1
|
Deep Brain Stimulation for Chronic Pain. Neurosurg Clin N Am 2022; 33:311-321. [DOI: 10.1016/j.nec.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2
|
Lubejko ST, Graham RD, Livrizzi G, Schaefer R, Banghart MR, Creed MC. The role of endogenous opioid neuropeptides in neurostimulation-driven analgesia. Front Syst Neurosci 2022; 16:1044686. [PMID: 36591324 PMCID: PMC9794630 DOI: 10.3389/fnsys.2022.1044686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Due to the prevalence of chronic pain worldwide, there is an urgent need to improve pain management strategies. While opioid drugs have long been used to treat chronic pain, their use is severely limited by adverse effects and abuse liability. Neurostimulation techniques have emerged as a promising option for chronic pain that is refractory to other treatments. While different neurostimulation strategies have been applied to many neural structures implicated in pain processing, there is variability in efficacy between patients, underscoring the need to optimize neurostimulation techniques for use in pain management. This optimization requires a deeper understanding of the mechanisms underlying neurostimulation-induced pain relief. Here, we discuss the most commonly used neurostimulation techniques for treating chronic pain. We present evidence that neurostimulation-induced analgesia is in part driven by the release of endogenous opioids and that this endogenous opioid release is a common endpoint between different methods of neurostimulation. Finally, we introduce technological and clinical innovations that are being explored to optimize neurostimulation techniques for the treatment of pain, including multidisciplinary efforts between neuroscience research and clinical treatment that may refine the efficacy of neurostimulation based on its underlying mechanisms.
Collapse
Affiliation(s)
- Susan T. Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert D. Graham
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert Schaefer
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Matthew R. Banghart
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Matthew R. Banghart,
| | - Meaghan C. Creed
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
- Meaghan C. Creed,
| |
Collapse
|
3
|
Luo H, Huang Y, Green AL, Aziz TZ, Xiao X, Wang S. Neurophysiological characteristics in the periventricular/periaqueductal gray correlate with pain perception, sensation, and affect in neuropathic pain patients. NEUROIMAGE-CLINICAL 2021; 32:102876. [PMID: 34775163 PMCID: PMC8604717 DOI: 10.1016/j.nicl.2021.102876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/09/2021] [Accepted: 11/03/2021] [Indexed: 12/31/2022]
Abstract
The PAG/PVG carries out its biology function by oscillatory network. Three distinct local networks of oscillations involved in pain perception, sensory and affective. The delta oscillation is a key hub for coding pain perception. The high-gamma oscillation is a key hub for coding sensory pain.
The periventricular/periaqueductal gray (PAG/PVG) is critical for pain perception and is associated with the emotional feelings caused by pain. However, the electrophysiological characteristics of the PAG/PVG have been little investigated in humans with chronic pain. The present study analyzed the oscillatory characteristics of local field potentials (LFPs) in the PAG/PVG of eighteen neuropathic pain patients. Power spectrum analysis and neural state analysis were applied to the PAG/PVG LFPs. Neural state analysis is based on a dynamic neural state identification approach and discriminates the LFPs into different neural states, including a single neural state based on one oscillation and a combinational neural state based on two paired oscillations. The durations and occurrence rates were used to quantify the dynamic features of the neural state. The results show that the combined neural state forms three local networks based on neural oscillations that are responsible for the perceptive, sensory, and affective components of pain. The first network is formed by the interaction of the delta oscillation with other oscillations and is responsible for the coding of pain perception. The second network is responsible for the coding of sensory pain information, uses high gamma as the main node, and is widely connected with other neural oscillations. The third network is responsible for the coding of affective pain information, and beta oscillations play an important role in it. This study suggested that the combination of two neural oscillations in the PAG/PVG is essential for encoding perceptive, sensory, and affective measures of pain.
