1
|
Abstract
This review summarizes the available data about genetic factors which can link ischemic stroke and sleep. Sleep patterns (subjective and objective measures) are characterized by heritability and comprise up to 38-46%. According to Mendelian randomization analysis, genetic liability for short sleep duration and frequent insomnia symptoms is associated with ischemic stroke (predominantly of large artery subtype). The potential genetic links include variants of circadian genes, genes encoding components of neurotransmitter systems, common cardiovascular risk factors, as well as specific genetic factors related to certain sleep disorders.
Collapse
Affiliation(s)
- Lyudmila Korostovtseva
- Sleep Laboratory, Research Department for Hypertension, Department for Cardiology, Almazov National Medical Research Centre, 2 Akkuratov Str., Saint Petersburg, 197341, Russia.
| |
Collapse
|
2
|
Wang X, Ji X. Interactions between remote ischemic conditioning and post-stroke sleep regulation. Front Med 2021; 15:867-876. [PMID: 34811643 DOI: 10.1007/s11684-021-0887-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/31/2021] [Indexed: 12/31/2022]
Abstract
Sleep disturbances are common in patients with stroke, and sleep quality has a critical role in the onset and outcome of stroke. Poor sleep exacerbates neurological injury, impedes nerve regeneration, and elicits serious complications. Thus, exploring a therapy suitable for patients with stroke and sleep disturbances is imperative. As a multi-targeted nonpharmacological intervention, remote ischemic conditioning can reduce the ischemic size of the brain, improve the functional outcome of stroke, and increase sleep duration. Preclinical/clinical evidence showed that this method can inhibit the inflammatory response, mediate the signal transductions of adenosine, activate the efferents of the vagal nerve, and reset the circadian clocks, all of which are involved in sleep regulation. In particular, cytokines tumor necrosis factor α (TNFα) and adenosine are sleep factors, and electrical vagal nerve stimulation can improve insomnia. On the basis of the common mechanisms of remote ischemic conditioning and sleep regulation, a causal relationship was proposed between remote ischemic conditioning and post-stroke sleep quality.
Collapse
Affiliation(s)
- Xian Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China. .,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, 100069, China.
| |
Collapse
|
3
|
Howell SN, Griesbach GS. Sleep-wake disturbances in supra-and infratentorial stroke: an analysis of post-acute sleep architecture and apnea. Sleep Med 2021; 88:81-86. [PMID: 34740169 DOI: 10.1016/j.sleep.2021.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/09/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Sleep-wake disturbances (SWD) are common following stroke, and often extend into the post-acute to chronic periods of recovery. Of particular interest to recovery is a reduction in rapid eye movement (REM) sleep, as we know REM sleep to be important for learning and memory. While there is a breadth of evidence linking SWD and stroke, much less work has been done to identify and determine if differences in sleep architecture and apnea severity are dependent on stroke infarct topographies. METHODS A retrospective chart review was conducted of 48 ischemic stroke patients having underwent a full, overnight polysomnography (PSG). All patients were over 30 days post-injury (post-acute) at the time of the PSG. Patients were divided into supra- and infratentorial infarct topography groups based on available medical and imaging records. In addition to sleep study record review, cognitive and outcome measures were examined. RESULTS Results showed that patients with infratentorial stroke had poorer sleep efficiency, decreased REM sleep, and higher apnea hypopnea index (AHI) than those with supratentorial injuries. Longer continuous REM periods were correlated with higher verbal learning/memory scores, higher levels of positive affect, and lower levels of emotional/behavioral dyscontrol. Neither age nor AHI were significantly correlated with the amount or duration of REM. Slow-wave sleep was significantly reduced across both injury topographies. CONCLUSIONS Infratentorial ischemic stroke patients display significant disruptions in sleep architecture and may require close monitoring for SWDs in the post-acute period to maximize outcome potential. REM sleep is particularly affected when compared to supratentorial ischemic stroke.
Collapse
Affiliation(s)
| | - Grace S Griesbach
- Centre for Neuro Skills, Bakersfield, CA, USA; Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Prevalence and Determinants of Sleep Apnea in Patients with Stroke: A Meta-Analysis. J Stroke Cerebrovasc Dis 2021; 30:106129. [PMID: 34601243 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106129] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Recent meta-analyses have noted that ∼70% of transient ischemic attack (TIA)/stroke patients have sleep apnea. However, the heterogeneity between studies was high and did not appear to be accounted by the phase of stroke. We conducted an updated meta-analysis and aimed to determine whether the prevalence of sleep apnea amongst stroke patients differs by the subtype, etiology, severity and location of stroke and hence could account for some of the unexplained heterogeneity observed in previous studies. MATERIALS AND METHODS We searched Medline, Embase, CINAHL and Cochrane Library (from their commencements to July 2020) for studies which reported the prevalence of sleep apnea by using polysomnography in TIA/stroke patients. We used random-effects model to calculate the pooled prevalence of sleep apnea and explored whether the prevalence differed by stroke characteristics. RESULTS Seventy-five studies describing 8670 stroke patients were included in this meta-analysis. The overall prevalence of sleep apnea was numerically higher in patients with hemorrhagic vs. ischemic stroke [82.7% (64.4-92.7%) vs. 67.5% (63.2-71.5%), p=0.098], supratentorial vs. infratentorial stroke [64.4% (56.7-71.4%) vs. 56.5% (42.2-60.0%), p=0.171], and cardioembolic [74.3% (59.6-85.0%)] vs. other ischemic stroke subtypes [large artery atherosclerosis: 68.3% (52.5-80.7%), small vessel occlusion: 56.1% (38.2-72.6%), others/undetermined: 47.9% (31.6-64.6%), p=0.089]. The heterogeneity in sleep apnea prevalence was partially accounted by the subtype (1.9%), phase (5.0%) and location of stroke (14.0%) among reported studies. CONCLUSIONS The prevalence of sleep apnea in the stroke population appears to differ by the subtype, location, etiology and phase of stroke.
