1
|
Iacomino N, Tarasco MC, Berni A, Ronchi J, Mantegazza R, Cavalcante P, Foti M. Non-Coding RNAs in Myasthenia Gravis: From Immune Regulation to Personalized Medicine. Cells 2024; 13:1550. [PMID: 39329732 PMCID: PMC11430632 DOI: 10.3390/cells13181550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Myasthenia gravis (MG) is an antibody-mediated autoimmune disorder characterized by altered neuromuscular transmission, which causes weakness and fatigability in the skeletal muscles. The etiology of MG is complex, being associated with multiple genetic and environmental factors. Over recent years, progress has been made in understanding the immunological alterations implicated in the disease, but the exact pathogenesis still needs to be elucidated. A pathogenic interplay between innate immunity and autoimmunity contributes to the intra-thymic MG development. Epigenetic changes are critically involved in both innate and adaptive immune response regulation. They can act as (i) pathological factors besides genetic predisposition and (ii) co-factors contributing to disease phenotypes or patient-specific disease course/outcomes. This article reviews the role of non-coding RNAs (ncRNAs) as epigenetic factors implicated in MG. Particular attention is dedicated to microRNAs (miRNAs), whose expression is altered in MG patients' thymuses and circulating blood. The long ncRNA (lncRNA) contribution to MG, although not fully characterized yet, is also discussed. By summarizing the most recent and fast-growing findings on ncRNAs in MG, we highlight the therapeutic potential of these molecules for achieving immune regulation and their value as biomarkers for the development of personalized medicine approaches to improve disease care.
Collapse
Affiliation(s)
- Nicola Iacomino
- Neurology 4–Neuroimmunology and Neuromuscolar Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (N.I.); (M.C.T.); (A.B.); (R.M.)
| | - Maria Cristina Tarasco
- Neurology 4–Neuroimmunology and Neuromuscolar Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (N.I.); (M.C.T.); (A.B.); (R.M.)
- Ph.D. Program in Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Alessia Berni
- Neurology 4–Neuroimmunology and Neuromuscolar Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (N.I.); (M.C.T.); (A.B.); (R.M.)
| | - Jacopo Ronchi
- Ph.D. Program in Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy;
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- BicOMICs, University of Milano-Bicocca, 20900 Monza, Italy
| | - Renato Mantegazza
- Neurology 4–Neuroimmunology and Neuromuscolar Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (N.I.); (M.C.T.); (A.B.); (R.M.)
| | - Paola Cavalcante
- Neurology 4–Neuroimmunology and Neuromuscolar Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (N.I.); (M.C.T.); (A.B.); (R.M.)
| | - Maria Foti
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- BicOMICs, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
2
|
Li L, Li D, Jin J, Xu F, He N, Ren Y, Wang X, Tian L, Chen B, Li X, Chen Z, Zhang L, Qiao L, Wang L, Wang J. FOSL1-mediated LINC01566 negatively regulates CD4 + T-cell activation in myasthenia gravis. J Neuroinflammation 2024; 21:197. [PMID: 39113081 PMCID: PMC11308467 DOI: 10.1186/s12974-024-03194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Myasthenia gravis (MG) is an autoimmune disease characterized by pathogenic antibodies that target structures of the neuromuscular junction. The evidence suggests that the regulation of long noncoding RNAs (lncRNAs) that is mediated by transcription factors (TFs) plays a key role in the pathophysiology of MG. Nevertheless, the detailed molecular mechanisms of lncRNAs in MG remain largely undetermined. METHODS Using microarray analysis, we analyzed the lncRNA levels in MG. By bioinformatics analysis, LINC01566 was found to potentially play an important role in MG. First, qRT‒PCR was performed to verify the LINC1566 expressions in MG patients. Then, fluorescence in situ hybridization was conducted to determine the localization of LINC01566 in CD4 + T cells. Finally, the impact of LINC01566 knockdown or overexpression on CD4 + T-cell function was also analyzed using flow cytometry and CCK-8 assay. A dual-luciferase reporter assay was used to validate the binding of the TF FOSL1 to the LINC01566 promoter. RESULTS Based on the lncRNA microarray and differential expression analyses, we identified 563 differentially expressed (DE) lncRNAs, 450 DE mRNAs and 19 DE TFs in MG. We then constructed a lncRNA-TF-mRNA network. Through network analysis, we found that LINC01566 may play a crucial role in MG by regulating T-cell-related pathways. Further experiments indicated that LINC01566 is expressed at low levels in MG patients. Functionally, LINC01566 is primarily distributed in the nucleus and can facilitate CD4 + T-cell apoptosis and inhibit cell proliferation. Mechanistically, we hypothesized that LINC01566 may negatively regulate the expressions of DUSP3, CCR2, FADD, SIRPB1, LGALS3 and SIRPB1, which are involved in the T-cell activation pathway, to further influence the cellular proliferation and apoptosis in MG. Moreover, we found that the effect of LINC01566 on CD4 + T cells in MG was mediated by the TF FOSL1, and in vitro experiments indicated that FOSL1 can bind to the promoter region of LINC01566. CONCLUSIONS In summary, our research revealed the protective roles of LINC01566 in clinical samples and cellular experiments, illustrating the potential roles and mechanism by which FOSL1/LINC01566 negatively regulates CD4 + T-cell activation in MG.
Collapse
Affiliation(s)
- Lifang Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Danyang Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Jingnan Jin
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Fanfan Xu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Ni He
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Yingjie Ren
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Xiaokun Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Liting Tian
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Biying Chen
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Xiaoju Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Zihong Chen
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Lanxin Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Lukuan Qiao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| | - Jianjian Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
3
|
Kaminski HJ, Sikorski P, Coronel SI, Kusner LL. Myasthenia gravis: the future is here. J Clin Invest 2024; 134:e179742. [PMID: 39105625 DOI: 10.1172/jci179742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024] Open
Abstract
Myasthenia gravis (MG) stands as a prototypical antibody-mediated autoimmune disease: it is dependent on T cells and characterized by the presence of autoantibodies targeting proteins located on the postsynaptic surface of skeletal muscle, known as the neuromuscular junction. Patients with MG exhibit a spectrum of weakness, ranging from limited ocular muscle involvement to life-threatening respiratory failure. Recent decades have witnessed substantial progress in understanding the underlying pathophysiology, leading to the delineation of distinct subcategories within MG, including MG linked to AChR or MuSK antibodies as well as age-based distinction, thymoma-associated, and immune checkpoint inhibitor-induced MG. This heightened understanding has paved the way for the development of more precise and targeted therapeutic interventions. Notably, the FDA has recently approved therapeutic inhibitors of complement and the IgG receptor FcRn, a testament to our improved comprehension of autoantibody effector mechanisms in MG. In this Review, we delve into the various subgroups of MG, stratified by age, autoantibody type, and histology of the thymus with neoplasms. Furthermore, we explore both current and potential emerging therapeutic strategies, shedding light on the evolving landscape of MG treatment.
Collapse
Affiliation(s)
| | | | | | - Linda L Kusner
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| |
Collapse
|
4
|
Cavalcante P, Mantegazza R, Antozzi C. Targeting autoimmune mechanisms by precision medicine in Myasthenia Gravis. Front Immunol 2024; 15:1404191. [PMID: 38903526 PMCID: PMC11187261 DOI: 10.3389/fimmu.2024.1404191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Myasthenia Gravis (MG) is a chronic disabling autoimmune disease caused by autoantibodies to the neuromuscular junction (NMJ), characterized clinically by fluctuating weakness and early fatigability of ocular, skeletal and bulbar muscles. Despite being commonly considered a prototypic autoimmune disorder, MG is a complex and heterogeneous condition, presenting with variable clinical phenotypes, likely due to distinct pathophysiological settings related with different immunoreactivities, symptoms' distribution, disease severity, age at onset, thymic histopathology and response to therapies. Current treatment of MG based on international consensus guidelines allows to effectively control symptoms, but most patients do not reach complete stable remission and require life-long immunosuppressive (IS) therapies. Moreover, a proportion of them is refractory to conventional IS treatment, highlighting the need for more specific and tailored strategies. Precision medicine is a new frontier of medicine that promises to greatly increase therapeutic success in several diseases, including autoimmune conditions. In MG, B cell activation, antibody recycling and NMJ damage by the complement system are crucial mechanisms, and their targeting by innovative biological drugs has been proven to be effective and safe in clinical trials. The switch from conventional IS to novel precision medicine approaches based on these drugs could prospectively and significantly improve MG care. In this review, we provide an overview of key immunopathogenetic processes underlying MG, and discuss on emerging biological drugs targeting them. We also discuss on future direction of research to address the need for patients' stratification in endotypes according with genetic and molecular biomarkers for successful clinical decision making within precision medicine workflow.
Collapse
Affiliation(s)
- Paola Cavalcante
- Neurology 4 – Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Renato Mantegazza
- Neurology 4 – Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Carlo Antozzi
- Neurology 4 – Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Immunotherapy and Apheresis Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
5
|
Altınönder İ, Kaya M, Yentür SP, Çakar A, Durmuş H, Yegen G, Özkan B, Parman Y, Sawalha AH, Saruhan-Direskeneli G. Thymic gene expression analysis reveals a potential link between HIF-1A and Th17/Treg imbalance in thymoma associated myasthenia gravis. J Neuroinflammation 2024; 21:126. [PMID: 38734662 PMCID: PMC11088784 DOI: 10.1186/s12974-024-03095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/07/2024] [Indexed: 05/13/2024] Open
Abstract
Myasthenia gravis (MG) is an immune-mediated disease frequently associated with thymic changes. Increased T helper 17 (Th17) cell activity and dysfunctional regulatory T (Treg) cells have been demonstrated in subgroups of MG. On the other hand, hypoxia-inducible factor 1 (HIF-1) has been shown to regulate the Th17/Treg balance by inducing Th17 differentiation while attenuating Treg development. To identify the underlying mechanisms of different thymic pathologies in MG development, we evaluated thymic samples from thymoma-associated myasthenia gravis (TAMG), MG with hyperplasia (TFH-MG) and thymoma without MG (TOMA) patients. Differential gene expression analysis revealed that TAMG and TFH-MG cells are associated with different functional pathways. A higher RORC/FOXP3 ratio provided evidence for Th17/Treg imbalance in TAMG potentially related to increased HIF1A. The hypoxic microenvironment in thymoma may be a driver of TAMG by increasing HIF1A. These findings may lead to new therapeutic approaches targeting HIF1A in the development of TAMG.