Collapse
Affiliation(s)
- Huichun Luo
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Yongzhi Huang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Alexander L Green
- Nuffield Department of Surgical Sciences and University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Tipu Z Aziz
- Nuffield Department of Surgical Sciences and University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Xiao Xiao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China; Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Bergeron D, Obaid S, Fournier-Gosselin MP, Bouthillier A, Nguyen DK. Deep Brain Stimulation of the Posterior Insula in Chronic Pain: A Theoretical Framework. Brain Sci 2021; 11:brainsci11050639. [PMID: 34063367 PMCID: PMC8156413 DOI: 10.3390/brainsci11050639] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION To date, clinical trials of deep brain stimulation (DBS) for refractory chronic pain have yielded unsatisfying results. Recent evidence suggests that the posterior insula may represent a promising DBS target for this indication. METHODS We present a narrative review highlighting the theoretical basis of posterior insula DBS in patients with chronic pain. RESULTS Neuroanatomical studies identified the posterior insula as an important cortical relay center for pain and interoception. Intracranial neuronal recordings showed that the earliest response to painful laser stimulation occurs in the posterior insula. The posterior insula is one of the only regions in the brain whose low-frequency electrical stimulation can elicit painful sensations. Most chronic pain syndromes, such as fibromyalgia, had abnormal functional connectivity of the posterior insula on functional imaging. Finally, preliminary results indicated that high-frequency electrical stimulation of the posterior insula can acutely increase pain thresholds. CONCLUSION In light of the converging evidence from neuroanatomical, brain lesion, neuroimaging, and intracranial recording and stimulation as well as non-invasive stimulation studies, it appears that the insula is a critical hub for central integration and processing of painful stimuli, whose high-frequency electrical stimulation has the potential to relieve patients from the sensory and affective burden of chronic pain.
Collapse
Affiliation(s)
- David Bergeron
- Service de Neurochirurgie, Université de Montréal, Montréal, QC H3T 1L5, Canada; (S.O.); (M.-P.F.-G.); (A.B.)
- Correspondence:
| | - Sami Obaid
- Service de Neurochirurgie, Université de Montréal, Montréal, QC H3T 1L5, Canada; (S.O.); (M.-P.F.-G.); (A.B.)
| | | | - Alain Bouthillier
- Service de Neurochirurgie, Université de Montréal, Montréal, QC H3T 1L5, Canada; (S.O.); (M.-P.F.-G.); (A.B.)
| | - Dang Khoa Nguyen
- Service de Neurologie, Université de Montréal, Montréal, QC H3T 1L5, Canada;
| |
Collapse
|
5
|
Green AL, Paterson DJ. Using Deep Brain Stimulation to Unravel the Mysteries of Cardiorespiratory Control. Compr Physiol 2020; 10:1085-1104. [PMID: 32941690 DOI: 10.1002/cphy.c190039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This article charts the history of deep brain stimulation (DBS) as applied to alleviate a number of neurological disorders, while in parallel mapping the electrophysiological circuits involved in generating and integrating neural signals driving the cardiorespiratory system during exercise. With the advent of improved neuroimaging techniques, neurosurgeons can place small electrodes into deep brain structures with a high degree accuracy to treat a number of neurological disorders, such as movement impairment associated with Parkinson's disease and neuropathic pain. As well as stimulating discrete nuclei and monitoring autonomic outflow, local field potentials can also assess how the neurocircuitry responds to exercise. This technique has provided an opportunity to validate in humans putative circuits previously identified in animal models. The central autonomic network consists of multiple sites from the spinal cord to the cortex involved in autonomic control. Important areas exist at multiple evolutionary levels, which include the anterior cingulate cortex (telencephalon), hypothalamus (diencephalon), periaqueductal grey (midbrain), parabrachial nucleus and nucleus of the tractus solitaries (brainstem), and the intermediolateral column of the spinal cord. These areas receive afferent input from all over the body and provide a site for integration, resulting in a coordinated efferent autonomic (sympathetic and parasympathetic) response. In particular, emerging evidence from DBS studies have identified the basal ganglia as a major sub-cortical cognitive integrator of both higher center and peripheral afferent feedback. These circuits in the basal ganglia appear to be central in coupling movement to the cardiorespiratory motor program. © 2020 American Physiological Society. Compr Physiol 10:1085-1104, 2020.
