliation(s)
- Yi-Ching Hsu
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan City, Taiwan
| | - Ying-Chao Chang
- Department of Pediatrics, Chang Gung Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - Yung-Chieh Lin
- 1] Institute of Clinical Medicine, National Cheng Kung University Medical College, Tainan City, Taiwan [2] Department of Pediatrics, National Cheng Kung University Hospital, Tainan City, Taiwan
| | - Chun-I Sze
- Institute of Cell Biology and Anatomy, National Cheng Kung University Medical College, Tainan City, Taiwan
| | - Chao-Ching Huang
- 1] Department of Pediatrics, National Cheng Kung University Hospital, Tainan City, Taiwan [2] Department of Pediatrics, Taipei Medical University, College of Medicine, Taipei, Taiwan
| | - Chien-Jung Ho
- Department of Pediatrics, National Cheng Kung University Hospital, Tainan City, Taiwan
| |
Collapse
|
17
|
Sex differences in cerebral blood flow following chorioamnionitis in healthy term infants. J Perinatol 2014; 34:197-202. [PMID: 24457257 PMCID: PMC3941014 DOI: 10.1038/jp.2013.179] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 12/12/2013] [Accepted: 12/17/2013] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Sex is an important determinant of neonatal outcomes and may have a significant role in the physiologic response to maternal chorioamnionitis. Our goal was to determine cerebral blood flow (CBF) parameters by sex and subsequent neurodevelopment in healthy term infants exposed to chorioamnionitis. STUDY DESIGN CBF by Doppler ultrasound in anterior and middle cerebral (ACA, MCA) and basilar arteries were analyzed for time-averaged maximum velocity (TAMX) and corrected resistive index in 52 term control and chorioamnionitis-exposed infants between 24 and 72 h after birth. Placental pathology confirmed histologic evidence of chorioamnionitis (HC). Bayley Scales of Infant Development-III were administered at 12 months. RESULT HC male infants had significantly greater TAMX in the MCA and lower mean MCA and ACA resistance than HC females. Abnormal CBF correlated negatively with neurodevelopmental outcome. CONCLUSION CBF is altered in term infants with histologically confirmed chorioamnionitis compared with control infants with sex-specific differences.
Collapse
|
18
|
Pham H, Vottier G, Pansiot J, Duong-Quy S, Bollen B, Dalous J, Gallego J, Mercier JC, Dinh-Xuan AT, Bonnin P, Charriaut-Marlangue C, Baud O. Inhaled NO prevents hyperoxia-induced white matter damage in neonatal rats. Exp Neurol 2013; 252:114-23. [PMID: 24322053 DOI: 10.1016/j.expneurol.2013.11.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/23/2013] [Accepted: 11/26/2013] [Indexed: 11/17/2022]
Abstract
White matter damage (WMD) and bronchopulmonary dysplasia (BPD) are the two main complications occurring in very preterm infants. Inhaled nitric oxide (iNO) has been proposed to promote alveolarization in the developing lung, and we have reported that iNO promotes myelination and induces neuroprotection in neonatal rats with excitotoxic brain damage. Our hypothesis is that, in addition to its pulmonary effects, iNO may be neuroprotective in rat pups exposed to hyperoxia. To test this hypothesis, we exposed rat pups to hyperoxia, and we assessed the impact of iNO on WMD and BPD. Rat pups were exposed to either hyperoxia (80% FiO2) or to normoxia for 8 days. Both groups received iNO (5 ppm) or air. We assessed the neurological and pulmonary effects of iNO in hyperoxia-injured rat pups using histological, molecular and behavioral approaches. iNO significantly attenuated the severity of hyperoxia-induced WMD induced in neonatal rats. Specifically, iNO decreased white matter inflammation, cell death, and enhanced the density of proliferating oligodendrocytes and oligodendroglial maturation. Furthermore, iNO triggered an early upregulation of P27kip1 and brain-derived growth factor (BDNF). Whereas hyperoxia disrupted early associative abilities, iNO treatment maintained learning scores to a level similar to that of control pups. In contrast to its marked neuroprotective effects, iNO induced only small and transient improvements of BPD. These findings suggest that iNO exposure at low doses is specifically neuroprotective in an animal model combining injuries of the developing lung and brain that mimicked BPD and WMD in preterm infants.