Collapse
Affiliation(s)
- İlayda Altınönder
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, 34093, Turkey
| | - Mustafa Kaya
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, 34093, Turkey
| | - Sibel P Yentür
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, 34093, Turkey
| | - Arman Çakar
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, 34093, Turkey
| | - Hacer Durmuş
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, 34093, Turkey
| | - Gülçin Yegen
- Department of Thoracic Surgery, Istanbul Medical Faculty, Istanbul University, Istanbul, 34093, Turkey
| | - Berker Özkan
- Department of Pathology, Istanbul Medical Faculty, Istanbul University, Istanbul, 34093, Turkey
| | - Yeşim Parman
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, 34093, Turkey
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
6
|
Küffer S, Müller D, Marx A, Ströbel P. Non-Mutational Key Features in the Biology of Thymomas. Cancers (Basel) 2024; 16:942. [PMID: 38473304 DOI: 10.3390/cancers16050942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Thymomas (THs) are a unique group of heterogeneous tumors of the thymic epithelium. In particular, the subtypes B2 and B3 tend to be aggressive and metastatic. Radical tumor resection remains the only curative option for localized tumors, while more advanced THs require multimodal treatment. Deep sequencing analyses have failed to identify known oncogenic driver mutations in TH, with the notable exception of the GTF2I mutation, which occurs predominantly in type A and AB THs. However, there are multiple alternative non-mutational mechanisms (e.g., perturbed thymic developmental programs, metabolism, non-coding RNA networks) that control cellular behavior and tumorigenesis through the deregulation of critical molecular pathways. Here, we attempted to show how the results of studies investigating such alternative mechanisms could be integrated into a current model of TH biology. This model could be used to focus ongoing research and therapeutic strategies.
Collapse
Affiliation(s)
- Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Denise Müller
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
7
|
Iorio R, Lennon VA. Paraneoplastic autoimmune neurologic disorders associated with thymoma. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:385-396. [PMID: 38494291 DOI: 10.1016/b978-0-12-823912-4.00008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Thymoma is often associated with paraneoplastic neurologic diseases. Neural autoantibody testing is an important tool aiding diagnosis of thymoma and its autoimmune neurologic complications. Autoantibodies specific for muscle striational antigens and ion channels of the ligand-gated nicotinic acetylcholine receptor superfamily are the most prevalent biomarkers. The autoimmune neurologic disorders associating most commonly with thymoma are myasthenia gravis (MG), peripheral nerve hyperexcitability (neuromyotonia and Morvan syndrome), dysautonomia, and encephalitis. Patients presenting with these neurologic disorders should be screened for thymoma at diagnosis. Although they can cause profound disability, they usually respond to immunotherapy and treatment of the thymoma. Worsening of the neurologic disorder following surgical removal of a thymoma may herald tumor recurrence. Prompt recognition of paraneoplastic neurologic disorders is critical for patient management. A multidisciplinary approach is required for optimal management of neurologic autoimmunity associated with thymoma.
Collapse
Affiliation(s)
- Raffaele Iorio
- Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Vanda A Lennon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States; Department of Neurology, Mayo Clinic, Rochester, MN, United States; Department of Immunology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
8
|
Huang X, Zhang Z, Wang Y, Xu M, Du X, Zhang Y. Circulating miRNAs drive personalized medicine based on subgroup classification in myasthenia gravis patients. Neurol Sci 2023; 44:3877-3884. [PMID: 37402938 DOI: 10.1007/s10072-023-06933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/29/2023] [Indexed: 07/06/2023]
Abstract
Myasthenia gravis (MG) is a classic autoimmune neuromuscular disease with strong clinical heterogeneity. The concept of subgroup classification was proposed to guide the precise treatment of MG. Subgroups based on serum antibodies and clinical features include ocular MG, early-onset MG with AchR antibodies, late-onset MG with AchR antibodies, thymoma-associated MG, MuSK-associated MG, LRP4-associated MG, and seronegative MG. However, reliable objective biomarkers are still needed to reflect the individualized response to therapy. MicroRNAs (miRNAs) are small non-coding RNA molecules which can specifically bind to target genes and regulate gene expression at the post-transcriptional level, and then influence celluar biological processes. MiRNAs play an important role in the pathogenesis of autoimmune diseases, including MG. Several studies on circulating miRNAs in MG have been reported. However, there is rare systematic review to summarize the differences of these miRNAs in different subgroups of MG. Here, we summarize the potential role of circulating miRNAs in different subgroups of MG to promote personalized medicine.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhouao Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
| | - Yingying Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
| | - Mingming Xu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
| | - Xue Du
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
| | - Yong Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China.
| |
Collapse
|
9
|
Zhang X, Zhang P, Cong A, Feng Y, Chi H, Xia Z, Tang H. Unraveling molecular networks in thymic epithelial tumors: deciphering the unique signatures. Front Immunol 2023; 14:1264325. [PMID: 37849766 PMCID: PMC10577431 DOI: 10.3389/fimmu.2023.1264325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023] Open
Abstract
Thymic epithelial tumors (TETs) are a rare and diverse group of neoplasms characterized by distinct molecular signatures. This review delves into the complex molecular networks of TETs, highlighting key aspects such as chromosomal abnormalities, molecular subtypes, aberrant gene mutations and expressions, structural gene rearrangements, and epigenetic changes. Additionally, the influence of the dynamic tumor microenvironment on TET behavior and therapeutic responses is examined. A thorough understanding of these facets elucidates TET pathogenesis, offering avenues for enhancing diagnostic accuracy, refining prognostic assessments, and tailoring targeted therapeutic strategies. Our review underscores the importance of deciphering TETs' unique molecular signatures to advance personalized treatment paradigms and improve patient outcomes. We also discuss future research directions and anticipated challenges in this intriguing field.
Collapse
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengpeng Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ansheng Cong
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Yanlong Feng
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Chi
- School of Clinical Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians University Munich, Munich, Germany
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
10
|
Yamada Y. Histogenetic and disease-relevant phenotypes in thymic epithelial tumors (TETs): The potential significance for future TET classification. Pathol Int 2023; 73:265-280. [PMID: 37278579 DOI: 10.1111/pin.13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023]
Abstract
Thymic epithelial tumors (TETs) encompass morphologically various subtypes. Thus, it would be meaningful to explore the expression phenotypes that delineate each TET subtype or overarching multiple subtypes. If these profiles are related to thymic physiology, they will improve our biological understanding of TETs and may contribute to the establishment of a more rational TET classification. Against this background, pathologists have attempted to identify histogenetic features in TETs for a long time. As part of this work, our group has reported several TET expression profiles that are histotype-dependent and related to the nature of thymic epithelial cells (TECs). For example, we found that beta5t, a constituent of thymoproteasome unique to cortical TECs, is expressed mainly in type B thymomas, for which the nomenclature of cortical thymoma was once considered. Another example is the discovery that most thymic carcinomas, especially thymic squamous cell carcinomas, exhibit expression profiles similar to tuft cells, a recently discovered special type of medullary TEC. This review outlines the currently reported histogenetic phenotypes of TETs, including those related to thymoma-associated myasthenia gravis, summarizes their genetic signatures, and provides a perspective for the future direction of TET classification.
Collapse
Affiliation(s)
- Yosuke Yamada
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
11
|
Mignan T, White R, Stee K, Bonanno G, Targett M, Lowrie M. Case report: Immune remission from generalized myasthenia gravis in a dog with a thymoma and cholangiocellular carcinoma. Front Vet Sci 2023; 10:1124702. [PMID: 37008354 PMCID: PMC10063851 DOI: 10.3389/fvets.2023.1124702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
A 9-year-old male neutered Cockapoo was presented with an acute and progressive history of exercise induced weakness involving all limbs, and bilateral decreased ability to blink. Investigations revealed generalized myasthenia gravis alongside the presence of a thymoma and a cholangiocellular carcinoma. Symptomatic treatment through pyridostigmine bromide was used to control clinical signs, and complete surgical removal of the thymoma and cholangiocellular carcinoma was performed. Serum acetylcholine receptor antibody concentration was measured serially. Clinical remission defined as resolution of clinical signs alongside discontinuation of treatment was achieved by day 251 (8.2 months). Immune remission defined as normalization of serum acetylcholine receptor antibody concentration alongside resolution of clinical signs and discontinuation of treatment was achieved by day 566 (18.5 months). Neurological examination was normal, and the owners did not report any clinical deterioration during the final follow-up appointment on day 752 (24 months), hence outcome was considered excellent. This is the first report describing the temporal evolution of serum acetylcholine receptor antibody concentration in a dog with thymoma-associated myasthenia gravis which achieved immune remission following thymectomy. Treatment was successfully discontinued without any evidence of clinical deterioration thereafter despite serum acetylcholine receptor antibody concentration not normalizing for another 315 days (10 months).