Collapse
Affiliation(s)
- Alexander L Green
- Division of Medical Sciences, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - David J Paterson
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
The Contribution of Endogenous Modulatory Systems to TMS- and tDCS-Induced Analgesia: Evidence from PET Studies. Pain Res Manag 2018; 2018:2368386. [PMID: 30538794 PMCID: PMC6257907 DOI: 10.1155/2018/2368386] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/23/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022]
Abstract
Chronic pain is an important public health issue. Moreover, its adequate management is still considered a major clinical problem, mainly due to its incredible complexity and still poorly understood pathophysiology. Recent scientific evidence coming from neuroimaging research, particularly functional magnetic resonance (fMRI) and positron emission tomography (PET) studies, indicates that chronic pain is associated with structural and functional changes in several brain structures that integrate antinociceptive pathways and endogenous modulatory systems. Furthermore, the last two decades have witnessed a huge increase in the number of studies evaluating the clinical effects of noninvasive neuromodulatory methods, especially transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), which have been proved to effectively modulate the cortical excitability, resulting in satisfactory analgesic effects with minimal adverse events. Nevertheless, the precise neuromechanisms whereby such methods provide pain control are still largely unexplored. Recent studies have brought valuable information regarding the recruitment of different modulatory systems and related neurotransmitters, including glutamate, dopamine, and endogenous opioids. However, the specific neurocircuits involved in the analgesia produced by those therapies have not been fully elucidated. This review focuses on the current literature correlating the clinical effects of noninvasive methods of brain stimulation to the changes in the activity of endogenous modulatory systems.
Collapse
|
7
|
The Current State of Deep Brain Stimulation for Chronic Pain and Its Context in Other Forms of Neuromodulation. Brain Sci 2018; 8:brainsci8080158. [PMID: 30127290 PMCID: PMC6119957 DOI: 10.3390/brainsci8080158] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/26/2022] Open
Abstract
Chronic intractable pain is debilitating for those touched, affecting 5% of the population. Deep brain stimulation (DBS) has fallen out of favour as the centrally implantable neurostimulation of choice for chronic pain since the 1970–1980s, with some neurosurgeons favouring motor cortex stimulation as the ‘last chance saloon’. This article reviews the available data and professional opinion of the current state of DBS as a treatment for chronic pain, placing it in the context of other neuromodulation therapies. We suggest DBS, with its newer target, namely anterior cingulate cortex (ACC), should not be blacklisted on the basis of a lack of good quality study data, which often fails to capture the merits of the treatment.
Collapse
|
8
|
|
9
|
Sims-Williams H, Matthews JC, Talbot PS, Love-Jones S, Brooks JC, Patel NK, Pickering AE. Deep brain stimulation of the periaqueductal gray releases endogenous opioids in humans. Neuroimage 2016; 146:833-842. [PMID: 27554530 PMCID: PMC5312788 DOI: 10.1016/j.neuroimage.2016.08.038] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/25/2016] [Accepted: 08/18/2016] [Indexed: 12/11/2022] Open
Abstract
Deep brain stimulation (DBS) of the periaqueductal gray (PAG) is used in the treatment of severe refractory neuropathic pain. We tested the hypothesis that DBS releases endogenous opioids to exert its analgesic effect using [11C]diprenorphine (DPN) positron emission tomography (PET). Patients with de-afferentation pain (phantom limb pain or Anaesthesia Dolorosa (n=5)) who obtained long-lasting analgesic benefit from DBS were recruited. [11C]DPN and [15O]water PET scanning was performed in consecutive sessions; first without, and then with PAG stimulation. The regional cerebral tracer distribution and kinetics were quantified for the whole brain and brainstem. Analysis was performed on a voxel-wise basis using statistical parametric mapping (SPM) and also within brainstem regions of interest and correlated to the DBS-induced improvement in pain score and mood. Brain-wide analysis identified a single cluster of reduced [11C]DPN binding (15.5% reduction) in the caudal, dorsal PAG following DBS from effective electrodes located in rostral dorsal/lateral PAG. There was no evidence for an accompanying focal change in blood flow within the PAG. No correlation was found between the change in PAG [11C]DPN binding and the analgesic effect or the effect on mood (POMSSV) of DBS. The analgesic effect of DBS in these subjects was not altered by systemic administration of the opioid antagonist naloxone (400 ug). These findings indicate that DBS of the PAG does indeed release endogenous opioid peptides focally within the midbrain of these neuropathic pain patients but we are unable to further resolve the question of whether this release is responsible for the observed analgesic benefit. Sequential opioid-PET imaging study of deafferentation pain patients. All obtained analgesic benefit from deep brain stimulators (DBS) in periaqueductal grey (PAG). PET imaging with diprenorphine showed DBS reduced binding of the radioligand in the PAG. Change in binding consistent with DBS-evoked release of endogenous opioids.