Collapse
Affiliation(s)
- Hoa Pham
- INSERM, UMR 676, 75019 Paris, France; Université Paris Diderot, UFR de médecine Denis Diderot, Sorbonne Paris Cité, 75010 Paris, France; PremUP foundation, 75014 Paris, France
| | - Gaelle Vottier
- INSERM, UMR 676, 75019 Paris, France; Université Paris Diderot, UFR de médecine Denis Diderot, Sorbonne Paris Cité, 75010 Paris, France; PremUP foundation, 75014 Paris, France
| | - Julien Pansiot
- INSERM, UMR 676, 75019 Paris, France; Université Paris Diderot, UFR de médecine Denis Diderot, Sorbonne Paris Cité, 75010 Paris, France; PremUP foundation, 75014 Paris, France
| | - Sy Duong-Quy
- Assistance Publique-Hôpitaux de Paris, Université Paris Descartes, Hôpital Cochin, Service de Physiologie, 75014 Paris, France
| | - Bieke Bollen
- INSERM, UMR 676, 75019 Paris, France; Université Paris Diderot, UFR de médecine Denis Diderot, Sorbonne Paris Cité, 75010 Paris, France; PremUP foundation, 75014 Paris, France; University of Leuven, Laboratory of Biological Psychology, Leuven, Belgium
| | - Jérémie Dalous
- INSERM, UMR 676, 75019 Paris, France; Université Paris Diderot, UFR de médecine Denis Diderot, Sorbonne Paris Cité, 75010 Paris, France; PremUP foundation, 75014 Paris, France
| | - Jorge Gallego
- INSERM, UMR 676, 75019 Paris, France; Université Paris Diderot, UFR de médecine Denis Diderot, Sorbonne Paris Cité, 75010 Paris, France; PremUP foundation, 75014 Paris, France
| | - Jean-Christophe Mercier
- Université Paris Diderot, UFR de médecine Denis Diderot, Sorbonne Paris Cité, 75010 Paris, France; Assistance Publique-Hôpitaux de Paris, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Pediatric emergency department, 75019 Paris, France
| | - Anh Tuan Dinh-Xuan
- Assistance Publique-Hôpitaux de Paris, Université Paris Descartes, Hôpital Cochin, Service de Physiologie, 75014 Paris, France
| | - Philippe Bonnin
- Université Paris Diderot, UFR de médecine Denis Diderot, Sorbonne Paris Cité, 75010 Paris, France; INSERM, UMR 965, 75010 Paris, France; Assistance Publique-Hôpitaux de Paris, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Lariboisière, Physiologie Clinique-Explorations Fonctionnelles, 75010 Paris, France
| | - Christiane Charriaut-Marlangue
- INSERM, UMR 676, 75019 Paris, France; Université Paris Diderot, UFR de médecine Denis Diderot, Sorbonne Paris Cité, 75010 Paris, France; PremUP foundation, 75014 Paris, France
| | - Olivier Baud
- INSERM, UMR 676, 75019 Paris, France; Université Paris Diderot, UFR de médecine Denis Diderot, Sorbonne Paris Cité, 75010 Paris, France; PremUP foundation, 75014 Paris, France; Assistance Publique-Hôpitaux de Paris, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Neonatal intensive care unit, 75019 Paris, France.
