1
|
Lumpkin CJ, Harris AW, Connell AJ, Kirk RW, Whiting JA, Saieva L, Pellizzoni L, Burghes AHM, Butchbach MER. Evaluation of the orally bioavailable 4-phenylbutyrate-tethered trichostatin A analogue AR42 in models of spinal muscular atrophy. Sci Rep 2023; 13:10374. [PMID: 37365234 PMCID: PMC10293174 DOI: 10.1038/s41598-023-37496-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 06/22/2023] [Indexed: 06/28/2023] Open
Abstract
Proximal spinal muscular atrophy (SMA) is a leading genetic cause for infant death in the world and results from the selective loss of motor neurons in the spinal cord. SMA is a consequence of low levels of SMN protein and small molecules that can increase SMN expression are of considerable interest as potential therapeutics. Previous studies have shown that both 4-phenylbutyrate (4PBA) and trichostatin A (TSA) increase SMN expression in dermal fibroblasts derived from SMA patients. AR42 is a 4PBA-tethered TSA derivative that is a very potent histone deacetylase inhibitor. SMA patient fibroblasts were treated with either AR42, AR19 (a related analogue), 4PBA, TSA or vehicle for 5 days and then immunostained for SMN localization. AR42 as well as 4PBA and TSA increased the number of SMN-positive nuclear gems in a dose-dependent manner while AR19 did not show marked changes in gem numbers. While gem number was increased in AR42-treated SMA fibroblasts, there were no significant changes in FL-SMN mRNA or SMN protein. The neuroprotective effect of this compound was then assessed in SMNΔ7 SMA (SMN2+/+;SMNΔ7+/+;mSmn-/-) mice. Oral administration of AR42 prior to disease onset increased the average lifespan of SMNΔ7 SMA mice by ~ 27% (20.1 ± 1.6 days for AR42-treated mice vs. 15.8 ± 0.4 days for vehicle-treated mice). AR42 treatment also improved motor function in these mice. AR42 treatment inhibited histone deacetylase (HDAC) activity in treated spinal cord although it did not affect SMN protein expression in these mice. AKT and GSK3β phosphorylation were both significantly increased in SMNΔ7 SMA mouse spinal cords. In conclusion, presymptomatic administration of the HDAC inhibitor AR42 ameliorates the disease phenotype in SMNΔ7 SMA mice in a SMN-independent manner possibly by increasing AKT neuroprotective signaling.
Collapse
Affiliation(s)
- Casey J Lumpkin
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Ashlee W Harris
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Andrew J Connell
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Ryan W Kirk
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Joshua A Whiting
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Luciano Saieva
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Livio Pellizzoni
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | - Arthur H M Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Matthew E R Butchbach
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA.
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Li YJ, Chen TH, Wu YZ, Tseng YH. Metabolic and Nutritional Issues Associated with Spinal Muscular Atrophy. Nutrients 2020; 12:nu12123842. [PMID: 33339220 PMCID: PMC7766651 DOI: 10.3390/nu12123842] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/02/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA), the main genetic cause of infant death, is a neurodegenerative disease characterized by the selective loss of motor neurons in the anterior horn of the spinal cord, accompanied by muscle wasting. Pathomechanically, SMA is caused by low levels of the survival motor neuron protein (SMN) resulting from the loss of the SMN1 gene. However, emerging research extends the pathogenic effect of SMN deficiency beyond motor neurons. A variety of metabolic abnormalities, especially altered fatty acid metabolism and impaired glucose tolerance, has been described in isolated cases of SMA; therefore, the impact of SMN deficiency in metabolic abnormalities has been speculated. Although the life expectancy of these patients has increased due to novel disease-modifying therapies and standardization of care, understanding of the involvement of metabolism and nutrition in SMA is still limited. Optimal nutrition support and metabolic monitoring are essential for patients with SMA, and a comprehensive nutritional assessment can guide personalized nutritional therapy for this vulnerable population. It has recently been suggested that metabolomics studies before and after the onset of SMA in patients can provide valuable information about the direct or indirect effects of SMN deficiency on metabolic abnormalities. Furthermore, identifying and quantifying the specific metabolites in SMA patients may serve as an authentic biomarker or therapeutic target for SMA. Here, we review the main epidemiological and mechanistic findings that link metabolic changes to SMA and further discuss the principles of metabolomics as a novel approach to seek biomarkers and therapeutic insights in SMA.