Collapse
Affiliation(s)
- Hugh Sims-Williams
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom; Department of Neurosurgery & Pain Medicine, North Bristol NHS Trust, Bristol BS10 5NB, United Kingdom
| | - Julian C Matthews
- Imaging Sciences, MAHSC, University of Manchester, M20 3LJ, United Kingdom
| | - Peter S Talbot
- Imaging Sciences, MAHSC, University of Manchester, M20 3LJ, United Kingdom
| | - Sarah Love-Jones
- Department of Neurosurgery & Pain Medicine, North Bristol NHS Trust, Bristol BS10 5NB, United Kingdom
| | - Jonathan Cw Brooks
- Clinical Research Imaging Centre (CRiCBristol), University of Bristol, Bristol BS2 8DZ, United Kingdom
| | - Nikunj K Patel
- Department of Neurosurgery & Pain Medicine, North Bristol NHS Trust, Bristol BS10 5NB, United Kingdom
| | - Anthony E Pickering
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom; Department of Anaesthesia, University Hospitals Bristol, Bristol BS2 8HW, United Kingdom.
| |
Collapse
|
10
|
Huang Y, Luo H, Green AL, Aziz TZ, Wang S. Characteristics of local field potentials correlate with pain relief by deep brain stimulation. Clin Neurophysiol 2016; 127:2573-80. [PMID: 27291876 DOI: 10.1016/j.clinph.2016.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/24/2016] [Accepted: 04/11/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To investigate the link between neuronal activity recorded from the sensory thalamus and periventricular gray/periaqueductal gray (PVAG) and pain relief by deep brain stimulation (DBS). METHODS Local field potentials (LFPs) were recorded from the sensory thalamus and PVAG post-operatively from ten patients with neuropathic pain. The LFPs were quantified using spectral and time-frequency analysis, the relationship between the LFPs and pain relief was quantified with nonlinear correlation analysis. RESULTS The theta oscillations of both sensory thalamus and PVAG correlated inversely with pain relief. The high beta oscillations in the sensory thalamus and the alpha oscillations in the PVAG correlated positively with pain relief. Moreover, the ratio of high-power duration to low-power duration of theta band activity in the sensory thalamus and PVAG correlated inversely with pain relief. The duration ratio at the high beta band in the sensory thalamus correlated positively with pain relief. CONCLUSIONS Our results reveal distinct neuronal oscillations at the theta, alpha, and beta frequencies correlating with pain relief by DBS. SIGNIFICANCE The study provides quantitative measures for predicting the outcomes of neuropathic pain relief by DBS as well as potential biomarkers for developing adaptive stimulation strategies.