| |
Collapse
|
19
|
Charriaut-Marlangue C, Bonnin P, Pham H, Loron G, Leger PL, Gressens P, Renolleau S, Baud O. Nitric oxide signaling in the brain: A new target for inhaled nitric oxide? Ann Neurol 2013; 73:442-8. [DOI: 10.1002/ana.23842] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 11/24/2012] [Accepted: 12/21/2012] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Hoa Pham
- Paris Diderot University, Sorbonne Paris Cité, INSERM U676; Paris; France
| | - Gauthier Loron
- Paris Diderot University, Sorbonne Paris Cité, INSERM U676; Paris; France
| | | | | | | | | |
Collapse
|
20
|
Leger PL, Bonnin P, Nguyen T, Renolleau S, Baud O, Charriaut-Marlangue C. Ischemic postconditioning fails to protect against neonatal cerebral stroke. PLoS One 2012; 7:e49695. [PMID: 23251348 PMCID: PMC3520965 DOI: 10.1371/journal.pone.0049695] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/11/2012] [Indexed: 11/18/2022] Open
Abstract
The lack of efficient neuroprotective strategies for neonatal stroke could be ascribed to pathogenic ischemic processes differentiating adults and neonates. We explored this hypothesis using a rat model of neonatal ischemia induced by permanent occlusion of the left distal middle cerebral artery combined with 50 min of occlusion of both common carotid arteries (CCA). Postconditioning was performed by repetitive brief release and occlusion (30 s, 1 and/or 5 min) of CCA after 50 min of CCA occlusion. Alternative reperfusion was generated by controlled release of the bilateral CCA occlusion. Blood-flow velocities in the left internal carotid artery were measured using color-coded pulsed Doppler ultrasound imaging. Cortical perfusion was measured using laser Doppler. Cerebrovascular vasoreactivity was evaluated after inhalation with the hypercapnic gas or inhaled nitric oxide (NO). Whatever the type of serial mechanical interruptions of blood flow at reperfusion, postconditioning did not reduce infarct volume after 72 hours. A gradual perfusion was found during early re-flow both in the left internal carotid artery and in the cortical penumbra. The absence of acute hyperemia during early CCA re-flow, and the lack of NO-dependent vasoreactivity in P7 rat brain could in part explain the inefficiency of ischemic postconditioning after ischemia-reperfusion.
Collapse
Affiliation(s)
- Pierre-Louis Leger
- Univ Paris Diderot, Sorbonne Paris Cité, INSERM, U676, Paris, France
- UPMC-Paris6, AP-HP, Hôpital Armand Trousseau, Service de Réanimation pédiatrique, Paris, France
| | - Philippe Bonnin
- Univ Paris Diderot, Sorbonne Paris Cité, AP-HP, Hôpital Lariboisière, Physiologie Clinique, Explorations-Fonctionnelles, Paris, France
- Univ Paris Diderot, Sorbonne Paris Cité, INSERM, U965, Paris, France
| | - Thao Nguyen
- Univ Paris Diderot, Sorbonne Paris Cité, INSERM, U676, Paris, France
| | - Sylvain Renolleau
- UPMC-Paris6, AP-HP, Hôpital Armand Trousseau, Service de Réanimation pédiatrique, Paris, France
| | - Olivier Baud
- Univ Paris Diderot, Sorbonne Paris Cité, INSERM, U676, Paris, France
- Univ Paris Diderot, Sorbonne Paris Cité, AP-HP, Service de Réanimation néonatale et pédiatrique, Hôpital Robert Debré, Paris, France
| | | |
Collapse
|
21
|
Charriaut-Marlangue C, Bonnin P, Gharib A, Leger PL, Villapol S, Pocard M, Gressens P, Renolleau S, Baud O. Inhaled Nitric Oxide Reduces Brain Damage by Collateral Recruitment in a Neonatal Stroke Model. Stroke 2012; 43:3078-84. [DOI: 10.1161/strokeaha.112.664243] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
We recently demonstrated that endogenous nitric oxide (NO) modulates collateral blood flow in a neonatal stroke model in rats. The inhalation of NO (iNO) has been found to be neuroprotective after ischemic brain damage in adults. Our objective was to examine whether iNO could modify cerebral blood flow during ischemia–reperfusion and reduce lesions in the developing brain.