Collapse
Affiliation(s)
- Thomas Mignan
- Dovecote Veterinary Hospital, CVS Group PLC, Castle Donington, United Kingdom
- School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, United Kingdom
- *Correspondence: Thomas Mignan
| | - Robert White
- School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, United Kingdom
| | - Kimberley Stee
- Dovecote Veterinary Hospital, CVS Group PLC, Castle Donington, United Kingdom
| | - Giuseppe Bonanno
- Dovecote Veterinary Hospital, CVS Group PLC, Castle Donington, United Kingdom
| | - Mike Targett
- School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, United Kingdom
| | - Mark Lowrie
- Dovecote Veterinary Hospital, CVS Group PLC, Castle Donington, United Kingdom
| |
Collapse
|
12
|
Tang M, Shao Y, Dong J, Gao X, Wei S, Ma J, Hong Y, Li Z, Bi T, Yin Y, Zhang W, Liu W. Risk factors for postoperative myasthenia gravis in patients with thymoma without myasthenia gravis: A systematic review and meta-analysis. Front Oncol 2023; 13:1061264. [PMID: 36845745 PMCID: PMC9944936 DOI: 10.3389/fonc.2023.1061264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
INTRODUCTION According to the principle, thymomas combined with myasthenia gravis (MG) require surgical treatment. However, patients with non-MG thymoma rarely develop MG and early- or late-onset MG after surgery is called postoperative MG (PMG). Our study used a meta-analysis to examine the incidence of PMG and risk factors. METHODS Relevant studies were searched for in the PubMed, EMBASE, Web of Science, CNKI,and Wanfang databases. Investigations that directly or indirectly analyzed the risk factors for PMG development in patients with non-MG thymoma were included in this study. Furthermore, risk ratios (RR) with 95% confidence intervals (CI) were pooled using meta-analysis, and fixed-effects or random-effects models were used depending on the heterogeneity of the included studies. RESULTS Thirteen cohorts containing 2,448 patients that met the inclusion criteria were included. Metaanalysis revealed that the incidence of PMG in preoperative patients with non-MG thymoma was 8%. Preoperative seropositive acetylcholine receptor antibody (AChR-Ab) (RR = 5.53, 95% CI 2.36 - 12.96, P<0.001), open thymectomy (RR =1.84, 95% CI 1.39 - 2.43, P<0.001), non-R0 resection (RR = 1.87, 95% CI 1.36 - 2.54, P<0.001), world health organization (WHO) type B (RR =1.80, 95% CI 1.07 - 3.04, P= 0.028), and postoperative inflammation (RR = 1.63, 95% CI 1.26 - 2.12, P<0.001) were the risk factors for PMG in patients with thymoma. Masaoka stage (P = 0.151) and sex (P = 0.777) were not significantly associated with PMG. DISCUSSION Patients with thymoma but without MG had a high probability of developing PMG. Although the incidence of PMG was very low, thymectomy could not completely prevent the occurrence of MG. Preoperative seropositive AChR-Ab level, open thymectomy, non-R0 resection, WHO type B, and postoperative inflammation were risk factors for PMG. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022360002.
Collapse
Affiliation(s)
- Mingbo Tang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yifeng Shao
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Junxue Dong
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein (UKSH), Christian Albrechts University of Kiel, Kiel, Germany
| | - Xinliang Gao
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Shixiong Wei
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jianzun Ma
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yang Hong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhiqin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Taiyu Bi
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yipeng Yin
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenyu Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
13
|
Current management of myasthenia gravis in Belgium: a single-center experience. Acta Neurol Belg 2023; 123:375-384. [PMID: 36658451 PMCID: PMC9851893 DOI: 10.1007/s13760-023-02187-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023]
Abstract
INTRODUCTION As new treatments are becoming available for patients with myasthenia gravis (MG), it is worth reflecting on the actual status of MG treatment to determine which patients would most likely benefit from the new treatments. METHODS We reviewed the clinical files of all MG patients seen at the Department of Neurology of the Antwerp University Hospital during the years 2019, 2020 and 2021. RESULTS 163 patients were included. Age at diagnosis varied from the first to the eighth decades, with a peak of incidence from 60 to 70 years for both genders, and an additional peak from 20 to 30 years in women. Diplopia and ptosis were by far the most common onset symptom. At maximum disease severity, 24% of the patients still had purely ocular symptoms and 4% needed mechanical ventilation. 97% of the patients received a treatment with pyridostigmine and 68% with corticosteroids, often in combination with immunosuppressants. More than half reported side effects. At the latest visit, 50% of the patients were symptom-free. Also, half of the symptomatic patients were fulltime at work or retired with no or mild limitations in daily living. The remaining patients were working part-time, on sick leave, or retired with severe limitations. DISCUSSION AND CONCLUSION The majority of MG patients are doing well with currently available treatments, but often at the cost of side effects in the short and in the long term. A significant group is in need of better treatments.
Collapse
|
14
|
Abstract
Myasthenia gravis is an autoimmune disorder caused by antibodies against elements in the postsynaptic membrane at the neuromuscular junction, which leads to muscle weakness. Congenital myasthenic syndromes are rare and caused by mutations affecting pre- or postsynaptic function at the neuromuscular synapse and resulting in muscle weakness. MG has a prevalence of 150-250 and an annual incidence of 8-10 individuals per million. The majority has disease onset after age 50 years. Juvenile MG with onset in early childhood is more common in East Asia. MG is subgrouped according to type of pathogenic autoantibodies, age of onset, thymus pathology, and generalization of muscle weakness. More than 80% have antibodies against the acetylcholine receptor. The remaining have antibodies against MuSK, LRP4, or postsynaptic membrane antigens not yet identified. A thymoma is present in 10% of MG patients, and more than one-third of thymoma patients develop MG as a paraneoplastic condition. Immunosuppressive drug therapy, thymectomy, and symptomatic drug therapy with acetylcholine esterase inhibitors represent cornerstones in the treatment. The prognosis is good, with the majority of patients having mild or moderate symptoms only. Most congenital myasthenic syndromes are due to dysfunction in the postsynaptic membrane. Symptom debut is in early life. Symptomatic drug treatment has sometimes a positive effect.
Collapse
Affiliation(s)
- Nils Erik Gilhus
- Department of Neurology, Haukeland University Hospital and Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
15
|
Yasumizu Y, Ohkura N, Murata H, Kinoshita M, Funaki S, Nojima S, Kido K, Kohara M, Motooka D, Okuzaki D, Suganami S, Takeuchi E, Nakamura Y, Takeshima Y, Arai M, Tada S, Okumura M, Morii E, Shintani Y, Sakaguchi S, Okuno T, Mochizuki H. Myasthenia gravis-specific aberrant neuromuscular gene expression by medullary thymic epithelial cells in thymoma. Nat Commun 2022; 13:4230. [PMID: 35869073 PMCID: PMC9305039 DOI: 10.1038/s41467-022-31951-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/07/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractMyasthenia gravis (MG) is a neurological disease caused by autoantibodies against neuromuscular-associated proteins. While MG frequently develops in thymoma patients, the etiologic factors for MG are not well understood. Here, by constructing a comprehensive atlas of thymoma using bulk and single-cell RNA-sequencing, we identify ectopic expression of neuromuscular molecules in MG-type thymoma. These molecules are found within a distinct subpopulation of medullary thymic epithelial cells (mTECs), which we name neuromuscular mTECs (nmTECs). MG-thymoma also exhibits microenvironments dedicated to autoantibody production, including ectopic germinal center formation, T follicular helper cell accumulation, and type 2 conventional dendritic cell migration. Cell–cell interaction analysis also predicts the interaction between nmTECs and T/B cells via CXCL12-CXCR4. The enrichment of nmTECs presenting neuromuscular molecules within MG-thymoma is further confirmed immunohistochemically and by cellular composition estimation from the MG-thymoma transcriptome. Altogether, this study suggests that nmTECs have a significant function in MG pathogenesis via ectopic expression of neuromuscular molecules.
Collapse
|
16
|
Abstract
Human thymic epithelial tumors (TET) are common malignancies in the anterior mediastinum with limited biological understanding. Here we show, by single cell analysis of the immune landscape, that the developmental pattern of intra-tumoral T-cells identify three types within TETs. We characterize the developmental alterations and TCR repertoires of tumor-infiltrating T cells in the context of the distinguishing epithelial tumor cell types. We demonstrate that a subset of tumor cells, featuring medullary thymic epithelial cell (TEC) phenotype and marked by KRT14/GNB3 expression, accumulate in type 1 TETs, while T-cell positive selection is inhibited. Type 2 TETs are dominated by CCL25+ cortical TEC-like cells that appear to promote T-cell positive selection. Interestingly, the CHI3L1+ medullary TEC-like cells that are the characteristic feature of type 3 TETs don’t seem to support T-cell development, however, they may induce a tissue-resident CD8+ T cell response. In summary, our work suggests that the molecular subtype of epithelial tumour cells in TETs determine their tumour immune microenvironment, thus GNB3 and CHI3L1 might predict the immunological behavior and hence prognosis of these tumours. Thymic epithelial tumours represent a heterogenous group of malignancies with varied immune cell infiltration and prognosis. Here authors systematically analyze the phenotypes of both epithelial and immune cells that form these tumours, and identify three major subtypes with different T cell involvement that might affect prognosis.
Collapse
|
17
|
Structural and Functional Thymic Biomarkers Are Involved in the Pathogenesis of Thymic Epithelial Tumors: An Overview. IMMUNO 2022. [DOI: 10.3390/immuno2020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The normal human thymus originates from the third branchial cleft as two paired anlages that descend into the thorax and fuse on the midline of the anterior–superior mediastinum. Alongside the epithelial and lymphoid components, different types of lymphoid accessory cells, stromal mesenchymal and endothelial cells migrate to, or develop in, the thymus. After reaching maximum development during early postnatal life, the human thymus decreases in size and lymphocyte output drops with age. However, thymic immunological functions persist, although they deteriorate progressively. Several major techniques were fundamental to increasing the knowledge of thymic development and function during embryogenesis, postnatal and adult life; these include immunohistochemistry, immunofluorescence, flow cytometry, in vitro colony assays, transplantation in mice models, fetal organ cultures (FTOC), re-aggregated thymic organ cultures (RTOC), and whole-organ thymic scaffolds. The thymic morphological and functional characterization, first performed in the mouse, was then extended to humans. The purpose of this overview is to provide a report on selected structural and functional biomarkers of thymic epithelial cells (TEC) involved in thymus development and lymphoid cell maturation, and on the historical aspects of their characterization, with particular attention being paid to biomarkers also involved in Thymic Epithelial Tumor (TET) pathogenesis. Moreover, a short overview of targeted therapies in TET, based on currently available experimental and clinical data and on potential future advances will be proposed.