Collapse
|
5
|
Berteotti C, Liguori C, Pace M. Dysregulation of the orexin/hypocretin system is not limited to narcolepsy but has far-reaching implications for neurological disorders. Eur J Neurosci 2020; 53:1136-1154. [PMID: 33290595 DOI: 10.1111/ejn.15077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022]
Abstract
Neuropeptides orexin A and B (OX-A/B, also called hypocretin 1 and 2) are released selectively by a population of neurons which projects widely into the entire central nervous system but is localized in a restricted area of the tuberal region of the hypothalamus, caudal to the paraventricular nucleus. The OX system prominently targets brain structures involved in the regulation of wake-sleep state switching, and also orchestrates multiple physiological functions. The degeneration and dysregulation of the OX system promotes narcoleptic phenotypes both in humans and animals. Hence, this review begins with the already proven involvement of OX in narcolepsy, but it mainly discusses the new pre-clinical and clinical insights of the role of OX in three major neurological disorders characterized by sleep impairment which have been recently associated with OX dysfunction, such as Alzheimer's disease, stroke and Prader Willi syndrome, and have been emerged over the past 10 years to be strongly associated with the OX dysfunction and should be more considered in the future. In the light of the impairment of the OX system in these neurological disorders, it is conceivable to speculate that the integrity of the OX system is necessary for a healthy functioning body.
Collapse
Affiliation(s)
- Chiara Berteotti
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Claudio Liguori
- Sleep Medicine Centre, Neurology Unit, University Hospital Tor Vergata, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Marta Pace
- Genetics and Epigenetics of Behaviour Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
6
|
Edalatyzadeh Z, Aghajani M, Imani A, Faghihi M, Sadeghniiat-Haghighi K, Askari S, Choopani S. Cardioprotective effects of acute sleep deprivation on ischemia/reperfusion injury. Auton Neurosci 2020; 230:102761. [PMID: 33310629 DOI: 10.1016/j.autneu.2020.102761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/08/2020] [Accepted: 12/02/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Modulation of sympathetic activity during acute sleep deprivation can produce various effects on body functions. We studied the effects of acute sleep deprivation before ischemia/reperfusion on myocardial injury in isolated rat hearts, and the role of sympathetic nervous system that may mediate these sleep deprivation induced effects. METHODS The animals were randomized into four groups (n = 11 per group): Ischemia- Reperfusion group (IR), Acute sleep deprivation group (SD), Control group for sleep deprivation (CON-SD) and Sympathectomy + ASD group (SYM-SD). In SD group, sleep deprivation paradigm was used 24 h prior to induction of ischemia/reperfusion. In SYM-SD group, the animals were chemically sympathectomized using 6-hydroxydopamine, 24 h before sleep deprivation. Then, the hearts of animals were perfused using Langendorff setup and were subjected to 30 min regional ischemia followed by 60 min of reperfusion. Throughout the experiment, the hearts were allowed to beat spontaneously and left ventricular developed pressure (LVDP) and rate pressure product (RPP) were recorded. At the end of study, infarct size and percentage of the area at risk were determined. RESULTS We found that SD increased LVDP and RPP, while reducing the myocardial infarct size. Moreover, sympathectomy reversed SD induced reduction in infarct size and showed no differences as compared to IR. CONCLUSION This study shows cardioprotective effects of acute sleep deprivation, which can be abolished by chemical sympathectomy in isolated hearts of rats.
Collapse
Affiliation(s)
- Zohreh Edalatyzadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Aghajani
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | - Alireza Imani
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Occupational Sleep Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdieh Faghihi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sahar Askari
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Choopani
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Wake-up stroke: From pathophysiology to management. Sleep Med Rev 2019; 48:101212. [PMID: 31600679 DOI: 10.1016/j.smrv.2019.101212] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 08/01/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022]
Abstract
Wake-up strokes (WUS) are strokes with unknown exact time of onset as they are noted on awakening by the patients. They represent 20% of all ischemic strokes. The chronobiological pattern of ischemic stroke onset, with higher frequency in the first morning hours, is likely to be associated with circadian fluctuations in blood pressure, heart rate, hemostatic processes, and the occurrence of atrial fibrillation episodes. The modulation of stroke onset time also involves the sleep-wake cycle as there is an increased risk associated with rapid-eye-movement sleep. Furthermore, sleep may have an impact on the expression and perception of stroke symptoms by patients, but also on brain tissue ischemia processes via a neuroprotective effect. Obstructive sleep apnea syndrome is particularly prevalent in WUS patients. Until recently, WUS was considered as a contra-indication to reperfusion therapy because of the unknown onset time and the potential cerebral bleeding risk associated with thrombolytic treatment. A renewed interest in WUS has been observed over the past few years related to an improved radiological evaluation of WUS patients and the recent demonstration of the clinical efficacy of reperfusion in selected patients when the presence of salvageable brain tissue on advanced cerebral imaging is demonstrated.