Methods—
In vivo variations in cortical NO concentrations occurring after 20-ppm iNO exposure were analyzed using the voltammetric method in P7 rat pups. Inhaled NO-mediated blood flow velocities were measured by ultrasound imaging with sequential Doppler recordings in both internal carotid arteries and the basilar trunk under basal conditions and in a neonatal model of ischemia–reperfusion. The hemodynamic effects of iNO (5 to 80 ppm) were correlated with brain injury 48 hours after reperfusion.
Results—
Inhaled NO (20 ppm) significantly increased NO concentrations in the P7 rat cortex and compensated for the blockade of endogenous NO synthesis under normal conditions. Inhaled NO (20 ppm) during ischemia increased blood flow velocities and significantly reduced lesion volumes by 43% and cellular damage. In contrast, both 80 ppm iNO given during ischemia and 5 or 20 ppm iNO given 30 minutes after reperfusion were detrimental.
Conclusions—
Our findings strongly indicate that, with the appropriate timing, 20 ppm iNO can be transported into the P7 rat brain and mediated blood flow redistribution during ischemia leading to reduced infarct volume and cell injury.
Collapse
Affiliation(s)
- Christiane Charriaut-Marlangue
- From the University Paris Diderot, Sorbonne Paris Cité, INSERM U676, Paris, France (C.C.-M., P.-L.L., S.V., P.G., O.B.); PremUP Foundation, Paris, France (C.C.-M., P.-L.L., P.G., O.B.); University Paris Diderot, Sorbonne Paris Cité, AP-HP, Hôpital Lariboisière, Physiologie clinique–Explorations-Fonctionnelles, Paris, France (P.B.); University Paris Diderot, Sorbonne Paris Cité, INSERM, U965, Paris, France (P.B., M.P.); Faculté de Médecine Lyon Est, CarMeN Lyon-1, INSERM U1060, Lyon, France (A.G.)
| | - Philippe Bonnin
- From the University Paris Diderot, Sorbonne Paris Cité, INSERM U676, Paris, France (C.C.-M., P.-L.L., S.V., P.G., O.B.); PremUP Foundation, Paris, France (C.C.-M., P.-L.L., P.G., O.B.); University Paris Diderot, Sorbonne Paris Cité, AP-HP, Hôpital Lariboisière, Physiologie clinique–Explorations-Fonctionnelles, Paris, France (P.B.); University Paris Diderot, Sorbonne Paris Cité, INSERM, U965, Paris, France (P.B., M.P.); Faculté de Médecine Lyon Est, CarMeN Lyon-1, INSERM U1060, Lyon, France (A.G.)
| | - Abdallah Gharib
- From the University Paris Diderot, Sorbonne Paris Cité, INSERM U676, Paris, France (C.C.-M., P.-L.L., S.V., P.G., O.B.); PremUP Foundation, Paris, France (C.C.-M., P.-L.L., P.G., O.B.); University Paris Diderot, Sorbonne Paris Cité, AP-HP, Hôpital Lariboisière, Physiologie clinique–Explorations-Fonctionnelles, Paris, France (P.B.); University Paris Diderot, Sorbonne Paris Cité, INSERM, U965, Paris, France (P.B., M.P.); Faculté de Médecine Lyon Est, CarMeN Lyon-1, INSERM U1060, Lyon, France (A.G.)
| | - Pierre-Louis Leger
- From the University Paris Diderot, Sorbonne Paris Cité, INSERM U676, Paris, France (C.C.-M., P.-L.L., S.V., P.G., O.B.); PremUP Foundation, Paris, France (C.C.-M., P.-L.L., P.G., O.B.); University Paris Diderot, Sorbonne Paris Cité, AP-HP, Hôpital Lariboisière, Physiologie clinique–Explorations-Fonctionnelles, Paris, France (P.B.); University Paris Diderot, Sorbonne Paris Cité, INSERM, U965, Paris, France (P.B., M.P.); Faculté de Médecine Lyon Est, CarMeN Lyon-1, INSERM U1060, Lyon, France (A.G.)