Collapse
|
18
|
Zhang Q, Cao Y, Bi Z, Ma X, Yang M, Gao H, Gui M, Bu B. Childhood-Onset Myasthenia Gravis Patients Benefited from Thymectomy in a Long-Term Follow-up Observation. Eur J Pediatr Surg 2022; 32:543-549. [PMID: 35263776 PMCID: PMC9666056 DOI: 10.1055/s-0042-1744150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The effect of thymectomy on the treatment of childhood-onset myasthenia gravis (CMG) remains debatable. The objective of this study was to evaluate the clinical outcome and relevant prognostic factors of thymectomy for CMG patients. MATERIALS AND METHODS A total of 32 CMG patients who underwent thymectomy before 18 years of age were included in this retrospective study. Clinical state following thymectomy was assessed by quantified myasthenia gravis (QMG) scores, myasthenia gravis-related activities of daily living (MG-ADL) scores, and Myasthenia Gravis Foundation of America postintervention status. Repeated-measures analysis of variance (ANOVA) examined the changes in postoperative scores during the 5-year follow-up. Univariate logistic regression was applied to identify factors associated with short-term (1-year postoperation) and long-term (5-year postoperation) clinical outcomes. RESULTS Repeated-measures ANOVA showed that QMG scores (F = 6.737, p < 0.001) and MG-ADL scores (F = 7.923, p < 0.001) decreased gradually with time. Preoperative duration (odds ratio [OR] = 0.85, 95% confidence interval [CI]: 0.73-1.00, p = 0.043), gender (OR = 0.19, 95% CI: 0.04-0.94, p = 0.041), and MG subgroup (OR = 13.33, 95% CI: 1.43-123.99, p = 0.023) were predictors for 1-year postoperative prognosis. Shorter disease duration (OR = 0.82, 95% CI: 0.70-0.97, p = 0.018) and generalized CMG (OR = 6.11, 95% CI: 1.06-35.35, p = 0.043) were found to have more favorable long-term results. CONCLUSION Our results suggest that thymectomy is effective in treating CMG. Thymectomy could be recommended for CMG patients, especially for patients in the early course of GMG.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yayun Cao
- Department of Radiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Zhuajin Bi
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xue Ma
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Mengge Yang
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Huajie Gao
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Mengcui Gui
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Address for correspondence Bitao Bu, MD, PhD Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, 430030, Hubei ProvinceChina
| |
Collapse
|
19
|
Bortone F, Scandiffio L, Cavalcante P, Mantegazza R, Bernasconi P. Epstein-Barr Virus in Myasthenia Gravis: Key Contributing Factor Linking Innate Immunity with B-Cell-Mediated Autoimmunity. Infect Dis (Lond) 2021. [DOI: 10.5772/intechopen.93777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Epstein-Barr virus (EBV), a common human herpes virus latently infecting most of the world’s population with periodic reactivations, is the main environmental factor suspected to trigger and/or sustain autoimmunity by its ability to disrupt B-cell tolerance checkpoints. Myasthenia gravis (MG) is a prototypic autoimmune disorder, mostly caused by autoantibodies to acetylcholine receptor (AChR) of the neuromuscular junction, which cause muscle weakness and fatigability. Most patients display hyperplastic thymus, characterized by ectopic germinal center formation, chronic inflammation, exacerbated Toll-like receptor activation, and abnormal B-cell activation. After an overview on MG clinical features and intra-thymic pathogenesis, in the present chapter, we describe our main findings on EBV presence in MG thymuses, including hyperplastic and thymoma thymuses, in relationship with innate immunity activation and data from other autoimmune conditions. Our overall data strongly indicate a critical contribution of EBV to innate immune dysregulation and sustained B-cell-mediated autoimmune response in the pathological thymus of MG patients.
Collapse
|
20
|
Factors affecting improvement of neurologic status evaluated by Quantitative Myasthenia Gravis Score for patients with thymomatous myasthenia gravis after extended thymectomy. J Transl Med 2021; 19:413. [PMID: 34600541 PMCID: PMC8487513 DOI: 10.1186/s12967-021-03082-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background The length of time for clinical improvement of patients with thymomatous myasthenia gravis (MG) after extended thymectomy is not clear. The purpose of this study was to determine the length of time after thymectomy in patients with thymomatous MG to achieve a 3-point reduction of Quantitative Myasthenia Gravis Score (QMGS), and identify variables associated with a failure to achieve the reduction. Methods The records of patients with thymomatous MG who underwent extended thymectomy from January 2005 to December 2018 were retrospectively reviewed. The primary end point was a reduction of 3 points of QMGs and the secondary end point was another reduction of 3 points of QMGs. Results A total of 481 patients were included in the analysis, the mean age of the patients was 41.63 ± 8.55 years, and approximately 60% were male. The median time to achieve a 3 point decrease in QMGS was 6 months, and the median time to achieve another 3 point decrease was 30 months. Multivariable analysis indicated that age ≥ 42 years and Masaoka-Koga stage > I were associated with a lower probability of achieving a 3 point decrease in QMGS (HR = 0.55 and 0.65, respectively). Likewise, multivariable analysis indicated that age ≥ 42 years and Masaoka-Koga stage > I were associated with a lower probability of achieving a second 3 point decrease in QMGS (HR = 0.53 and 0.53, respectively). Conclusions In patients with thymomatous MG who receive thymectomy, age ≥ 42 years and Masaoka-Koga stage > I are associated with a worse prognosis and failure to achieve a 3 point decrease in QMGS.
Collapse
|
21
|
Zhou Y, Bing Z, Qin Y, Ma D, Liu H. Type B thymoma in a patient with HIV infection: A case report with a review of HIV and thymoma coexistence. Thorac Cancer 2021; 12:2618-2621. [PMID: 34486210 PMCID: PMC8487817 DOI: 10.1111/1759-7714.14135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 12/01/2022] Open
Abstract
HIV infection predisposes people to cancer, including AIDS‐defining cancers, such as Kaposi sarcoma, and a broad range of non‐AIDS‐defining cancers. Here we report a case with rare coexistence of HIV and thymoma, and summarize all the comorbid cases that currently exist. We found that in all the cases reported, thymoma occurred when CD4+ counts were within a normal range, but the immune response in peripheral T‐cell repertoire remains unknown. In our case, an overview of the immune system under this complicated situation is given for the first time by showing the lymphocyte subpopulations in the blood and the immune cell distribution of the thymoma. This case expands the scope of non‐AIDS‐defining cancers, and provides insight into the influence of the immune system under two immunocompromising conditions, HIV infection and thymoma.
Collapse
Affiliation(s)
- Yaxuan Zhou
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Peking Union Medical College MD Program, Beijing, China
| | - Zhongxing Bing
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yingzhi Qin
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Dongjie Ma
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongsheng Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Presynaptic Paraneoplastic Disorders of the Neuromuscular Junction: An Update. Brain Sci 2021; 11:brainsci11081035. [PMID: 34439654 PMCID: PMC8392118 DOI: 10.3390/brainsci11081035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 01/17/2023] Open
Abstract
The neuromuscular junction (NMJ) is the target of a variety of immune-mediated disorders, usually classified as presynaptic and postsynaptic, according to the site of the antigenic target and consequently of the neuromuscular transmission alteration. Although less common than the classical autoimmune postsynaptic myasthenia gravis, presynaptic disorders are important to recognize due to the frequent association with cancer. Lambert Eaton myasthenic syndrome is due to a presynaptic failure to release acetylcholine, caused by antibodies to the presynaptic voltage-gated calcium channels. Acquired neuromyotonia is a condition characterized by nerve hyperexcitability often due to the presence of antibodies against proteins associated with voltage-gated potassium channels. This review will focus on the recent developments in the autoimmune presynaptic disorders of the NMJ.
Collapse
|
23
|
Forgash JT, Chang YM, Mittelman NS, Petesch S, Benedicenti L, Galban E, Hammond JJ, Glass EN, Barker JR, Shelton GD, Luo J, Garden OA. Clinical features and outcome of acquired myasthenia gravis in 94 dogs. J Vet Intern Med 2021; 35:2315-2326. [PMID: 34331481 PMCID: PMC8478050 DOI: 10.1111/jvim.16223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
Background Factors known to be associated with outcome of acquired myasthenia gravis (MG) in dogs are limited. Hypothesis/Objectives Of dogs with MG, advancing age and comorbid neoplasia are associated with poor long‐term prognosis and low rates of remission. Animals Ninety‐four client‐owned dogs with MG diagnosed by acetylcholine receptor antibody (AChR Ab) assay between 2001 and 2019 from a university clinic and 3 private clinics in the United States. Methods Cases were retrospectively evaluated and data were collected to determine clinical signs, treatment, and response to therapy defined by means of a clinical scoring rubric. Immunological remission was defined as a return of the AChR Ab concentration to <0.6 nmol/L. Multivariable binary logistic regression analysis was used to identify clinical criteria predicting remission. Results An anticholinesterase drug was used to treat 90/94 (96%) dogs, which in 63/94 (67%) was the sole treatment; other drugs included immune modulators. Clinical remission (lack of clinical signs ≥4 weeks after treatment cessation) was observed in 29 (31% [95% confidence interval (CI): 22.4‐40.8%]) dogs, clinical response (lack of clinical signs on treatment) in 14 (15% [95% CI: 9.0‐23.6%]) dogs, clinical improvement (on treatment) in 24 (26% [95% CI: 17.8‐35.2%]) dogs, and no clinical improvement in 27 (29% [95% CI: 20.5‐38.6%]) dogs. Immunological remission was observed in 27/46 (59%) dogs, with clinical remission in all 27. Younger age (P = .04) and comorbid endocrine disease (P = .04) were associated with clinical remission. Initial AChR Ab concentration (P = .02) and regurgitation (P = .04) were negatively associated with clinical remission. Conclusions and Clinical Importance Clinical remission in MG is less likely in older dogs and dogs presenting with regurgitation or high initial AChR Ab concentration, but more likely in younger dogs and dogs with comorbid endocrine disease.