Collapse
|
8
|
Gottlieb E, Landau E, Baxter H, Werden E, Howard ME, Brodtmann A. The bidirectional impact of sleep and circadian rhythm dysfunction in human ischaemic stroke: A systematic review. Sleep Med Rev 2019; 45:54-69. [DOI: 10.1016/j.smrv.2019.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 01/11/2023]
|
9
|
Takala M, Puustinen J, Rauhala E, Holm A. Pre-screening of sleep-disordered breathing after stroke: A systematic review. Brain Behav 2018; 8:e01146. [PMID: 30371010 PMCID: PMC6305929 DOI: 10.1002/brb3.1146] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES Sleep-Disordered Breathing (SDB) is frequent in stroke patients. Polysomnography (PSG) and cardiorespiratory polygraphy are used to confirm SDB, but the need for PSG exceeds the available resources for systematic testing. Therefore, a simple and robust pre-screening instrument is necessary to identify the patients with an urgent need for a targeted PSG. The aim of this systematic review was to identify and evaluate the available methods to pre-screen stroke patients possibly suffering from SDB. MATERIALS AND METHODS Eleven studies out of 3,561 studies met the inclusion criteria. The selected studies assessed the efficiency of seven instruments based on the data acquired clinically or by inquiries (Berlin Questionnaire, Epworth Sleepiness Scale, SOS, Modified Sleep Apnea Scale of the Sleep Disorders Questionnaire, STOP-BANG, Four-variable Screening Tool and Multivariate Apnea Index) and three physiological measures (capnography, nocturia, nocturnal oximetry). The instruments were used to predict SDB in patients after acute or subacute stroke. Either PSG or cardiorespiratory polygraphy was used as a standard to measure SDB. RESULTS No independent studies using the same questionnaires, methods or criteria were published reducing generalizability. Overall, the questionnaires were quite sensitive in finding SDB but not highly specific in identifying the non-affected. The physiological measures (capnography) indicated promising results in predicting SDB, but capnography is not an ideal pre-screening instrument as it requires a specialist to interpret the results. CONCLUSIONS The results of pre-screening of SDB in acute and subacute stroke patients are promising but inconsistent. The current pre-screening methods cannot readily be referred to clinicians in neurologic departments. Thus, it is necessary to conduct more research on developing novel pre-screening methods for detecting SDB after stroke.
Collapse
Affiliation(s)
- Mari Takala
- Unit of Clinical Neurophysiology, Satakunta Central Hospital, Pori, Finland
| | - Juha Puustinen
- Unit of Neurology, Satakunta Central Hospital, Pori, Finland.,Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland.,Social Security Centre of Pori, Pori, Finland
| | - Esa Rauhala
- Unit of Clinical Neurophysiology, Satakunta Central Hospital, Pori, Finland
| | - Anu Holm
- Unit of Clinical Neurophysiology, Satakunta Central Hospital, Pori, Finland.,Faculty of Health and Welfare, Satakunta University of Applied Sciences, Pori, Finland
| |
Collapse
|
10
|
Duss SB, Brill AK, Bargiotas P, Facchin L, Alexiev F, Manconi M, Bassetti CL. Sleep-Wake Disorders in Stroke—Increased Stroke Risk and Deteriorated Recovery? An Evaluation on the Necessity for Prevention and Treatment. Curr Neurol Neurosci Rep 2018; 18:72. [DOI: 10.1007/s11910-018-0879-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Pace M, Camilo MR, Seiler A, Duss SB, Mathis J, Manconi M, Bassetti CL. Rapid eye movements sleep as a predictor of functional outcome after stroke: a translational study. Sleep 2018; 41:5056018. [DOI: 10.1093/sleep/zsy138] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Marta Pace
- Center for Experimental Neurology (ZEN), Department of Neurology, University Hospital (Inselspital), Bern, Switzerland
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Millene R Camilo
- Department of Neurology, University Hospital-Inselspital, Bern, Switzerland
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Andrea Seiler
- Department of Neurology, University Hospital-Inselspital, Bern, Switzerland
| | - Simone B Duss
- Department of Neurology, University Hospital-Inselspital, Bern, Switzerland
| | - Johannes Mathis
- Department of Neurology, University Hospital-Inselspital, Bern, Switzerland
| | - Mauro Manconi
- Department of Neurology, University Hospital-Inselspital, Bern, Switzerland
- Sleep and Epilepsy Center, Neurocenter of Southern Switzerland, Civic Hospital (EOC) of Lugano, Lugano, Switzerland
| | - Claudio L Bassetti
- Center for Experimental Neurology (ZEN), Department of Neurology, University Hospital (Inselspital), Bern, Switzerland
- Department of Neurology, University Hospital-Inselspital, Bern, Switzerland
| |
Collapse
|
12
|
Pincherle A, Pace M, Sarasso S, Facchin L, Dreier JP, Bassetti CL. Sleep, Preconditioning and Stroke. Stroke 2017; 48:3400-3407. [DOI: 10.1161/strokeaha.117.018796] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/07/2017] [Accepted: 08/23/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Alessandro Pincherle
- From the Department of Clinical Neurosciences, Acute Neurorehabilitation Unit, University Hospital CHUV, Lausanne, Switzerland (A.P.); ZEN Department of Neurology, Bern University Hospital, Switzerland (M.P., L.F., C.L.B.); Department of Genetics and Epigenetics of Behavior, Istituto Italiano di Tecnologia, Genoa, Italy (M.P.); L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Italy (S.S.); and Department of Neurology (J.P.D.) and Department of Experimental Neurology (J.P
| | - Marta Pace
- From the Department of Clinical Neurosciences, Acute Neurorehabilitation Unit, University Hospital CHUV, Lausanne, Switzerland (A.P.); ZEN Department of Neurology, Bern University Hospital, Switzerland (M.P., L.F., C.L.B.); Department of Genetics and Epigenetics of Behavior, Istituto Italiano di Tecnologia, Genoa, Italy (M.P.); L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Italy (S.S.); and Department of Neurology (J.P.D.) and Department of Experimental Neurology (J.P
| | - Simone Sarasso
- From the Department of Clinical Neurosciences, Acute Neurorehabilitation Unit, University Hospital CHUV, Lausanne, Switzerland (A.P.); ZEN Department of Neurology, Bern University Hospital, Switzerland (M.P., L.F., C.L.B.); Department of Genetics and Epigenetics of Behavior, Istituto Italiano di Tecnologia, Genoa, Italy (M.P.); L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Italy (S.S.); and Department of Neurology (J.P.D.) and Department of Experimental Neurology (J.P