| | - Sonia Villapol
- From the University Paris Diderot, Sorbonne Paris Cité, INSERM U676, Paris, France (C.C.-M., P.-L.L., S.V., P.G., O.B.); PremUP Foundation, Paris, France (C.C.-M., P.-L.L., P.G., O.B.); University Paris Diderot, Sorbonne Paris Cité, AP-HP, Hôpital Lariboisière, Physiologie clinique–Explorations-Fonctionnelles, Paris, France (P.B.); University Paris Diderot, Sorbonne Paris Cité, INSERM, U965, Paris, France (P.B., M.P.); Faculté de Médecine Lyon Est, CarMeN Lyon-1, INSERM U1060, Lyon, France (A.G.)
| | - Marc Pocard
- From the University Paris Diderot, Sorbonne Paris Cité, INSERM U676, Paris, France (C.C.-M., P.-L.L., S.V., P.G., O.B.); PremUP Foundation, Paris, France (C.C.-M., P.-L.L., P.G., O.B.); University Paris Diderot, Sorbonne Paris Cité, AP-HP, Hôpital Lariboisière, Physiologie clinique–Explorations-Fonctionnelles, Paris, France (P.B.); University Paris Diderot, Sorbonne Paris Cité, INSERM, U965, Paris, France (P.B., M.P.); Faculté de Médecine Lyon Est, CarMeN Lyon-1, INSERM U1060, Lyon, France (A.G.)
| | - Pierre Gressens
- From the University Paris Diderot, Sorbonne Paris Cité, INSERM U676, Paris, France (C.C.-M., P.-L.L., S.V., P.G., O.B.); PremUP Foundation, Paris, France (C.C.-M., P.-L.L., P.G., O.B.); University Paris Diderot, Sorbonne Paris Cité, AP-HP, Hôpital Lariboisière, Physiologie clinique–Explorations-Fonctionnelles, Paris, France (P.B.); University Paris Diderot, Sorbonne Paris Cité, INSERM, U965, Paris, France (P.B., M.P.); Faculté de Médecine Lyon Est, CarMeN Lyon-1, INSERM U1060, Lyon, France (A.G.)
| | - Sylvain Renolleau
- From the University Paris Diderot, Sorbonne Paris Cité, INSERM U676, Paris, France (C.C.-M., P.-L.L., S.V., P.G., O.B.); PremUP Foundation, Paris, France (C.C.-M., P.-L.L., P.G., O.B.); University Paris Diderot, Sorbonne Paris Cité, AP-HP, Hôpital Lariboisière, Physiologie clinique–Explorations-Fonctionnelles, Paris, France (P.B.); University Paris Diderot, Sorbonne Paris Cité, INSERM, U965, Paris, France (P.B., M.P.); Faculté de Médecine Lyon Est, CarMeN Lyon-1, INSERM U1060, Lyon, France (A.G.)
| | - Olivier Baud
- From the University Paris Diderot, Sorbonne Paris Cité, INSERM U676, Paris, France (C.C.-M., P.-L.L., S.V., P.G., O.B.); PremUP Foundation, Paris, France (C.C.-M., P.-L.L., P.G., O.B.); University Paris Diderot, Sorbonne Paris Cité, AP-HP, Hôpital Lariboisière, Physiologie clinique–Explorations-Fonctionnelles, Paris, France (P.B.); University Paris Diderot, Sorbonne Paris Cité, INSERM, U965, Paris, France (P.B., M.P.); Faculté de Médecine Lyon Est, CarMeN Lyon-1, INSERM U1060, Lyon, France (A.G.)
| |
Collapse
|
22
|
Inhaled Nitric Oxide Protects Males But not Females from Neonatal Mouse Hypoxia–Ischemia Brain Injury. Transl Stroke Res 2012; 4:201-7. [DOI: 10.1007/s12975-012-0217-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/08/2012] [Accepted: 10/10/2012] [Indexed: 12/22/2022]
|