Collapse
Affiliation(s)
- Yang-Jean Li
- Department of Pediatrics, Kaohsiung Municipal United Hospital, Kaohsiung 80455, Taiwan;
| | - Tai-Heng Chen
- Department of Pediatrics, Division of Pediatric Emergency, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-Z.W.); (Y.-H.T.)
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7-312-1101; Fax: +886-7-321-2062
| | - Yan-Zhang Wu
- Department of Pediatrics, Division of Pediatric Emergency, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-Z.W.); (Y.-H.T.)
| | - Yung-Hao Tseng
- Department of Pediatrics, Division of Pediatric Emergency, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-Z.W.); (Y.-H.T.)
| |
Collapse
|
3
|
Abstract
Autosomal-recessive proximal spinal muscular atrophy (Werdnig-Hoffmann, Kugelberg-Welander) is caused by mutation of the SMN1 gene, and the clinical severity correlates with the number of copies of a nearly identical gene, SMN2. The SMN protein plays a critical role in spliceosome assembly and may have other cellular functions, such as mRNA transport. Cell culture and animal models have helped to define the disease mechanism and to identify targets for therapeutic intervention. The main focus for developing treatment has been to increase SMN levels, and accomplishing this with small molecules, oligonucleotides, and gene replacement has been quite. An oligonucleotide, nusinersen, was recently approved for treatment in patients, and confirmatory studies of other agents are now under way.
Collapse
Affiliation(s)
- Eveline S Arnold
- Neurogenetics Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
4
|
Walter LM, Deguise MO, Meijboom KE, Betts CA, Ahlskog N, van Westering TLE, Hazell G, McFall E, Kordala A, Hammond SM, Abendroth F, Murray LM, Shorrock HK, Prosdocimo DA, Haldar SM, Jain MK, Gillingwater TH, Claus P, Kothary R, Wood MJA, Bowerman M. Interventions Targeting Glucocorticoid-Krüppel-like Factor 15-Branched-Chain Amino Acid Signaling Improve Disease Phenotypes in Spinal Muscular Atrophy Mice. EBioMedicine 2018; 31:226-242. [PMID: 29735415 PMCID: PMC6013932 DOI: 10.1016/j.ebiom.2018.04.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/15/2018] [Accepted: 04/26/2018] [Indexed: 01/01/2023] Open
Abstract
The circadian glucocorticoid-Krüppel-like factor 15-branched-chain amino acid (GC-KLF15-BCAA) signaling pathway is a key regulatory axis in muscle, whose imbalance has wide-reaching effects on metabolic homeostasis. Spinal muscular atrophy (SMA) is a neuromuscular disorder also characterized by intrinsic muscle pathologies, metabolic abnormalities and disrupted sleep patterns, which can influence or be influenced by circadian regulatory networks that control behavioral and metabolic rhythms. We therefore set out to investigate the contribution of the GC-KLF15-BCAA pathway in SMA pathophysiology of Taiwanese Smn−/−;SMN2 and Smn2B/− mouse models. We thus uncover substantial dysregulation of GC-KLF15-BCAA diurnal rhythmicity in serum, skeletal muscle and metabolic tissues of SMA mice. Importantly, modulating the components of the GC-KLF15-BCAA pathway via pharmacological (prednisolone), genetic (muscle-specific Klf15 overexpression) and dietary (BCAA supplementation) interventions significantly improves disease phenotypes in SMA mice. Our study highlights the GC-KLF15-BCAA pathway as a contributor to SMA pathogenesis and provides several treatment avenues to alleviate peripheral manifestations of the disease. The therapeutic potential of targeting metabolic perturbations by diet and commercially available drugs could have a broader implementation across other neuromuscular and metabolic disorders characterized by altered GC-KLF15-BCAA signaling. SMA is a neuromuscular disease characterized by motoneuron loss, muscle abnormalities and metabolic perturbations. The regulatory GC-KLF15-BCAA pathway is dysregulated in serum and skeletal muscle of SMA mice during disease progression. Modulating GC-KLF15-BCAA signaling by pharmacological, dietary and genetic interventions improves phenotype of SMA mice.