| | - Laura Facchin
- From the Department of Clinical Neurosciences, Acute Neurorehabilitation Unit, University Hospital CHUV, Lausanne, Switzerland (A.P.); ZEN Department of Neurology, Bern University Hospital, Switzerland (M.P., L.F., C.L.B.); Department of Genetics and Epigenetics of Behavior, Istituto Italiano di Tecnologia, Genoa, Italy (M.P.); L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Italy (S.S.); and Department of Neurology (J.P.D.) and Department of Experimental Neurology (J.P
| | - Jens P. Dreier
- From the Department of Clinical Neurosciences, Acute Neurorehabilitation Unit, University Hospital CHUV, Lausanne, Switzerland (A.P.); ZEN Department of Neurology, Bern University Hospital, Switzerland (M.P., L.F., C.L.B.); Department of Genetics and Epigenetics of Behavior, Istituto Italiano di Tecnologia, Genoa, Italy (M.P.); L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Italy (S.S.); and Department of Neurology (J.P.D.) and Department of Experimental Neurology (J.P
| | - Claudio L. Bassetti
- From the Department of Clinical Neurosciences, Acute Neurorehabilitation Unit, University Hospital CHUV, Lausanne, Switzerland (A.P.); ZEN Department of Neurology, Bern University Hospital, Switzerland (M.P., L.F., C.L.B.); Department of Genetics and Epigenetics of Behavior, Istituto Italiano di Tecnologia, Genoa, Italy (M.P.); L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Italy (S.S.); and Department of Neurology (J.P.D.) and Department of Experimental Neurology (J.P
| |
Collapse
|
13
|
Sandsmark DK, Elliott JE, Lim MM. Sleep-Wake Disturbances After Traumatic Brain Injury: Synthesis of Human and Animal Studies. Sleep 2017; 40:3074241. [PMID: 28329120 PMCID: PMC6251652 DOI: 10.1093/sleep/zsx044] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2017] [Indexed: 12/23/2022] Open
Abstract
Sleep-wake disturbances following traumatic brain injury (TBI) are increasingly recognized as a serious consequence following injury and as a barrier to recovery. Injury-induced sleep-wake disturbances can persist for years, often impairing quality of life. Recently, there has been a nearly exponential increase in the number of primary research articles published on the pathophysiology and mechanisms underlying sleep-wake disturbances after TBI, both in animal models and in humans, including in the pediatric population. In this review, we summarize over 200 articles on the topic, most of which were identified objectively using reproducible online search terms in PubMed. Although these studies differ in terms of methodology and detailed outcomes; overall, recent research describes a common phenotype of excessive daytime sleepiness, nighttime sleep fragmentation, insomnia, and electroencephalography spectral changes after TBI. Given the heterogeneity of the human disease phenotype, rigorous translation of animal models to the human condition is critical to our understanding of the mechanisms and of the temporal course of sleep-wake disturbances after injury. Arguably, this is most effectively accomplished when animal and human studies are performed by the same or collaborating research programs. Given the number of symptoms associated with TBI that are intimately related to, or directly stem from sleep dysfunction, sleep-wake disorders represent an important area in which mechanistic-based therapies may substantially impact recovery after TBI.
Collapse
Affiliation(s)
| | - Jonathan E Elliott
- VA Portland Health Care System, Portland, OR
- Department of Neurology, Oregon Health & Science University, Portland, OR
| | - Miranda M Lim
- VA Portland Health Care System, Portland, OR
- Department of Neurology, Oregon Health & Science University, Portland, OR
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR; Department of Behavioral Neuroscience, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR
| |
Collapse
|
14
|
Walsh C, Drinkenburg W, Ahnaou A. Neurophysiological assessment of neural network plasticity and connectivity: Progress towards early functional biomarkers for disease interception therapies in Alzheimer’s disease. Neurosci Biobehav Rev 2017; 73:340-358. [DOI: 10.1016/j.neubiorev.2016.12.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/04/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022]
|
15
|
Pace M, Adamantidis A, Facchin L, Bassetti C. Role of REM Sleep, Melanin Concentrating Hormone and Orexin/Hypocretin Systems in the Sleep Deprivation Pre-Ischemia. PLoS One 2017; 12:e0168430. [PMID: 28061506 PMCID: PMC5218733 DOI: 10.1371/journal.pone.0168430] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 12/01/2016] [Indexed: 12/19/2022] Open
Abstract
STUDY OBJECTIVES Sleep reduction after stroke is linked to poor recovery in patients. Conversely, a neuroprotective effect is observed in animals subjected to acute sleep deprivation (SD) before ischemia. This neuroprotection is associated with an increase of the sleep, melanin concentrating hormone (MCH) and orexin/hypocretin (OX) systems. This study aims to 1) assess the relationship between sleep and recovery; 2) test the association between MCH and OX systems with the pathological mechanisms of stroke. METHODS Sprague-Dawley rats were assigned to four experimental groups: (i) SD_IS: SD performed before ischemia; (ii) IS: ischemia; (iii) SD_Sham: SD performed before sham surgery; (iv) Sham: sham surgery. EEG and EMG were recorded. The time-course of the MCH and OX gene expression was measured at 4, 12, 24 hours and 3, 4, 7 days following ischemic surgery by qRT-PCR. RESULTS A reduction of infarct volume was observed in the SD_IS group, which correlated with an increase of REM sleep observed during the acute phase of stroke. Conversely, the IS group showed a reduction of REM sleep. Furthermore, ischemia induces an increase of MCH and OX systems during the acute phase of stroke, although, both systems were still increased for a long period of time only in the SD_IS group. CONCLUSIONS Our data indicates that REM sleep may be involved in the neuroprotective effect of SD pre-ischemia, and that both MCH and OX systems were increased during the acute phase of stroke. Future studies should assess the role of REM sleep as a prognostic marker, and test MCH and OXA agonists as new treatment options in the acute phase of stroke.