Collapse
Affiliation(s)
- Jennifer T Forgash
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yu-Mei Chang
- Research Support Office, Royal Veterinary College, University of London, London, United Kingdom
| | - Neil S Mittelman
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Scott Petesch
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leontine Benedicenti
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Evelyn Galban
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James J Hammond
- Department of Neurology and Neurosurgery, Pieper Memorial Veterinary Center, Middletown, Connecticut, USA
| | - Eric N Glass
- Section of Neurology and Neurosurgery, Red Bank Veterinary Hospital, Tinton Falls, New Jersey, USA
| | - Jessica R Barker
- Department of Neurology and Neurosurgery, Bush Veterinary Neurology Service, Springfield, Virginia, USA
| | - G Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Jie Luo
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Oliver A Garden
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Zheng Y, Luo J, Jin H, Liu R, Hao H, Gao F. Myasthenia gravis associated with renal cell carcinoma: a paraneoplastic syndrome or just a coincidence. BMC Neurol 2021; 21:277. [PMID: 34253185 PMCID: PMC8273985 DOI: 10.1186/s12883-021-02311-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 07/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Myasthenia gravis (MG) can occur as a paraneoplastic phenomenon associated with thymoma. The association of MG with renal cell carcinoma (RCC) is not clear. Herein, we describe six cases of MG associated with RCC. METHODS There were 283 patients diagnosed with MG admitted to our hospital from 2014 to 2019. Among them, 6 patients also had RCC. None of them had immune checkpoint inhibitor therapies. We performed a retrospective clinical data collection and follow-up studies of these 6 patients. RESULTS These 6 patients with an average MG onset age of 61.3 ± 13.3 years, were all positive for anti-acetylcholine receptor antibodies. MG symptoms appeared after RCC resection in 3 cases. RCC was discovered after the onset of MG in 2 cases, and synchronously with MG in 1 case. After nephrectomy, the MG symptoms showed a stable complete remission in 1 case. Among them, four patients met the diagnostic criteria of possible paraneoplastic neurological syndromes. CONCLUSIONS Except for thymoma, patients with MG should pay attention to other tumors including RCC. MG may be a paraneoplastic syndrome of RCC, and further studies are needed to elucidate the relationship.
Collapse
Affiliation(s)
- Yiming Zheng
- Neurology Department, Peking University First Hospital, No.8 Xishiku Street, Beijing, 100034, China
| | - Jingjing Luo
- Neurology Department, Peking University First Hospital, No.8 Xishiku Street, Beijing, 100034, China
| | - Haiqiang Jin
- Neurology Department, Peking University First Hospital, No.8 Xishiku Street, Beijing, 100034, China
| | - Ran Liu
- Neurology Department, Peking University First Hospital, No.8 Xishiku Street, Beijing, 100034, China
| | - Hongjun Hao
- Neurology Department, Peking University First Hospital, No.8 Xishiku Street, Beijing, 100034, China.
| | - Feng Gao
- Neurology Department, Peking University First Hospital, No.8 Xishiku Street, Beijing, 100034, China.
| |
Collapse
|
25
|
Marx A, Yamada Y, Simon-Keller K, Schalke B, Willcox N, Ströbel P, Weis CA. Thymus and autoimmunity. Semin Immunopathol 2021; 43:45-64. [PMID: 33537838 PMCID: PMC7925479 DOI: 10.1007/s00281-021-00842-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
The thymus prevents autoimmune diseases through mechanisms that operate in the cortex and medulla, comprising positive and negative selection and the generation of regulatory T-cells (Tregs). Egress from the thymus through the perivascular space (PVS) to the blood is another possible checkpoint, as shown by some autoimmune/immunodeficiency syndromes. In polygenic autoimmune diseases, subtle thymic dysfunctions may compound genetic, hormonal and environmental cues. Here, we cover (a) tolerance-inducing cell types, whether thymic epithelial or tuft cells, or dendritic, B- or thymic myoid cells; (b) tolerance-inducing mechanisms and their failure in relation to thymic anatomic compartments, and with special emphasis on human monogenic and polygenic autoimmune diseases and the related thymic pathologies, if known; (c) polymorphisms and mutations of tolerance-related genes with an impact on positive selection (e.g. the gene encoding the thymoproteasome-specific subunit, PSMB11), promiscuous gene expression (e.g. AIRE, PRKDC, FEZF2, CHD4), Treg development (e.g. SATB1, FOXP3), T-cell migration (e.g. TAGAP) and egress from the thymus (e.g. MTS1, CORO1A); (d) myasthenia gravis as the prototypic outcome of an inflamed or disordered neoplastic ‘sick thymus’.
Collapse
Affiliation(s)
- Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Yosuke Yamada
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Katja Simon-Keller
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Berthold Schalke
- Department of Neurology, Bezirkskrankenhaus, University of Regensburg, 93042, Regensburg, Germany
| | - Nick Willcox
- Neurosciences Group, Nuffield Department of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttigen, 37075, Göttingen, Germany
| | - Cleo-Aron Weis
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
26
|
Marcuse F, Hochstenbag M, Hoeijmakers JGJ, Hamid MA, Damoiseaux J, Maessen J, De Baets M. Subclinical myasthenia gravis in thymomas. Lung Cancer 2020; 152:143-148. [PMID: 33401082 DOI: 10.1016/j.lungcan.2020.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND A proportion of thymoma-patients without a history of myasthenia gravis (MG) before thymectomy, appears to have positive anti-AChR-antibodies in the serum. These subclinical MG-patients could be underdiagnosed because analyzation of anti-AChR-antibodies in thymomas is not always performed in patients who did not experience neurological symptoms. The prevalence and long-term outcomes of subclinical MG are never described in literature yet. METHODS We retrospectively analyzed 398 consecutive patients who underwent a robotic-assisted thoracoscopic surgery at the Maastricht University Medical Center+ (MUMC+) between April 2004 and December 2018. In the MUMC+, a robotic approach is the standard surgical approach in patients with thymic diseases. Inclusion criteria were thymomas, thymectomy performed in the MUMC + with a follow-up of at least one year and age above 18 years old. Exclusion criteria were patients with thymic carcinomas, refused participation, or those who were lost to follow-up. RESULTS Of the 102 included thymoma-patients, 87 patients (85 %) were tested for anti-AChR-antibodies before thymectomy, of which 57 patients were diagnosed with clinical MG and seven subclinical MG-patients were found. Of the 15 patients who were not tested for anti-AChR-antibodies, four more subclinical MG-patients were discovered in the years after thymectomy. The median follow-up time was 62 months. In total, 11 subclinical MG-patients were found, with a mean age of 54 years and predominantly females (64 %). Ten subclinical MG-patients (91 %) developed clinical-MG, within six years after thymectomy. Immunosuppressive drugs were prescribed in five patients. Four patients were diagnosed with a recurrence of the thymoma. No surgical mortality was reported. Two patients died due to a myasthenic crisis. CONCLUSIONS The prevalence of subclinical MG in thymomas was found to be 10.8 %. One in four patients who experienced no neurological symptoms before thymectomy, appeared to have anti-AChR-antibodies and 91 % of these patients developed clinical MG within six years after the thymectomy. Analyzing anti-AChR-antibodies in the serum is recommended in all suspected thymomas before a thymectomy is performed.
Collapse
Affiliation(s)
- Florit Marcuse
- Department of Pulmonology, Maastricht University Medical Center+, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Monique Hochstenbag
- Department of Pulmonology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Janneke G J Hoeijmakers
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Neurology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Myrurgia Abdul Hamid
- Department of Pathology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Jos Maessen
- Department of Cardiothoracic Surgery, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Marc De Baets
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
27
|
Wu Y, Chang YM, Lawson BS, Galban EM, Mittelman NS, Benedicenti L, Petesch SC, Carroll AB, Punt JA, Luo J, Garden OA. Myeloid-derived suppressor cell and regulatory T cell frequencies in canine myasthenia gravis: A pilot study. Vet J 2020; 267:105581. [PMID: 33375962 DOI: 10.1016/j.tvjl.2020.105581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 01/21/2023]
Abstract
Myasthenia gravis (MG) is a T cell-dependent, B cell-mediated autoimmune disease. Little is known about its cellular pathogenesis in dogs. This study provides the first preliminary assessment of the frequency of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) in the peripheral blood of dogs with seropositive generalized MG. No alteration in frequency of either MDSCs or Tregs in dogs with MG was observed when compared to those in either seronegative dogs with diagnoses other than MG, or healthy dogs. A longitudinal study in three dogs with MG revealed no correlation between the relative numbers of either population and the clinical course of disease. Neither the frequency of MDSCs nor of Tregs showed a correlation with anti-AChR antibody titer in dogs with MG. These findings suggest that aberrations in the frequency of either immunosuppressive population do not occur in MG, but they need to be validated in large-scale prospective studies.