Spinal muscular atrophy (SMA) is a devastating and debilitating childhood genetic disease. Although nerve cells are mainly affected, muscle is also severely impacted. The normal communication between the glucocorticoid (GC) hormone, the protein KLF15 and the dietary branched-chain amino acids (BCAAs) maintains muscle and whole-body health. In this study, we identified an abnormal activity of GC-KLF15- BCAA in blood and muscle of SMA mice. Importantly, targeting GC-KLF15-BCAA activity with an existing drug or a specific diet improved disease progression in SMA mice. Our research uncovers GCs, KLF15 and BCAAs as therapeutic targets to ameliorate SMA muscle and whole-body health.
Collapse
Affiliation(s)
- Lisa M Walter
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany; Center of Systems Neuroscience, Hannover, Germany
| | - Marc-Olivier Deguise
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada; Department of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Katharina E Meijboom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Corinne A Betts
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Nina Ahlskog
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Tirsa L E van Westering
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Gareth Hazell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Emily McFall
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada; Department of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Anna Kordala
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Suzan M Hammond
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frank Abendroth
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Lyndsay M Murray
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom; Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Hannah K Shorrock
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom; Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Domenick A Prosdocimo
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Saptarsi M Haldar
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA; Department of Medicine, Division of Cardiology University of California, San Francisco, CA, USA
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom; Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany; Center of Systems Neuroscience, Hannover, Germany
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada; Department of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
5
|
Edwards JD, Butchbach MER. Effect of the Butyrate Prodrug Pivaloyloxymethyl Butyrate (AN9) on a Mouse Model for Spinal Muscular Atrophy. J Neuromuscul Dis 2018; 3:511-515. [PMID: 27911337 DOI: 10.3233/jnd-160187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Spinal muscular atrophy (SMA) is an early-onset motor neuron disease that leads to loss of muscle function. Butyrate (BA)-based compounds markedly improve the survival and motor phenotype of SMA mice. In this study, we examine the protective effects of the BA prodrug pivaloyloxymethyl butyrate (AN9) on the survival of SMNΔ7 SMA mice. Oral administration of AN9 beginning at PND04 almost doubled the average lifespan of SMNΔ7 SMA mice. AN9 treatment also increased the growth rate of SMNΔ7 SMA mice when compared to vehicle-treated SMNΔ7 SMA mice. In conclusion, BA prodrugs like AN9 have ameliorative effects on SMNΔ7 SMA mice.
Collapse
Affiliation(s)
- Jonathan D Edwards
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Matthew E R Butchbach
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA.,Center for Pediatric Research, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA.,Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
6
|
Wood MJA, Talbot K, Bowerman M. Spinal muscular atrophy: antisense oligonucleotide therapy opens the door to an integrated therapeutic landscape. Hum Mol Genet 2018; 26:R151-R159. [PMID: 28977438 DOI: 10.1093/hmg/ddx215] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 01/03/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder characterized by loss of spinal cord motor neurons, muscle atrophy and infantile death or severe disability. It is caused by severe reduction of the ubiquitously expressed survival motor neuron (SMN) protein, owing to loss of the SMN1 gene. This would be completely incompatible with survival without the presence of a quasi-identical duplicated gene, SMN2, specific to humans. SMN2 harbours a silent point mutation that favours the production of transcripts lacking exon 7 and a rapidly degraded non-functional SMNΔ7 protein, but from which functional full length SMN protein is produced at very low levels (∼10%). Since the seminal discovery of the SMA-causing gene in 1995, research has focused on the development of various SMN replacement strategies culminating, in December 2016, in the approval of the first precise molecularly targeted therapy for SMA (nusinersen), and a pivotal proof of principle that therapeutic antisense oligonucleotide (ASO) treatment can effectively target the central nervous system (CNS) to treat neurological and neuromuscular disease. Nusinersen is a steric block ASO that binds the SMN2 messenger RNA and promotes exon 7 inclusion and thus increases full length SMN expression. Here, we consider the implications of this therapeutic landmark for SMA therapeutics and discuss how future developments will need to address the challenges of delivering ASO therapies to the CNS, with appropriate efficiency and activity, and how SMN-based therapy should be used in combination with complementary strategies to provide an integrated approach to treat CNS and peripheral pathologies in SMA.