Collapse
Affiliation(s)
- Marta Pace
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology (IIT), Genova, Italy
- * E-mail:
| | - Antoine Adamantidis
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - Laura Facchin
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - Claudio Bassetti
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Bern University Hospital, Bern, Switzerland
- Division of Cognitive and Restorative Neurology, Department of Neurology, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
16
|
Duss SB, Seiler A, Schmidt MH, Pace M, Adamantidis A, Müri RM, Bassetti CL. The role of sleep in recovery following ischemic stroke: A review of human and animal data. Neurobiol Sleep Circadian Rhythms 2017; 2:94-105. [PMID: 31236498 PMCID: PMC6575180 DOI: 10.1016/j.nbscr.2016.11.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 01/02/2023] Open
Abstract
Despite advancements in understanding the pathophysiology of stroke and the state of the art in acute management of afflicted patients as well as in subsequent neurorehabilitation training, stroke remains the most common neurological cause of long-term disability in adulthood. To enhance stroke patients' independence and well-being it is necessary, therefore, to consider and develop new therapeutic strategies and approaches. We postulate that sleep might play a pivotal role in neurorehabilitation following stroke. Over the last two decades compelling evidence for a major function of sleep in neuroplasticity and neural network reorganization underlying learning and memory has evolved. Training and learning of new motor skills and knowledge can modulate the characteristics of subsequent sleep, which additionally can improve memory performance. While healthy sleep appears to support neuroplasticity resulting in improved learning and memory, disturbed sleep following stroke in animals and humans can impair stroke outcome. In addition, sleep disorders such as sleep disordered breathing, insomnia, and restless legs syndrome are frequent in stroke patients and associated with worse recovery outcomes. Studies investigating the evolution of post-stroke sleep changes suggest that these changes might also reflect neural network reorganization underlying functional recovery. Experimental and clinical studies provide evidence that pharmacological sleep promotion in rodents and treatment of sleep disorders in humans improves functional outcome following stroke. Taken together, there is accumulating evidence that sleep represents a "plasticity state" in the process of recovery following ischemic stroke. However, to test the key role of sleep and sleep disorders for stroke recovery and to better understand the underlying molecular mechanisms, experimental research and large-scale prospective studies in humans are necessary. The effects of hospital conditions, such as adjusting light conditions according to the patients' sleep-wake rhythms, or sleep promoting drugs and non-invasive brain stimulation to promote neuronal plasticity and recovery following stroke requires further investigation.
Collapse
Affiliation(s)
- Simone B. Duss
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - Andrea Seiler
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - Markus H. Schmidt
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Bern University Hospital, Bern, Switzerland
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - Marta Pace
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - Antoine Adamantidis
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - René M. Müri
- Division of Cognitive and Restorative Neurology, Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - Claudio L. Bassetti
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Bern University Hospital, Bern, Switzerland
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
- Division of Cognitive and Restorative Neurology, Department of Neurology, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
17
|
Brager AJ, Yang T, Ehlen JC, Simon RP, Meller R, Paul KN. Sleep Is Critical for Remote Preconditioning-Induced Neuroprotection. Sleep 2016; 39:2033-2040. [PMID: 27568798 DOI: 10.5665/sleep.6238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/04/2016] [Indexed: 12/21/2022] Open
Abstract
STUDY OBJECTIVES Episodes of brief limb ischemia (remote preconditioning) in mice induce tolerance to modeled ischemic stroke (focal brain ischemia). Since stroke outcomes are in part dependent on sleep-wake history, we sought to determine if sleep is critical for the neuroprotective effect of limb ischemia. METHODS EEG/EMG recording electrodes were implanted in mice. After a 24 h baseline recording, limb ischemia was induced by tightening an elastic band around the left quadriceps for 10 minutes followed by 10 minutes of release for two cycles. Two days following remote preconditioning, a second 24 h EEG/EMG recording was completed and was immediately followed by a 60-minute suture occlusion of the middle cerebral artery (modeled ischemic stroke). This experiment was then repeated in a model of circadian and sleep abnormalities (Bmal1 knockout [KO] mice sleep 2 h more than wild-type littermates). Brain infarction was determined by vital dye staining, and sleep was assessed by trained identification of EEG/EMG recordings. RESULTS Two days after limb ischemia, wild-type mice slept an additional 2.4 h. This additional sleep was primarily comprised of non-rapid eye movement (NREM) sleep during the middle of the light-phase (i.e., naps). Repeating the experiment but preventing increases in sleep after limb ischemia abolished tolerance to ischemic stroke. In Bmal1 knockout mice, remote preconditioning did not increase daily sleep nor provide tolerance to subsequent focal ischemia. CONCLUSIONS These results suggest that sleep induced by remote preconditioning is both sufficient and necessary for its neuroprotective effects on stroke outcome.
Collapse
Affiliation(s)
- Allison J Brager
- Circadian Rhythms and Sleep Disorders Program, Department of Neurobiology, Morehouse School of Medicine, Atlanta GA.,Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD
| | - Tao Yang
- Translational Programs in Stroke, Neuroscience Institute, Morehouse School of Medicine, Atlanta GA
| | - J Christopher Ehlen
- Circadian Rhythms and Sleep Disorders Program, Department of Neurobiology, Morehouse School of Medicine, Atlanta GA
| | - Roger P Simon
- Translational Programs in Stroke, Neuroscience Institute, Morehouse School of Medicine, Atlanta GA
| | - Robert Meller
- Translational Programs in Stroke, Neuroscience Institute, Morehouse School of Medicine, Atlanta GA
| | - Ketema N Paul
- Circadian Rhythms and Sleep Disorders Program, Department of Neurobiology, Morehouse School of Medicine, Atlanta GA.,Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
18
|
Sleep Modulation Alleviates Axonal Damage and Cognitive Decline after Rodent Traumatic Brain Injury. J Neurosci 2016; 36:3422-9. [PMID: 27013672 DOI: 10.1523/jneurosci.3274-15.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 02/18/2016] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Traumatic brain injury (TBI) is a major cause of death and disability worldwide. It produces diffuse axonal injury (DAI), which contributes to cognitive impairment, but effective disease-modifying treatment strategies are missing. We have recently developed a rat model of closed skull TBI that reproduces human TBI consequences, including DAI and clinical sequelae such as memory impairment. Here, we investigated whether sleep modulation after trauma has an impact on DAI and memory outcome. We assessed cognition with the novel object recognition test and stained for amyloid precursor protein, a DAI marker. We found that both sleep induction and restriction acutely after TBI enhanced encephalographic slow-wave activity, markedly reduced diffuse axonal damage in the cortex and hippocampus, and improved memory impairment 2 weeks after trauma. These results suggest that enhancing slow-wave sleep acutely after trauma may have a beneficial disease-modifying effect in subjects with acute TBI. SIGNIFICANCE STATEMENT Traumatic brain injury (TBI) is a clinically important entity. Cognitive deficits belong to the most prevalent chronic posttraumatic symptoms, most likely due to diffuse axonal injury (DAI). A growing body of evidence suggests a role of sleep in the clearance of waste products in the brain, possibly including amyloid precursor protein (APP), a marker of DAI. In this study, we provide evidence that enhancement of slow-wave oscillatory activity in the delta-frequency range decreases the APP-immunoreactivity and preserves cognitive abilities after trauma, potentially offering novel, noninvasive treatment options for traumatic injury.