Collapse
Affiliation(s)
- Yongzhi Huang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Huichun Luo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Alexander L Green
- Nuffield Department of Surgery, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | - Tipu Z Aziz
- Nuffield Department of Surgery, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | - Shouyan Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| |
Collapse
|
11
|
Coulombe MA, Erpelding N, Kucyi A, Davis KD. Intrinsic functional connectivity of periaqueductal gray subregions in humans. Hum Brain Mapp 2016; 37:1514-30. [PMID: 26821847 DOI: 10.1002/hbm.23117] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 12/08/2015] [Accepted: 01/03/2016] [Indexed: 12/19/2022] Open
Abstract
The periaqueductal gray matter (PAG) is a key brain region of the descending pain modulation pathway. It is also involved in cardiovascular functions, anxiety, and fear; however, little is known about PAG subdivisions in humans. The aims of this study were to use resting-state fMRI-based functional connectivity (FC) to parcellate the human PAG and to determine FC of its subregions. To do this, we acquired resting-state fMRI scans from 79 healthy subjects and (1) used a data-driven method to parcellate the PAG, (2) used predefined seeds in PAG subregions to evaluate PAG FC to the whole brain, and (3) examined sex differences in PAG FC. We found that clustering of the left and right PAG yielded similar patterns of caudal, middle, and rostral subdivisions in the coronal plane, and dorsal and ventral subdivisions in the sagittal plane. FC analysis of predefined subregions revealed that the ventolateral(VL)-PAG was supfunctionally connected to brain regions associated with descending pain modulation (anterior cingulate cortex (ACC), upper pons/medulla), whereas the lateral (L) and dorsolateral (DL) subregions were connected with brain regions implicated in executive functions (prefrontal cortex, striatum, hippocampus). We also found sex differences in FC including areas implicated in pain, salience, and analgesia including the ACC and the insula in women, and the MCC, parahippocampal gyrus, and the temporal pole in men. The organization of the human PAG thus provides a framework to understand the circuitry underlying the broad range of responses to pain and its modulation in men and women.
Collapse
Affiliation(s)
- Marie-Andree Coulombe
- Division of Brain, Imaging & Behaviour Systems, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Nathalie Erpelding
- Division of Brain, Imaging & Behaviour Systems, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Aaron Kucyi
- Division of Brain, Imaging & Behaviour Systems, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Karen Deborah Davis
- Division of Brain, Imaging & Behaviour Systems, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Mamun KA, Mace M, Lutman ME, Stein J, Liu X, Aziz T, Vaidyanathan R, Wang S. Movement decoding using neural synchronization and inter-hemispheric connectivity from deep brain local field potentials. J Neural Eng 2015; 12:056011. [DOI: 10.1088/1741-2560/12/5/056011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Boccard SGJ, Pereira EAC, Aziz TZ. Deep brain stimulation for chronic pain. J Clin Neurosci 2015; 22:1537-43. [PMID: 26122383 DOI: 10.1016/j.jocn.2015.04.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 04/11/2015] [Indexed: 11/29/2022]
Abstract
Deep brain stimulation (DBS) is a neurosurgical intervention popularised in movement disorders such as Parkinson's disease, and also reported to improve symptoms of epilepsy, Tourette's syndrome, obsessive compulsive disorders and cluster headache. Since the 1950s, DBS has been used as a treatment to relieve intractable pain of several aetiologies including post stroke pain, phantom limb pain, facial pain and brachial plexus avulsion. Several patient series have shown benefits in stimulating various brain areas, including the sensory thalamus (ventral posterior lateral and medial), the periaqueductal and periventricular grey, or, more recently, the anterior cingulate cortex. However, this technique remains "off label" in the USA as it does not have Federal Drug Administration approval. Consequently, only a small number of surgeons report DBS for pain using current technology and techniques and few regions approve it. Randomised, blinded and controlled clinical trials that may use novel trial methodologies are desirable to evaluate the efficacy of DBS in patients who are refractory to other therapies. New imaging techniques, including tractography, may help optimise electrode placement and clinical outcome.
Collapse
Affiliation(s)
- Sandra G J Boccard
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, Level 6, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK.