Collapse
Affiliation(s)
- Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford OX1 3QX, Oxford, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford OX1 3QX, Oxford, UK
| |
Collapse
|
7
|
Tosolini AP, Sleigh JN. Motor Neuron Gene Therapy: Lessons from Spinal Muscular Atrophy for Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2017; 10:405. [PMID: 29270111 PMCID: PMC5725447 DOI: 10.3389/fnmol.2017.00405] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/21/2017] [Indexed: 12/11/2022] Open
Abstract
Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS) are severe nervous system diseases characterized by the degeneration of lower motor neurons. They share a number of additional pathological, cellular, and genetic parallels suggesting that mechanistic and clinical insights into one disorder may have value for the other. While there are currently no clinical ALS gene therapies, the splice-switching antisense oligonucleotide, nusinersen, was recently approved for SMA. This milestone was achieved through extensive pre-clinical research and patient trials, which together have spawned fundamental insights into motor neuron gene therapy. We have thus tried to distil key information garnered from SMA research, in the hope that it may stimulate a more directed approach to ALS gene therapy. Not only must the type of therapeutic (e.g., antisense oligonucleotide vs. viral vector) be sensibly selected, but considerable thought must be applied to the where, which, what, and when in order to enhance treatment benefit: to where (cell types and tissues) must the drug be delivered and how can this be best achieved? Which perturbed pathways must be corrected and can they be concurrently targeted? What dosing regime and concentration should be used? When should medication be administered? These questions are intuitive, but central to identifying and optimizing a successful gene therapy. Providing definitive solutions to these quandaries will be difficult, but clear thinking about therapeutic testing is necessary if we are to have the best chance of developing viable ALS gene therapies and improving upon early generation SMA treatments.
Collapse
Affiliation(s)
- Andrew P Tosolini
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - James N Sleigh
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
8
|
Bowerman M, Murray LM, Scamps F, Schneider BL, Kothary R, Raoul C. Pathogenic commonalities between spinal muscular atrophy and amyotrophic lateral sclerosis: Converging roads to therapeutic development. Eur J Med Genet 2017; 61:685-698. [PMID: 29313812 DOI: 10.1016/j.ejmg.2017.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/04/2017] [Accepted: 12/03/2017] [Indexed: 12/12/2022]
Abstract
Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS) are the two most common motoneuron disorders, which share typical pathological hallmarks while remaining genetically distinct. Indeed, SMA is caused by deletions or mutations in the survival motor neuron 1 (SMN1) gene whilst ALS, albeit being mostly sporadic, can also be caused by mutations within genes, including superoxide dismutase 1 (SOD1), Fused in Sarcoma (FUS), TAR DNA-binding protein 43 (TDP-43) and chromosome 9 open reading frame 72 (C9ORF72). However, it has come to light that these two diseases may be more interlinked than previously thought. Indeed, it has recently been found that FUS directly interacts with an Smn-containing complex, mutant SOD1 perturbs Smn localization, Smn depletion aggravates disease progression of ALS mice, overexpression of SMN in ALS mice significantly improves their phenotype and lifespan, and duplications of SMN1 have been linked to sporadic ALS. Beyond genetic interactions, accumulating evidence further suggests that both diseases share common pathological identities such as intrinsic muscle defects, neuroinflammation, immune organ dysfunction, metabolic perturbations, defects in neuron excitability and selective motoneuron vulnerability. Identifying common molecular effectors that mediate shared pathologies in SMA and ALS would allow for the development of therapeutic strategies and targeted gene therapies that could potentially alleviate symptoms and be equally beneficial in both disorders. In the present review, we will examine our current knowledge of pathogenic commonalities between SMA and ALS, and discuss how furthering this understanding can lead to the establishment of novel therapeutic approaches with wide-reaching impact on multiple motoneuron diseases.