Collapse
Affiliation(s)
- Ying Wu
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yu-Mei Chang
- Research Support Office, Royal Veterinary College, London NW1 0TU, UK
| | - Brandon S Lawson
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Evelyn M Galban
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Neil S Mittelman
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Leontine Benedicenti
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Scott C Petesch
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Alicia B Carroll
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jennifer A Punt
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jie Luo
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Oliver A Garden
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
28
|
Coppedè F, Ricciardi R, Lopomo A, Stoccoro A, De Rosa A, Guida M, Petrucci L, Maestri M, Lucchi M, Migliore L. Investigation of MLH1, MGMT, CDKN2A, and RASSF1A Gene Methylation in Thymomas From Patients With Myasthenia Gravis. Front Mol Neurosci 2020; 13:567676. [PMID: 33192293 PMCID: PMC7645111 DOI: 10.3389/fnmol.2020.567676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/18/2020] [Indexed: 01/07/2023] Open
Abstract
A feature of thymomas is their frequent association with myasthenia gravis (MG), an autoimmune disease characterized by the production of autoantibodies directed to different targets at the neuromuscular junction. Indeed, almost 30-40% of thymomas are found in patients with a type of MG termed thymoma-associated MG (TAMG). Recent studies suggest that TAMG-associated thymomas could represent a molecularly distinct subtype of thymic epithelial tumors (TETs), but few data are still available concerning the epigenetic modifications occurring in TAMG tissues. The promoter methylation levels of DNA repair (MLH1 and MGMT) and tumor suppressor genes (CDKN2A and RASSF1A) have been frequently investigated in TETs, but methylation data in TAMG tissues are scarce and controversial. To further address this issue, we investigated MLH1, MGMT, CDKN2A, and RASSF1A methylation levels in blood samples and surgically resected thymomas from 69 patients with TAMG and in the adjacent normal thymus available from 44 of them. Promoter methylation levels of MLH1, MGMT, CDKN2A, and RASSF1A genes were not increased in cancer with respect to healthy tissues and did not correlate with the histological or pathological features of the tumor or with the MG symptoms. The present study suggests that hypermethylation of these genes is not frequent in TAMG tissues.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, Medical Genetics Laboratory, University of Pisa, Pisa, Italy
| | - Roberta Ricciardi
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy.,Division of Thoracic Surgery, Cardiothoracic and Vascular Surgery Department, Pisa University Hospital, Pisa, Italy
| | - Angela Lopomo
- Department of Translational Research and of New Surgical and Medical Technologies, Medical Genetics Laboratory, University of Pisa, Pisa, Italy
| | - Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, Medical Genetics Laboratory, University of Pisa, Pisa, Italy
| | - Anna De Rosa
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Melania Guida
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Loredana Petrucci
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Michelangelo Maestri
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Marco Lucchi
- Division of Thoracic Surgery, Cardiothoracic and Vascular Surgery Department, Pisa University Hospital, Pisa, Italy.,Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, Medical Genetics Laboratory, University of Pisa, Pisa, Italy
| |
Collapse
|
29
|
Cavalcante P, Mantegazza R, Bernasconi P. Pharmacogenetic and pharmaco-miR biomarkers for tailoring and monitoring myasthenia gravis treatments. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1804865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Paola Cavalcante
- Neurology IV Unit ‒ Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Renato Mantegazza
- Neurology IV Unit ‒ Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pia Bernasconi
- Neurology IV Unit ‒ Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
30
|
Pantelyushin S, Ranninger E, Bettschart-Wolfensberger R, Vom Berg J. OMIP-065: Dog Immunophenotyping and T-Cell Activity Evaluation with a 14-Color Panel. Cytometry A 2020; 97:1024-1027. [PMID: 32583607 DOI: 10.1002/cyto.a.24168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/19/2020] [Accepted: 05/30/2020] [Indexed: 11/11/2022]
Abstract
Companion dogs are increasingly recognized as large-animal models of diseases such as cancer, infectious-, inflammatory-, or autoimmune diseases. At the same time, compared to human clinics, veterinarians have only a fraction of the treatment options available. To study the immunological aspects of canine diseases and ultimately develop or adapt human treatments for the dog, the methodology also needs to be in place. Such tools include robust and reliable flow cytometric panels. The purpose of the panel described here is to assess the immune cell composition and their functionality in the peripheral blood mononuclear cells (PBMCs) of dogs. Moreover, its "plug and play" composition allows for an in-depth analysis of T-cell responses in ex vivo assays (Table 1). Initially, this panel has been designed for the analysis of cryopreserved PBMCs to allow batched analysis and to reduce interexperimental variation. Withers and colleagues published a comparable and-to our knowledge-currently the most extensive canine panel to date (1). While their study focused on the aging and activation status of T cells in dogs, our panel is designed to look at a broader range of cells with a higher number of markers. This allows a more in-depth analysis of functional extracellular and intracellular markers. In addition, all antibodies in our proposed panel are directly labeled. In combination with suitable lymphocyte isolation protocols, this panel could potentially also be adapted to analyze tissue biopsies from various different organs. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
| | - Elisabeth Ranninger
- Anaesthesiology Section, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| | | | - Johannes Vom Berg
- Institute of Laboratory Animal Science, University of Zurich, Schlieren, Switzerland
| |
Collapse
|
31
|
Cron MA, Guillochon É, Kusner L, Le Panse R. Role of miRNAs in Normal and Myasthenia Gravis Thymus. Front Immunol 2020; 11:1074. [PMID: 32587589 PMCID: PMC7297979 DOI: 10.3389/fimmu.2020.01074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
The thymus, a primary lymphoid organ, provides a complex environment essential for the generation of the T-cell repertoire. Thymic alterations occur during life either in the context of thymic involution upon aging or the pathophysiological context of Myasthenia Gravis (MG). These changes involve complicated regulatory networks, in which microRNAs (miRNAs) are key players. Here, we analyzed the role of miRNAs in thymocyte maturation and differentiation sustained by thymic epithelial cells. We compared data from the literature regarding the role of mouse thymic miRNAs and original data obtained from a human thymic miRnome study. We identified a set of highly expressed miRNAs defined as ThymiRs and investigated miRNA expression in infants as compared to adults to determine those associated with human thymic involution. Thymic changes are also frequently observed in MG, an autoimmune disease which results in the production of anti-acetylcholine receptor (AChR) antibodies that lead to muscle weaknesses. Alterations such as thymoma in late-onset MG patients and hyperplasia with ectopic germinal centers (GCs) in early-onset (EOMG) patients are found. Thymic miRNA expression has been studied in AChR-MG patients both in thymoma-associated MG (TAMG) and EOMG, and their function through their mRNA targets investigated. Most of the dysregulated thymic miRNAs in EOMG are associated with GC development, such as miR-7, miR-24, miR-139, miR-143, miR-145, miR-146, miR-150, miR-452, miR-548 or thymic inflammation, such as miR-125b, miR-146, or miR-29. Understanding these pathways may provide therapeutic targets or biomarkers of disease manifestations.
Collapse
Affiliation(s)
- Mélanie A Cron
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, Paris, France
| | - Émilie Guillochon
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, Paris, France
| | - Linda Kusner
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, United States
| | - Rozen Le Panse
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, Paris, France
| |
Collapse
|
32
|
Liu X, Ma Q, Qiu L, Ou C, Lin Z, Lu Y, Huang H, Chen P, Huang Z, Liu W. Quantitative features and clinical significance of two subpopulations of AChR-specific CD4+ T cells in patients with myasthenia gravis. Clin Immunol 2020; 216:108462. [PMID: 32437925 DOI: 10.1016/j.clim.2020.108462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022]
Abstract
Acetylcholine receptor (AChR)-specific CD4+ T cells play a driving role in myasthenia gravis (MG) by regulating the production of autoantibodies. However, the quantitative features of AChR-specific T cells and their clinical significance in MG are unclear. In this study, we adopted standard and cultured enzyme-linked immunosorbent spot (ELISPOT) assays to quantify subpopulations of AChR-specific CD4+ T cells in MG patients, and evaluate their correlation with clinical characteristics. The results showed that Th1- and Th17-AChR-specific CD4+ T cells were detectable by standard and cultured ELISPOT assay respectively, with higher levels observed in MG patients comparing with healthy controls. The number of Th17-AChR-specific CD4+ T cells was positively correlated with anti-AChR antibody titer and quantitative MG score and may have latent capacity to reflect responses to immunosuppressants. These results highlight the differences in quantitative features of AChR-specific CD4+ T cells and imply Th17-AChR-specific CD4+ T cells can serve as a biomarker in MG.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Qian Ma
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Li Qiu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Changyi Ou
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Zhongqiang Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Yaru Lu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Huan Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Pei Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Zhidong Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Weibin Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China.
| |
Collapse
|
33
|
Coppedè F, Stoccoro A, Nicolì V, Gallo R, De Rosa A, Guida M, Maestri M, Lucchi M, Ricciardi R, Migliore L. Investigation of GHSR methylation levels in thymomas from patients with Myasthenia Gravis. Gene 2020; 752:144774. [PMID: 32442579 DOI: 10.1016/j.gene.2020.144774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hypermethylation of the growth hormone secretagogue receptor gene (GHSR) is increasingly observed in human cancers, suggesting that it could represent a pan-cancer biomarker of clinical interest. However, little is still known concerning GHSR methylation levels in thymic epithelial tumors, and particularly in thymomas from patients with Myasthenia Gravis (TAMG). MATERIAL AND METHODS In the present study we collected DNA samples from circulating lymphocytes and surgically resected tumor tissues of 65 TAMG patients, and from the adjacent healthy thymic tissue available from 43 of them. We then investigated GHSR methylation levels in the collected tissues searching for correlation with the clinical characteristics of the samples. RESULTS GHSR hypermethylation was observed in 18 thymoma samples (28%) compared to the healthy thymic tissues (P < 1 × 10-4), and those samples were particularly enriched in advanced disease stages than stage I (94% were in stage II or higher). GHSR was demethylated in the remaining 47 thymomas, as well as in all the investigated healthy thymic samples and in circulating lymphocytes. CONCLUSIONS GHSR hypermethylation is not a pan-cancer marker or an early event in TAMG, but occurs in almost 1/4 of them and mainly from stage II onward. Subsequent studies are required to clarify the molecular pathways leading to GHSR hypermethylation in TAMG tissues and their relevance to disease progression.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, Lab. of Medical Genetics, University of Pisa, Medical School, Via Roma 55, 56126 Pisa, Italy.
| | - Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, Lab. of Medical Genetics, University of Pisa, Medical School, Via Roma 55, 56126 Pisa, Italy
| | - Vanessa Nicolì
- Department of Translational Research and of New Surgical and Medical Technologies, Lab. of Medical Genetics, University of Pisa, Medical School, Via Roma 55, 56126 Pisa, Italy
| | - Roberta Gallo
- Department of Translational Research and of New Surgical and Medical Technologies, Lab. of Medical Genetics, University of Pisa, Medical School, Via Roma 55, 56126 Pisa, Italy
| | - Anna De Rosa
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Melania Guida
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Michelangelo Maestri
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Marco Lucchi
- Division of Thoracic Surgery, Cardiothoracic and Vascular Surgery Department, Pisa University Hospital, Pisa, Italy; Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Roberta Ricciardi
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy; Division of Thoracic Surgery, Cardiothoracic and Vascular Surgery Department, Pisa University Hospital, Pisa, Italy
| | - Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, Lab. of Medical Genetics, University of Pisa, Medical School, Via Roma 55, 56126 Pisa, Italy; Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
34
|
Yamada Y, Weis CA, Thelen J, Sticht C, Schalke B, Ströbel P, Marx A. Thymoma Associated Myasthenia Gravis (TAMG): Differential Expression of Functional Pathways in Relation to MG Status in Different Thymoma Histotypes. Front Immunol 2020; 11:664. [PMID: 32373124 PMCID: PMC7176899 DOI: 10.3389/fimmu.2020.00664] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/23/2020] [Indexed: 01/29/2023] Open
Abstract
A unique feature of thymomas is their unrivaled frequency of associated myasthenia gravis (MG). Previous studies reported that MG+ thymomas contain a larger number of mature “pre-emigrant” CD4+ T cells than MG- thymomas and that most thymomas do not contain AIRE expressing cells irrespective of MG status. These findings suggest that CD4+ T cells that mature inside the abnormal microenvironment of thymomas and egress to the blood are critical to the development of thymoma-associated MG (TAMG) irrespective of thymoma histotype. However, underlying mechanisms have remained enigmatic. To get hints to mechanisms underlying TAMG, we pursue three hypotheses: (i) Functional pathways with metabolic and immunological relevance might be differentially expressed in TAMG(+) compared to TAMG(-) thymomas; (ii) differentially enriched pathways might be more evident in immature lymphocyte-poor (i.e., tumor cell/stroma-rich) thymoma subgroups; and (iii) mechanisms leading to TAMG might be different among thymoma histological subtypes. To test these hypotheses, we compared the expression of functional pathways with potential immunological relevance (N = 380) in relation to MG status separately in type AB and B2 thymomas and immature lymphocyte-rich and lymphocyte-poor subgroups of these thymoma types using the TCGA data set. We found that <10% of the investigated pathways were differentially upregulated or downregulated in MG+ compared to MG- thymomas with significant differences between AB and B2 thymomas. The differences were particularly evident, when epithelial cell/stroma-rich subsets of type AB and B2 thymomas were analyzed. Unexpectedly, some MG-associated pathways that were significantly upregulated in AB thymomas were significantly downregulated in B2 thymomas, as exemplified by the oxidative phosphorylation pathway. Conversely, the MG-associated pathway related to macrophage polarization was downregulated in MG+ AB thymoma and upregulated in MG+ B2 thymoma. We conclude that functional pathways are significantly associated with TAMG, and that some mechanisms leading to TAMG might be different among thymoma histological subtypes. Functions related to metabolisms, vascular and macrophage biology are promising new candidate mechanisms potentially involved in the pathogenesis of TAMG. More generally, the results imply that future studies addressing pathomechanisms of TAMG should take the histotype and abundance of tumor cells and non-neoplastic stromal components of thymomas into account.
Collapse
Affiliation(s)
- Yosuke Yamada
- Institute of Pathology, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Cleo-Aron Weis
- Institute of Pathology, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Julian Thelen
- Institute of Pathology, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Sticht
- Medical Faculty Mannheim, Medical Research Center, Heidelberg University, Mannheim, Germany
| | - Berthold Schalke
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
35
|
Janik S, Bekos C, Hacker P, Raunegger T, Schiefer AI, Müllauer L, Veraar C, Dome B, Klepetko W, Ankersmit HJ, Moser B. Follistatin impacts Tumor Angiogenesis and Outcome in Thymic Epithelial Tumors. Sci Rep 2019; 9:17359. [PMID: 31757999 PMCID: PMC6874542 DOI: 10.1038/s41598-019-53671-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor angiogenesis is a key factor in the progression of thymic epithelial tumors (TETs). Activin A, a member of the TGFβ family, and its antagonist Follistatin are involved in several human malignancies and angiogenesis. We investigated Activin A and Follistatin in serum and tumor tissue of patients with TETs in relation to microvessel density (MVD), WHO histology classification, tumor stage and outcome. Membranous Activin A expression was detected in all tumor tissues of TETs, while Follistatin staining was found in tumor nuclei and cytoplasm. Patients with TETs presented with significantly higher Activin A and Follistatin serum concentrations compared to healthy volunteers, respectively. Follistatin serum concentrations correlated significantly with tumor stage and decreased to physiologic values after complete tumor resection. Follistatin serum concentrations correlated further with MVD and were associated with significantly worse freedom from recurrence (FFR). Low numbers of immature tumor vessels represented even an independent worse prognostic factor for FFR at multivariable analysis. To conclude, the Activin A - Follistatin axis is involved in the pathogenesis of TETs. Further study of Follistatin and Activin A in TETs is warranted as the molecules may serve as targets to inhibit tumor angiogenesis and tumor progression.
Collapse
Affiliation(s)
- Stefan Janik
- Christian Doppler Laboratory for Diagnosis and Regeneration of Cardiac and Thoracic Diseases, Medical University Vienna, Vienna, Austria.,Department of Otorhinolaryngology, Head and Neck Surgery, Medical University Vienna, Vienna, Austria
| | - Christine Bekos
- Christian Doppler Laboratory for Diagnosis and Regeneration of Cardiac and Thoracic Diseases, Medical University Vienna, Vienna, Austria.,Department of Obstetrics and Gynecology, Division of General Gynecology and Gynecologic Oncology, Medical University Vienna, Vienna, Austria
| | - Philipp Hacker
- Christian Doppler Laboratory for Diagnosis and Regeneration of Cardiac and Thoracic Diseases, Medical University Vienna, Vienna, Austria.,Division of Thoracic Surgery, Department of Surgery, Medical University Vienna, Vienna, Austria
| | - Thomas Raunegger
- Christian Doppler Laboratory for Diagnosis and Regeneration of Cardiac and Thoracic Diseases, Medical University Vienna, Vienna, Austria.,Division of Thoracic Surgery, Department of Surgery, Medical University Vienna, Vienna, Austria
| | - Ana-Iris Schiefer
- Clinical Institute of Pathology, Medical University Vienna, Vienna, Austria
| | - Leonhard Müllauer
- Clinical Institute of Pathology, Medical University Vienna, Vienna, Austria
| | - Cecilia Veraar
- Department of Anaesthesiology, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Balazs Dome
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Centre Vienna, Medical University Vienna, Vienna, Austria
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery, Medical University Vienna, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Christian Doppler Laboratory for Diagnosis and Regeneration of Cardiac and Thoracic Diseases, Medical University Vienna, Vienna, Austria.,Division of Thoracic Surgery, Department of Surgery, Medical University Vienna, Vienna, Austria.,Head FFG Project "APOSEC", FOLAB Surgery, Medical University Vienna, Vienna, Austria
| | - Bernhard Moser
- Christian Doppler Laboratory for Diagnosis and Regeneration of Cardiac and Thoracic Diseases, Medical University Vienna, Vienna, Austria. .,Division of Thoracic Surgery, Department of Surgery, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
36
|
Kim JH, Kim SC. Paraneoplastic Pemphigus: Paraneoplastic Autoimmune Disease of the Skin and Mucosa. Front Immunol 2019; 10:1259. [PMID: 31214197 PMCID: PMC6558011 DOI: 10.3389/fimmu.2019.01259] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/17/2019] [Indexed: 12/25/2022] Open
Abstract
Paraneoplastic pemphigus (PNP) is a rare but life-threatening mucocutaneous disease mediated by paraneoplastic autoimmunity. Various neoplasms are associated with PNP. Intractable stomatitis and polymorphous cutaneous eruptions, including blisters and lichenoid dermatitis, are characteristic clinical features caused by humoral and cell-mediated autoimmune reactions. Autoreactive T cells and IgG autoantibodies against heterogeneous antigens, including plakin family proteins and desmosomal cadherins, contribute to the pathogenesis of PNP. Several mechanisms of autoimmunity may be at play in this disease on the type of neoplasm present. Diagnosis can be made based on clinical and histopathological features, the presence of anti-plakin autoantibodies, and underlying neoplasms. Immunosuppressive agents and biologics including rituximab have been used for the treatment of PNP; however, the prognosis is poor due to underlying malignancies, severe infections during immunosuppressive treatment, and bronchiolitis obliterans mediated by autoimmunity. In this review, we overview the characteristics of PNP and focus on the immunopathology and the potential pathomechanisms of this disease.