| | - Erlick A C Pereira
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, Level 6, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Tipu Z Aziz
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, Level 6, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| |
Collapse
|
14
|
Pereira EAC, Boccard SG, Aziz TZ. Deep brain stimulation for pain: distinguishing dorsolateral somesthetic and ventromedial affective targets. Neurosurgery 2015; 61 Suppl 1:175-81. [PMID: 25032548 DOI: 10.1227/neu.0000000000000397] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Erlick A C Pereira
- *Oxford Functional Neurosurgery and Experimental Neurology Group, Department of Neurological Surgery and Nuffield Department of Surgical Sciences, Oxford University, John Radcliffe Hospital, Oxford, United Kingdom; ‡Department of Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Portugal
| | | | | |
Collapse
|
15
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
16
|
Pinto S, Ferraye M, Espesser R, Fraix V, Maillet A, Guirchoum J, Layani-Zemour D, Ghio A, Chabardès S, Pollak P, Debû B. Stimulation of the pedunculopontine nucleus area in Parkinson’s disease: effects on speech and intelligibility. Brain 2014; 137:2759-72. [DOI: 10.1093/brain/awu209] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Abstract
Deep brain stimulation (DBS) is a neurosurgical intervention the efficacy, safety, and utility of which are established in the treatment of Parkinson's disease. For the treatment of chronic, neuropathic pain refractory to medical therapies, many prospective case series have been reported, but few have published findings from patients treated with current standards of neuroimaging and stimulator technology over the last decade . We summarize the history, science, selection, assessment, surgery, programming, and personal clinical experience of DBS of the ventral posterior thalamus, periventricular/periaqueductal gray matter, and latterly rostral anterior cingulate cortex (Cg24) in 113 patients treated at 2 centers (John Radcliffe, Oxford, UK, and Hospital de São João, Porto, Portugal) over 13 years. Several experienced centers continue DBS for chronic pain, with success in selected patients, in particular those with pain after amputation, brachial plexus injury, stroke, and cephalalgias including anesthesia dolorosa. Other successes include pain after multiple sclerosis and spine injury. Somatotopic coverage during awake surgery is important in our technique, with cingulate DBS under general anesthesia considered for whole or hemibody pain, or after unsuccessful DBS of other targets. Findings discussed from neuroimaging modalities, invasive neurophysiological insights from local field potential recording, and autonomic assessments may translate into improved patient selection and enhanced efficacy, encouraging larger clinical trials.
Collapse
Affiliation(s)
- Erlick A C Pereira
- Oxford Functional Neurosurgery and Experimental Neurology Group, Department of Neurological Surgery and Nuffield Department of Surgical Sciences, Oxford University, John Radcliffe Hospital, Oxford, OX3 9DU, UK,
| | | |
Collapse
|
18
|
Boccard SG, Fitzgerald JJ, Pereira EA, Moir L, Van Hartevelt TJ, Kringelbach ML, Green AL, Aziz TZ. Targeting the Affective Component of Chronic Pain. Neurosurgery 2014; 74:628-35; discussion 635-7. [DOI: 10.1227/neu.0000000000000321] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
ABSTRACT
BACKGROUND:
Deep brain stimulation (DBS) has shown considerable promise for relieving nociceptive and neuropathic symptoms of refractory chronic pain. Nevertheless, for some patients, standard DBS for pain remains poorly efficacious. Pain is a multidimensional experience with an affective component: the unpleasantness. The anterior cingulate cortex (ACC) is a structure involved in this affective component, and targeting it may relieve patients' pain.
OBJECTIVE:
To describe the first case series of ACC DBS to relieve the affective component of chronic neuropathic pain.
METHODS:
Sixteen patients (13 male and 3 female patients) with neuropathic pain underwent bilateral ACC DBS. The mean age at surgery was 48.7 years (range, 33-63 years). Patient-reported outcome measures were collected before and after surgery using a Visual Analog Scale, SF-36 quality of life survey, McGill Pain Questionnaire, and EQ-5D (EQ-5D and EQ-5D Health State) questionnaires.
RESULTS:
Fifteen patients (93.3%) transitioned from externalized to fully internalized systems. Eleven patients had data to be analyzed with a mean follow-up of 13.2 months. Post-surgery, the Visual Analog Scale score dropped below 4 for 5 of the patients, with 1 patient free of pain. Highly significant improvement on the EQ-5D was observed (mean, +20.3%; range, +0%-+83%; P = .008). Moreover, statistically significant improvements were observed for the physical functioning and bodily pain domains of the SF-36 quality-of-life survey: mean, +64.7% (range, −8.9%-+276%; P = .015) and mean +39.0% (range, −33.8%-+159%; P = .050), respectively.
CONCLUSION:
Affective ACC DBS can relieve chronic neuropathic pain refractory to pharmacotherapy and restore quality of life.