Collapse
Affiliation(s)
- Melissa Bowerman
- School of Medicine, Keele University, Staffordshire, United Kingdom; Institute for Science and Technology in Medicine, Stoke-on-Trent, United Kingdom; Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom
| | - Lyndsay M Murray
- Euan McDonald Centre for Motor Neuron Disease Research and Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Frédérique Scamps
- The Institute for Neurosciences of Montpellier, Inserm UMR1051, Univ Montpellier, Saint Eloi Hospital, Montpellier, France
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada; Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Cédric Raoul
- The Institute for Neurosciences of Montpellier, Inserm UMR1051, Univ Montpellier, Saint Eloi Hospital, Montpellier, France.
| |
Collapse
|
9
|
Mercuri E, Finkel RS, Muntoni F, Wirth B, Montes J, Main M, Mazzone ES, Vitale M, Snyder B, Quijano-Roy S, Bertini E, Davis RH, Meyer OH, Simonds AK, Schroth MK, Graham RJ, Kirschner J, Iannaccone ST, Crawford TO, Woods S, Qian Y, Sejersen T. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord 2017; 28:103-115. [PMID: 29290580 DOI: 10.1016/j.nmd.2017.11.005] [Citation(s) in RCA: 548] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/06/2017] [Accepted: 11/13/2017] [Indexed: 01/02/2023]
Abstract
Spinal muscular atrophy (SMA) is a severe neuromuscular disorder due to a defect in the survival motor neuron 1 (SMN1) gene. Its incidence is approximately 1 in 11,000 live births. In 2007, an International Conference on the Standard of Care for SMA published a consensus statement on SMA standard of care that has been widely used throughout the world. Here we report a two-part update of the topics covered in the previous recommendations. In part 1 we present the methods used to achieve these recommendations, and an update on diagnosis, rehabilitation, orthopedic and spinal management; and nutritional, swallowing and gastrointestinal management. Pulmonary management, acute care, other organ involvement, ethical issues, medications, and the impact of new treatments for SMA are discussed in part 2.
Collapse
Affiliation(s)
- Eugenio Mercuri
- Paediatric Neurology Unit, Catholic University, Rome, Italy; Centro Clinico Nemo, Policlinico Gemelli, Rome, Italy.
| | - Richard S Finkel
- Nemours Children's Hospital, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine, Center for Rare Diseases and Institute for Genetics, University of Cologne, Germany
| | - Jacqueline Montes
- Departments of Rehabilitation and Regenerative Medicine and Neurology, Columbia University Medical Center, New York, NY, USA
| | - Marion Main
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Elena S Mazzone
- Paediatric Neurology Unit, Catholic University, Rome, Italy; Centro Clinico Nemo, Policlinico Gemelli, Rome, Italy
| | - Michael Vitale
- Department of Orthopaedic Surgery, Columbia University Medical Center, New York, NY, USA
| | - Brian Snyder
- Department of Orthopaedic Surgery, Children's Hospital, Harvard Medical School, Boston, USA
| | - Susana Quijano-Roy
- Assistance Publique des Hôpitaux de Paris (AP-HP), Unit of Neuromuscular Disorders, Department of Pediatric Intensive Care, Neurology and Rehabilitation, Hôpital Raymond Poincaré, Garches, France; Hôpitaux Universitaires Paris-Ile-de-France Ouest, INSERM U 1179, University of Versailles Saint-Quentin-en-Yvelines (UVSQ), Paris, France
| | - Enrico Bertini
- Unit of Neuromuscular & Neurodegenerative Disorders, Dept of Neurosciences & Neurorehabilitation, Bambino Gesù Children's Research Hospital, Rome, Italy
| | | | - Oscar H Meyer
- Division of Pulmonology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anita K Simonds
- NIHR Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | - Mary K Schroth
- Division of Pediatric Pulmonary, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, American Family Children's Hospital, Madison, WI, USA
| | - Robert J Graham
- Division of Critical Care, Dept of Anesthesiology, Perioperative & Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susan T Iannaccone
- Departments of Pediatrics and Neurology and Neurotherapeutics, Division of Pediatric Neurology, University of Texas Southwestern Medical Center and Children's Medical Center Dallas, USA
| | - Thomas O Crawford
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Simon Woods
- Policy Ethics and Life Sciences Research Centre, Newcastle University, Newcastle, UK
| | | | - Thomas Sejersen
- Department of Women's and Children's Health, Paediatric Neurology, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
10
|
The effects of C5-substituted 2,4-diaminoquinazolines on selected transcript expression in spinal muscular atrophy cells. PLoS One 2017; 12:e0180657. [PMID: 28662219 PMCID: PMC5491266 DOI: 10.1371/journal.pone.0180657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/19/2017] [Indexed: 02/03/2023] Open
Abstract