Collapse
|
19
|
Büchele F, Morawska MM, Schreglmann SR, Penner M, Muser M, Baumann CR, Noain D. Novel Rat Model of Weight Drop-Induced Closed Diffuse Traumatic Brain Injury Compatible with Electrophysiological Recordings of Vigilance States. J Neurotrauma 2016; 33:1171-80. [DOI: 10.1089/neu.2015.4001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fabian Büchele
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Marta M. Morawska
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich ZNZ, University of Zurich, Zurich, Switzerland
| | | | - Marco Penner
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Markus Muser
- Working Group on Accident Mechanics, Swiss Federal Institute of Technology, Zurich, Switzerland
| | | | - Daniela Noain
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Wickwire EM, Williams SG, Roth T, Capaldi VF, Jaffe M, Moline M, Motamedi GK, Morgan GW, Mysliwiec V, Germain A, Pazdan RM, Ferziger R, Balkin TJ, MacDonald ME, Macek TA, Yochelson MR, Scharf SM, Lettieri CJ. Sleep, Sleep Disorders, and Mild Traumatic Brain Injury. What We Know and What We Need to Know: Findings from a National Working Group. Neurotherapeutics 2016; 13:403-17. [PMID: 27002812 PMCID: PMC4824019 DOI: 10.1007/s13311-016-0429-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disturbed sleep is one of the most common complaints following traumatic brain injury (TBI) and worsens morbidity and long-term sequelae. Further, sleep and TBI share neurophysiologic underpinnings with direct relevance to recovery from TBI. As such, disturbed sleep and clinical sleep disorders represent modifiable treatment targets to improve outcomes in TBI. This paper presents key findings from a national working group on sleep and TBI, with a specific focus on the testing and development of sleep-related therapeutic interventions for mild TBI (mTBI). First, mTBI and sleep physiology are briefly reviewed. Next, essential empirical and clinical questions and knowledge gaps are addressed. Finally, actionable recommendations are offered to guide active and efficient collaboration between academic, industry, and governmental stakeholders.
Collapse
Affiliation(s)
- Emerson M Wickwire
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
- Sleep Disorders Center, Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Scott G Williams
- Department of Medicine, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Thomas Roth
- Sleep Disorders and Research Center, Henry Ford Hospital, Detroit, MI, USA
| | - Vincent F Capaldi
- Department of Behavioral Biology, Walter Reed Army Institute of Research, Center for Military Psychiatry and Neuroscience Research, Silver Spring, MD, USA
| | - Michael Jaffe
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Concussion and Sports Program, University of Florida Trauma, Gainesville, FL, USA
- UF Health Sleep Disorders Center, Gainesville, FL, USA
| | | | - Gholam K Motamedi
- Department of Neurology, Georgetown University Hospital, Washington, DC, USA
| | - Gregory W Morgan
- Sleep Disorders Center, National Intrepid Center of Excellence, Bethesda, MD, USA
| | - Vincent Mysliwiec
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Sleep Medicine, San Antonio Military Medical Center, San Antonio, TX, USA
| | - Anne Germain
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | - Thomas J Balkin
- Department of Behavioral Biology, Walter Reed Army Institute of Research, Center for Military Psychiatry and Neuroscience Research, Silver Spring, MD, USA
| | - Margaret E MacDonald
- Defense and Veterans Brain Injury Center, (Contractor, General Dynamics Health Solutions), Evans Army Community Hospital, Fort Carson, CO, USA
| | - Thomas A Macek
- Department of Clinical Science, CNS, Takeda Development Center - Americas, Deerfield, IL, USA
| | - Michael R Yochelson
- Medstar National Rehabilitation Network, Washington, DC, USA
- Departments of Neurology and Rehabilitation Medicine, Georgetown University School of Medicine, Washington, DC, USA
| | - Steven M Scharf
- Sleep Disorders Center, Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher J Lettieri
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
21
|
Pace M, Baracchi F, Gao B, Bassetti C. Identification of Sleep-Modulated Pathways Involved in Neuroprotection from Stroke. Sleep 2015; 38:1707-18. [PMID: 26085290 DOI: 10.5665/sleep.5148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/13/2015] [Indexed: 12/21/2022] Open
Abstract
STUDY OBJECTIVES Sleep deprivation (SDp) performed before stroke induces an ischemic tolerance state as observed in other forms of preconditioning. As the mechanisms underlying this effect are not well understood, we used DNA oligonucleotide microarray analysis to identify the genes and the gene-pathways underlying SDp preconditioning effects. DESIGN Gene expression was analyzed 3 days after stroke in 4 experimental groups: (i) SDp performed before focal cerebral ischemia (IS) induction; (ii) SDp performed before sham surgery; (iii) IS without SDp; and (iv) sham surgery without SDp. SDp was performed by gentle handling during the last 6 h of the light period, and ischemia was induced immediately after. SETTINGS Basic sleep research laboratory. MEASUREMENTS AND RESULTS Stroke induced a massive alteration in gene expression both in sleep deprived and non-sleep deprived animals. However, compared to animals that underwent ischemia alone, SDp induced a general reduction in transcriptional changes with a reduction in the upregulation of genes involved in cell cycle regulation and immune response. Moreover, an upregulation of a new neuroendocrine pathway which included melanin concentrating hormone, glycoprotein hormones-α-polypeptide and hypocretin was observed exclusively in rats sleep deprived before stroke. CONCLUSION Our data indicate that sleep deprivation before stroke reprogrammed the signaling response to injury. The inhibition of cell cycle regulation and inflammation are neuroprotective mechanisms reported also for other forms of preconditioning treatment, whereas the implication of the neuroendocrine function is novel and has never been described before. These results therefore provide new insights into neuroprotective mechanisms involved in ischemic tolerance mechanisms.