Collapse
Affiliation(s)
- Sandra G.J. Boccard
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Departments of Clinical Neuroscience and Surgery
| | - James J. Fitzgerald
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Departments of Clinical Neuroscience and Surgery
| | - Erlick A.C. Pereira
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Departments of Clinical Neuroscience and Surgery
| | - Liz Moir
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Departments of Clinical Neuroscience and Surgery
| | | | | | - Alexander L. Green
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Departments of Clinical Neuroscience and Surgery
| | - Tipu Z. Aziz
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Departments of Clinical Neuroscience and Surgery
| |
Collapse
|
19
|
Sverrisdóttir YB, Green AL, Aziz TZ, Bahuri NFA, Hyam J, Basnayake SD, Paterson DJ. Differentiated baroreflex modulation of sympathetic nerve activity during deep brain stimulation in humans. Hypertension 2014; 63:1000-10. [PMID: 24516109 DOI: 10.1161/hypertensionaha.113.02970] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Targeted electric deep brain stimulation in midbrain nuclei in humans alters cardiovascular parameters, presumably by modulating autonomic and baroreflex function. Baroreflex modulation of sympathetic outflow is crucial for cardiovascular regulation and is hypothesized to occur at 2 distinct brain locations. The aim of this study was to evaluate sympathetic outflow in humans with deep brain stimulating electrodes during ON and OFF stimulation of specific midbrain nuclei known to regulate cardiovascular function. Multiunit muscle sympathetic nerve activity was recorded in 17 patients undergoing deep brain stimulation for treatment of chronic neuropathic pain (n=7) and Parkinson disease (n=10). Sympathetic outflow was recorded during ON and OFF stimulation. Arterial blood pressure, heart rate, and respiratory frequency were monitored during the recording session, and spontaneous vasomotor and cardiac baroreflex sensitivity were assessed. Head-up tilt testing was performed separately in the patients with Parkinson disease postoperatively. Stimulation of the dorsal most part of the subthalamic nucleus and ventrolateral periaqueductal gray resulted in improved vasomotor baroreflex sensitivity, decreased burst frequency and blood pressure, unchanged burst amplitude distribution, and a reduced fall in blood pressure after tilt. Stimulation of the dorsolateral periaqueductal gray resulted in a shift in burst amplitude distribution toward larger amplitudes, decreased spontaneous beat-to-beat blood pressure variability, and unchanged burst frequency, baroreflex sensitivity, and blood pressure. Our results indicate that a differentiated regulation of sympathetic outflow occurs in the subthalamic nucleus and periaqueductal gray. These results may have implications in our understanding of abnormal sympathetic discharge in cardiovascular disease and provide an opportunity for therapeutic targeting.
Collapse
Affiliation(s)
- Yrsa B Sverrisdóttir
- Department of Physiology, Anatomy and Genetics, Sherrington Bldg, Parks Rd, University of Oxford, Oxford, OX1 3PT, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
One hundred years ago in this journal, Krogh and Lindhard published a seminal paper highlighting the importance of the brain in the control of breathing during exercise. This symposium report reviews the historical developments that have taken place since 1913, and attempts to place the detailed neurocircuitry thought to underpin exercise hyperpnoea into context by focusing on key structures that might form the command network. With the advent of enhanced neuroimaging and functional neurosurgical techniques, a unique window of opportunity has recently arisen to target potential circuits in humans. Animal studies have identified a priori sites of interest in mid-brain structures, in particular the subthalamic locomotor region (subthalamic nucleus, STN) and the periaqueductal grey (PAG), which have now been recorded from in humans during exercise. When all data are viewed in an integrative manner, the PAG, in particular the lateral PAG, and aspects of the dorsal lateral PAG, appear to be key communicating circuitry for 'central command'. Moreover, the PAG also fulfils many requirements of a command centre. It has functional connectivity to higher centres (dorsal lateral prefrontal cortex) and the basal ganglia (in particular, the STN), and receives a sensory input from contracting muscle, but, importantly, it sends efferent information to brainstem nuclei involved in cardiorespiratory control.
Collapse
Affiliation(s)
- David J Paterson
- Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford OX1 3PT, UK.
| |
Collapse
|
21
|
Yen CT, Lu PL. Thalamus and pain. ACTA ACUST UNITED AC 2013; 51:73-80. [DOI: 10.1016/j.aat.2013.06.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 05/13/2013] [Indexed: 02/02/2023]
|