C5-substituted 2,4-diaminoquinazolines (2,4-DAQs) ameliorate disease severity in SMA mice. It is uncertain, however, that these compounds increase SMN protein levels in vivo even though they were identified as activators of the SMN2 promoter. These compounds also regulate the expression of other transcripts in neuroblastoma cells. In this study, we investigate the mechanism by which the 2,4-DAQs regulate the expression of SMN2 as well as other targets. D156844, D158872, D157161 and D157495 (RG3039) increased SMN2 promoter-driven reporter gene activity by at least 3-fold in NSC-34 cells. These compounds, however, did not significantly increase SMN2 mRNA levels in type II SMA fibroblasts nor in NSC-34 cells, although there was a trend for these compounds increasing SMN protein in SMA fibroblasts. The number of SMN-containing gems was increased in SMA fibroblasts in response to 2,4-DAQ treatment in a dose-dependent manner. ATOH7 mRNA levels were significantly lower in type II SMA fibroblasts. 2,4-DAQs significantly increased ATOH7, DRNT1 and DRTN2 transcript levels in type II SMA fibroblasts and restored ATOH7 levels to those observed in healthy fibroblasts. These compounds also increase Atoh7 mRNA expression in NSC-34 cells. In conclusion, 2,4-DAQs regulate SMN2 by increasing protein levels and gem localization. They also increase ATOH7, DRNT1 and DRNT2 transcript levels. This study reveals that the protective effects of 2,4-DAQs in SMA may be independent of SMN2 gene regulation. These compounds could be used in concert with a proven SMN2 inducer to develop a multi-faceted approach to treating SMA.
Collapse
|
11
|
Brain microvasculature defects and Glut1 deficiency syndrome averted by early repletion of the glucose transporter-1 protein. Nat Commun 2017; 8:14152. [PMID: 28106060 PMCID: PMC5263887 DOI: 10.1038/ncomms14152] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 12/03/2016] [Indexed: 12/14/2022] Open
Abstract
Haploinsufficiency of the SLC2A1 gene and paucity of its translated product, the glucose transporter-1 (Glut1) protein, disrupt brain function and cause the neurodevelopmental disorder, Glut1 deficiency syndrome (Glut1 DS). There is little to suggest how reduced Glut1 causes cognitive dysfunction and no optimal treatment for Glut1 DS. We used model mice to demonstrate that low Glut1 protein arrests cerebral angiogenesis, resulting in a profound diminution of the brain microvasculature without compromising the blood-brain barrier. Studies to define the temporal requirements for Glut1 reveal that pre-symptomatic, AAV9-mediated repletion of the protein averts brain microvasculature defects and prevents disease, whereas augmenting the protein late, during adulthood, is devoid of benefit. Still, treatment following symptom onset can be effective; Glut1 repletion in early-symptomatic mutants that have experienced sustained periods of low brain glucose nevertheless restores the cerebral microvasculature and ameliorates disease. Timely Glut1 repletion may thus constitute an effective treatment for Glut1 DS.
Collapse
|
12
|
Butchbach MER, Lumpkin CJ, Harris AW, Saieva L, Edwards JD, Workman E, Simard LR, Pellizzoni L, Burghes AHM. Protective effects of butyrate-based compounds on a mouse model for spinal muscular atrophy. Exp Neurol 2016; 279:13-26. [PMID: 26892876 PMCID: PMC4834225 DOI: 10.1016/j.expneurol.2016.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/11/2016] [Accepted: 02/13/2016] [Indexed: 11/17/2022]
Abstract
Proximal spinal muscular atrophy (SMA) is a childhood-onset degenerative disease resulting from the selective loss of motor neurons in the spinal cord. SMA is caused by the loss of SMN1 (survival motor neuron 1) but retention of SMN2. The number of copies of SMN2 modifies disease severity in SMA patients as well as in mouse models, making SMN2 a target for therapeutics development. Sodium butyrate (BA) and its analog (4PBA) have been shown to increase SMN2 expression in SMA cultured cells. In this study, we examined the effects of BA, 4PBA as well as two BA prodrugs-glyceryl tributyrate (BA3G) and VX563-on the phenotype of SMNΔ7 SMA mice. Treatment with 4PBA, BA3G and VX563 but not BA beginning at PND04 significantly improved the lifespan and delayed disease end stage, with administration of VX563 also improving the growth rate of these mice. 4PBA and VX563 improved the motor phenotype of SMNΔ7 SMA mice and prevented spinal motor neuron loss. Interestingly, neither 4PBA nor VX563 had an effect on SMN expression in the spinal cords of treated SMNΔ7 SMA mice; however, they inhibited histone deacetylase (HDAC) activity and restored the normal phosphorylation states of Akt and glycogen synthase kinase 3β, both of which are altered by SMN deficiency in vivo. These observations show that BA-based compounds with favorable pharmacokinetics ameliorate SMA pathology possibly by modulating HDAC and Akt signaling.