Collapse
Affiliation(s)
- Marta Pace
- ZEN - Zentrum für Experimentelle Neurologie, Inselspital, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Francesca Baracchi
- ZEN - Zentrum für Experimentelle Neurologie, Inselspital, Bern, Switzerland
| | - Bo Gao
- ZEN - Zentrum für Experimentelle Neurologie, Inselspital, Bern, Switzerland
| | - Claudio Bassetti
- ZEN - Zentrum für Experimentelle Neurologie, Inselspital, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Cerri M. More Wake, Less Stroke. Sleep 2015; 38:1671-2. [DOI: 10.5665/sleep.5138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 11/03/2022] Open
|
23
|
Galati S, Salvadè A, Pace M, Sarasso S, Baracchi F, Bassetti CL, Kaelin-Lang A, Städler C, Stanzione P, Möller JC. Evidence of an association between sleep and levodopa-induced dyskinesia in an animal model of Parkinson's disease. Neurobiol Aging 2015; 36:1577-89. [DOI: 10.1016/j.neurobiolaging.2014.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 11/01/2014] [Accepted: 12/15/2014] [Indexed: 01/15/2023]
|
24
|
Hodor A, Palchykova S, Baracchi F, Noain D, Bassetti CL. Baclofen facilitates sleep, neuroplasticity, and recovery after stroke in rats. Ann Clin Transl Neurol 2014; 1:765-77. [PMID: 25493268 PMCID: PMC4241804 DOI: 10.1002/acn3.115] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/22/2014] [Accepted: 08/15/2014] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Sleep disruption in the acute phase after stroke has detrimental effects on recovery in both humans and animals. Conversely, the effect of sleep promotion remains unclear. Baclofen (Bac) is a known non-rapid eye movement (NREM) sleep-promoting drug in both humans and animals. The aim of this study was to investigate the effect of Bac on stroke recovery in a rat model of focal cerebral ischemia (isch). METHODS Rats, assigned to three experimental groups (Bac/isch, saline/isch, or Bac/sham), were injected twice daily for 10 consecutive days with Bac or saline, starting 24 h after induction of stroke. The sleep-wake cycle was assessed by EEG recordings and functional motor recovery by single pellet reaching test (SPR). In order to identify potential neuroplasticity mechanisms, axonal sprouting and neurogenesis were evaluated. Brain damage was assessed by Nissl staining. RESULTS Repeated Bac treatment after ischemia affected sleep, motor function, and neuroplasticity, but not the size of brain damage. NREM sleep amount was increased significantly during the dark phase in Bac/isch compared to the saline/isch group. SPR performance dropped to 0 immediately after stroke and was recovered slowly thereafter in both ischemic groups. However, Bac-treated ischemic rats performed significantly better than saline-treated animals. Axonal sprouting in the ipsilesional motor cortex and striatum, and neurogenesis in the peri-infarct region were significantly increased in Bac/isch group. CONCLUSION Delayed repeated Bac treatment after stroke increased NREM sleep and promoted both neuroplasticity and functional outcome. These data support the hypothesis of the role of sleep as a modulator of poststroke recovery.
Collapse
Affiliation(s)
- Aleksandra Hodor
- Center for Experimental Neurology (ZEN), Department of Neurology, Inselspital, Bern University Hospital 3010, Bern, Switzerland
| | - Svitlana Palchykova
- Center for Experimental Neurology (ZEN), Department of Neurology, Inselspital, Bern University Hospital 3010, Bern, Switzerland
| | - Francesca Baracchi
- Center for Experimental Neurology (ZEN), Department of Neurology, Inselspital, Bern University Hospital 3010, Bern, Switzerland
| | - Daniela Noain
- Department of Neurology, University Hospital Zürich 8091, Zürich, Switzerland
| | - Claudio L Bassetti
- Center for Experimental Neurology (ZEN), Department of Neurology, Inselspital, Bern University Hospital 3010, Bern, Switzerland
| |
Collapse
|
25
|
Hodor A, Palchykova S, Gao B, Bassetti CL. Baclofen and gamma-hydroxybutyrate differentially altered behavior, EEG activity and sleep in rats. Neuroscience 2014; 284:18-28. [PMID: 25301745 DOI: 10.1016/j.neuroscience.2014.08.061] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/17/2014] [Accepted: 08/27/2014] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Animal and human studies have shown that sleep may have an impact on functional recovery after brain damage. Baclofen (Bac) and gamma-hydroxybutyrate (GHB) have been shown to induce physiological sleep in humans, however, their effects in rodents are unclear. The aim of this study is to characterize sleep and electroencelphalogram (EEG) after Bac and GHB administration in rats. We hypothesized that both drugs would induce physiological sleep. METHODS Adult male Sprague-Dawley rats were implanted with EEG/electromyogram (EMG) electrodes for sleep recordings. Bac (10 or 20 mg/kg), GHB (150 or 300 mg/kg) or saline were injected 1 h after light and dark onset to evaluate time of day effect of the drugs. Vigilance states and EEG spectra were quantified. RESULTS Bac and GHB induced a non-physiological state characterized by atypical behavior and an abnormal EEG pattern. After termination of this state, Bac was found to increase the duration of non-rapid eye movement (NREM) and rapid eye movement (REM) sleep (∼90 and 10 min, respectively), reduce sleep fragmentation and affect NREM sleep episode frequency and duration (p<0.05). GHB had no major effect on vigilance states. Bac drastically increased EEG power density in NREM sleep in the frequencies 1.5-6.5 and 9.5-21.5 Hz compared to saline (p<0.05), while GHB enhanced power in the 1-5-Hz frequency band and reduced it in the 7-9-Hz band. Slow-wave activity in NREM sleep was enhanced 1.5-3-fold during the first 1-2 h following termination of the non-physiological state. The magnitude of drug effects was stronger during the dark phase. CONCLUSION While both Bac and GHB induced a non-physiological resting state, only Bac facilitated and consolidated sleep, and promoted EEG delta oscillations thereafter. Hence, Bac can be considered a sleep-promoting drug and its effects on functional recovery after stroke can be evaluated both in humans and rats.