Collapse
Affiliation(s)
- Matthew E R Butchbach
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Center for Pediatric Research, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA; Department of Biological Sciences, University of Delaware, Newark, DE, USA.
| | - Casey J Lumpkin
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Ashlee W Harris
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Luciano Saieva
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Jonathan D Edwards
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Eileen Workman
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Louise R Simard
- Department of Biochemistry and Medical Genetics, University of Manitoba Faculty of Health Sciences, Winnipeg, Manitoba, Canada
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Arthur H M Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
13
|
Harris AW, Butchbach MER. The effect of the DcpS inhibitor D156844 on the protective action of follistatin in mice with spinal muscular atrophy. Neuromuscul Disord 2015; 25:699-705. [PMID: 26055638 DOI: 10.1016/j.nmd.2015.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/11/2015] [Accepted: 05/20/2015] [Indexed: 01/27/2023]
Abstract
Spinal muscular atrophy (SMA), a leading genetic cause of pediatric death in the world, is an early-onset disease affecting the motor neurons in the anterior horn of the spinal cord. This degeneration of motor neurons leads to loss of muscle function. At the molecular level, SMA results from the loss of or mutation in the survival motor neuron 1 (SMN1) gene. The number of copies of the nearly duplicated gene SMN2 modulates the disease severity in humans as well as in transgenic mouse models for SMA. Most preclinical therapeutic trials focus on identifying ways to increase SMN2 expression and to alter its splicing. Other therapeutic strategies have investigated compounds which protect affected motor neurons and their target muscles in an SMN-independent manner. In the present study, the effect of a combination regimen of the SMN2 inducer D156844 and the protectant follistatin on the disease progression and survival was measured in the SMNΔ7 SMA mouse model. The D156844/follistatin combination treatment improved the survival of, delayed the end stage of disease in and ameliorated the growth rate of SMNΔ7 SMA mice better than follistatin treatment alone. The D156844/follistatin combination treatment, however, did not provide additional benefit over D156844 alone with respect to survival and disease end stage even though it provided some additional therapeutic benefit over D156844 alone with respect to motor phenotype.
Collapse
Affiliation(s)
- Ashlee W Harris
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA
| | - Matthew E R Butchbach
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA; Center for Pediatric Research, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA; Department of Pediatrics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
14
|
Kaczmarek A, Schneider S, Wirth B, Riessland M. Investigational therapies for the treatment of spinal muscular atrophy. Expert Opin Investig Drugs 2015; 24:867-81. [DOI: 10.1517/13543784.2015.1038341] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anna Kaczmarek
- 1University of Cologne, Institute of Human Genetics, Kerpener Str. 34, Cologne 50931, Germany ;
- 2University of Cologne, Institute for Genetics, Cologne, Germany
- 3University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Svenja Schneider
- 1University of Cologne, Institute of Human Genetics, Kerpener Str. 34, Cologne 50931, Germany ;
- 2University of Cologne, Institute for Genetics, Cologne, Germany
- 3University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Brunhilde Wirth
- 1University of Cologne, Institute of Human Genetics, Kerpener Str. 34, Cologne 50931, Germany ;
- 2University of Cologne, Institute for Genetics, Cologne, Germany
- 3University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Markus Riessland
- 1University of Cologne, Institute of Human Genetics, Kerpener Str. 34, Cologne 50931, Germany ;
- 2University of Cologne, Institute for Genetics, Cologne, Germany
- 3University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| |
Collapse
|