Collapse
Affiliation(s)
- A Hodor
- Center for Experimental Neurology (ZEN), Department of Neurology, Inselspital, Bern University Hospital, Switzerland.
| | - S Palchykova
- Center for Experimental Neurology (ZEN), Department of Neurology, Inselspital, Bern University Hospital, Switzerland
| | - B Gao
- Center for Experimental Neurology (ZEN), Department of Neurology, Inselspital, Bern University Hospital, Switzerland
| | - C L Bassetti
- Center for Experimental Neurology (ZEN), Department of Neurology, Inselspital, Bern University Hospital, Switzerland
| |
Collapse
|
26
|
Rowe RK, Harrison JL, O'Hara BF, Lifshitz J. Recovery of neurological function despite immediate sleep disruption following diffuse brain injury in the mouse: clinical relevance to medically untreated concussion. Sleep 2014; 37:743-52. [PMID: 24899763 DOI: 10.5665/sleep.3582] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
STUDY OBJECTIVE We investigated the relationship between immediate disruption of posttraumatic sleep and functional outcome in the diffuse brain-injured mouse. DESIGN Adult male C57BL/6 mice were subjected to moderate midline fluid percussion injury (n = 65; 1.4 atm; 6-10 min righting reflex time) or sham injury (n = 44). Cohorts received either intentional sleep disruption (minimally stressful gentle handling) or no sleep disruption for 6 h following injury. Following disruption, serum corticosterone levels (enzyme-linked immunosorbent assay) and posttraumatic sleep (noninvasive piezoelectric sleep cages) were measured. For 1-7 days postinjury, sensorimotor outcome was assessed by Rotarod and a modified Neurological Severity Score (NSS). Cognitive function was measured using Novel Object Recognition (NOR) and Morris water maze (MWM) in the first week postinjury. SETTING Neurotrauma research laboratory. MEASUREMENTS AND RESULTS Disrupting posttraumatic sleep for 6 h did not affect serum corticosterone levels or functional outcome. In the hour following the first dark onset, sleep-disrupted mice exhibited a significant increase in sleep; however, this increase was not sustained and there was no rebound of lost sleep. Regardless of sleep disruption, mice showed a time-dependent improvement in Rotarod performance, with brain-injured mice having significantly shorter latencies on day 7 compared to sham. Further, brain-injured mice, regardless of sleep disruption, had significantly higher NSS scores postinjury compared with sham. Cognitive behavioral testing showed no group differences among any treatment group measured by MWM and NOR. CONCLUSION Short-duration disruption of posttraumatic sleep did not affect functional outcome, measured by motor and cognitive performance. These data raise uncertainty about posttraumatic sleep as a mechanism of recovery from diffuse brain injury.
Collapse
Affiliation(s)
- Rachel K Rowe
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ ; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ ; Department of Anatomy and Neurobiology, College of Medicine, University of Kentucky College of Medicine, Lexington, KY ; Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, Lexington, KY
| | - Jordan L Harrison
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ ; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ ; Interdisciplinary Program in Neuroscience, Arizona State University, Phoenix, AZ
| | - Bruce F O'Hara
- Department of Biology, College of Arts and Sciences, University of Kentucky College of Medicine, Lexington, KY ; Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, Lexington, KY
| | - Jonathan Lifshitz
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ ; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ ; Phoenix Veteran Affairs Healthcare System, Phoenix, AZ ; Interdisciplinary Program in Neuroscience, Arizona State University, Phoenix, AZ ; Department of Anatomy and Neurobiology, College of Medicine, University of Kentucky College of Medicine, Lexington, KY
| |
Collapse
|
27
|
El Husseini N, Laskowitz DT. The role of neuroendocrine pathways in prognosis after stroke. Expert Rev Neurother 2014; 14:217-32. [PMID: 24428141 DOI: 10.1586/14737175.2014.877841] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A number of neuroendocrine changes have been described after stroke, which may serve adaptive or deleterious functions. The neuroendocrine changes include activation of the hypothalamo-pituitary-adrenal axis, sympathetic nervous system and alterations of several hormonal levels. Alterations of the HPA axis, increased catecholamines, natriuretic peptides and, decreased melatonin and IGF-1 levels are associated with poor post-stroke outcome, although there is no definitive proof of causality. Therefore, it remains to be established whether alteration of neuroendocrine responses could be used as a potential therapeutic target to improve stroke outcome. This article gives an overview of the major neuroendocrine pathways altered by stroke and highlights their potential for clinical use and further neurotherapeutic development by summarizing the evidence for their association with stroke outcome including functional outcome, post-stroke infection, delirium, depression and stroke-related myocardial injury.
Collapse
Affiliation(s)
- Nada El Husseini
- Department of Neurology, Duke University Medical Center, Bryan Research Building, Office 201F, Research Drive, Durham, NC 27710, USA
| | | |
Collapse
|