Collapse
Affiliation(s)
- Jong Hoon Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Soo-Chan Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
37
|
Xi J, Wang L, Yan C, Song J, Song Y, Chen J, Zhu Y, Chen Z, Jin C, Ding J, Zhao C. The Cancer Genome Atlas dataset-based analysis of aberrantly expressed genes by GeneAnalytics in thymoma associated myasthenia gravis: focusing on T cells. J Thorac Dis 2019; 11:2315-2323. [PMID: 31372268 DOI: 10.21037/jtd.2019.06.01] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background Myasthenia gravis (MG) is a group of autoimmune disease which could be accompanied by thymoma. Many differences have been observed between thymoma-associated MG (TAMG) and non-MG thymoma (NMG). However, the molecular difference between them remained unknown. This study aimed to explore the differentially expressed genes (DEGs) between the two categories and to elucidate the possible pathogenesis of TAMG further. Methods DEGs were calculated using the RNA-Sequencing data from 11 TAMG and 10 NMG in The Cancer Genome Atlas (TCGA) database. GeneAnalytics was performed to characterize the associations between DEGs and tissues and cells, diseases, gene ontology (GO) terms, pathways, phenotypes, and drug/compounds, respectively. Genes related to T cells were sorted out using LifeMapDiscovery Cells and Tissues Database. Genes directly related to the phenotype of autoimmune diseases that were identified by VarElect were validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results The expression level of 169 genes showed a significant difference between the two groups, with 94 up-regulated and 75 down-regulated. Overexpression of six genes (ATM, SFTPB, ANKRD55, BTLA, CCR7, TNFRSF25), which are expressed in T cells and directly related to autoimmune disease through VarElect, was identified. The overexpression of soluble BTLA (sBTLA) (P=0.027), CCR7 (P=0.0018), TNFRSF25 (P=0.0013) and ANKRD55 (P=0.0026) was validated by RT-qPCR in thymoma tissues from our center. Conclusions Overexpression of sBTLA, CCR7, TNFRSF25 and ANKRD55 was identified and validated by RT-qPCR, which could partly explain the underlying pathogenesis in TAMG.
Collapse
Affiliation(s)
- Jianying Xi
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Liang Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chong Yan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jie Song
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yang Song
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ji Chen
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yongjun Zhu
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhiming Chen
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chun Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Jianyong Ding
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China.,Department of Neurology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai 200040, China
| |
Collapse
|
38
|
Huang K, Luo YB, Yang H. Autoimmune Channelopathies at Neuromuscular Junction. Front Neurol 2019; 10:516. [PMID: 31156543 PMCID: PMC6533877 DOI: 10.3389/fneur.2019.00516] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022] Open
Abstract
The neuromuscular junction, also called myoneural junction, is a site of chemical communication between a nerve fiber and a muscle cell. There are many types of channels at neuromuscular junction that play indispensable roles in neuromuscular signal transmission, such as voltage-gated calcium channels and voltage-gated potassium channels on presynaptic membrane, and acetylcholine receptors on post-synaptic membrane. Over the last two decades, our understanding of the role that autoantibodies play in neuromuscular junction disorders has been greatly improved. Antibodies against these channels cause a heterogeneous group of diseases, such as Lambert-Eaton syndrome, Isaacs' syndrome and myasthenia gravis. Lambert-Eaton syndrome is characterized by late onset of fatigue, skeletal muscle weakness, and autonomic symptoms. Patients with Isaacs' syndrome demonstrate muscle cramps and fasciculation. Myasthenia gravis is the most common autoimmune neuromuscular junction channelopathy characterized by fluctuation of muscle weakness. All these disorders have a high risk of tumor. Although these channelopathies share some common features, they differ for clinical features, antibodies profile, neurophysiological features, and treatments. The purpose of this review is to give a comprehensive insight on recent advances in autoimmune channelopathies at the neuromuscular junction.
Collapse
Affiliation(s)
- Kun Huang
- Neurology Department, Xiangya Hospital, Central South University, Changsha, China.,Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yue-Bei Luo
- Neurology Department, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Yang
- Neurology Department, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
39
|
Abstract
Myasthenia gravis (MG) is an autoimmune disease caused by antibodies against the acetylcholine receptor (AChR), muscle-specific kinase (MuSK) or other AChR-related proteins in the postsynaptic muscle membrane. Localized or general muscle weakness is the predominant symptom and is induced by the antibodies. Patients are grouped according to the presence of antibodies, symptoms, age at onset and thymus pathology. Diagnosis is straightforward in most patients with typical symptoms and a positive antibody test, although a detailed clinical and neurophysiological examination is important in antibody-negative patients. MG therapy should be ambitious and aim for clinical remission or only mild symptoms with near-normal function and quality of life. Treatment should be based on MG subgroup and includes symptomatic treatment using acetylcholinesterase inhibitors, thymectomy and immunotherapy. Intravenous immunoglobulin and plasma exchange are fast-acting treatments used for disease exacerbations, and intensive care is necessary during exacerbations with respiratory failure. Comorbidity is frequent, particularly in elderly patients. Active physical training should be encouraged.
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW The current article reviews the recent advances in the field of myasthenia gravis, which span from autoantibody profiling and pathogenic mechanisms to therapy innovation. The overview is highlighting specifically the data and the needs of targeted treatments in the light of precision medicine in myasthenia gravis. RECENT FINDINGS Novel data published recently further increased our knowledge on myasthenia gravis. The use of cell-based assays has greatly improved autoantibody detection in myasthenia gravis patients, and the mechanisms of action of these antibodies have been described. The role of Toll-like receptor activation in the generation of thymic alterations and anti-acetylcholine receptor autosensitization has been further investigated implementing our understanding on the relationships between innate immunity and autoimmunity. Additional studies have been focused on the alterations of T-cell/B-cell regulatory mechanisms in thymus and peripheral blood of myasthenia gravis patients. microRNAs and genetic factors are also emerging as key biomarkers in myasthenia gravis pathogenesis and prediction of drug efficacy in individual patients. SUMMARY The recent immunological and pathological findings in myasthenia gravis promise to improve myasthenia gravis treatment, via the development of more precise and personalized therapies.
Collapse
|
41
|
The enigmatic thymic myoid cells – their 130 years of history, embryonic origin, function and clinical significance. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00214-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
42
|
Withers SS, Moore PF, Chang H, Choi JW, McSorley SJ, Kent MS, Monjazeb AM, Canter RJ, Murphy WJ, Sparger EE, Rebhun RB. Multi-color flow cytometry for evaluating age-related changes in memory lymphocyte subsets in dogs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:64-74. [PMID: 29859828 PMCID: PMC6197816 DOI: 10.1016/j.dci.2018.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
While dogs are increasingly being utilized as large-animal models of disease, important features of age-related immunosenescence in the dog have yet to be evaluated due to the lack of defined naïve vs. memory T lymphocyte phenotypes. We therefore performed multi-color flow cytometry on peripheral blood mononuclear cells from young and aged beagles, and determined the differential cytokine production by proposed memory subsets. CD4+ and CD8+ T lymphocytes in aged dogs displayed increased cytokine production, and decreased proliferative capacity. Antibodies targeting CD45RA and CD62L, but less so CD28 or CD44, defined canine cells that consistently exhibited properties of naïve-, central memory-, effector memory-, and terminal effector-like CD4+ and CD8+ T lymphocyte subsets. Older dogs demonstrated decreased frequencies of naïve-like CD4+ and CD8+ T lymphocytes, and an increased frequency of terminal effector-like CD8+ T lymphocytes. Overall findings revealed that aged dogs displayed features of immunosenescence similar to those reported in other species.
Collapse
Affiliation(s)
- Sita S Withers
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Peter F Moore
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Hong Chang
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jin W Choi
- Center for Comparative Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, County Road 98 & Hutchison Drive, Davis, CA 95616, USA
| | - Stephen J McSorley
- Center for Comparative Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, County Road 98 & Hutchison Drive, Davis, CA 95616, USA
| | - Michael S Kent
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Arta M Monjazeb
- Comprehensive Cancer Center, Department of Radiation Oncology, School of Medicine, University of California-Davis, 4501 X Street, G-140, Sacramento, CA 95817, USA
| | - Robert J Canter
- Comprehensive Cancer Center, Department of Surgery, School of Medicine, University of California-Davis, 4501 X Street, G-140, Sacramento, CA 95817, USA
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California-Davis, 2921 Stockton Blvd, Sacramento, CA 95716, USA
| | - Ellen E Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Robert B Rebhun
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
43
|
Alvarez CN, John RM. The Pediatric Primary Care Management of Myasthenia Gravis. J Nurse Pract 2018. [DOI: 10.1016/j.nurpra.2018.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
Wang S, Breskovska I, Gandhy S, Punga AR, Guptill JT, Kaminski HJ. Advances in autoimmune myasthenia gravis management. Expert Rev Neurother 2018; 18:573-588. [PMID: 29932785 PMCID: PMC6289049 DOI: 10.1080/14737175.2018.1491310] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Myasthenia gravis (MG) is an autoimmune neuromuscular disorder with no cure and conventional treatments limited by significant adverse effects and variable benefit. In the last decade, therapeutic development has expanded based on improved understanding of autoimmunity and financial incentives for drug development in rare disease. Clinical subtypes exist based on age, gender, thymic pathology, autoantibody profile, and other poorly defined factors, such as genetics, complicate development of specific therapies. Areas covered: Clinical presentation and pathology vary considerably among patients with some having weakness limited to the ocular muscles and others having profound generalized weakness leading to respiratory insufficiency. MG is an antibody-mediated disorder dependent on autoreactive B cells which require T-cell support. Treatments focus on elimination of circulating autoantibodies or inhibition of effector mechanisms by a broad spectrum of approaches from plasmapheresis to B-cell elimination to complement inhibition. Expert commentary: Standard therapies and those under development are disease modifying and not curative. As a rare disease, clinical trials are challenged in patient recruitment. The great interest in development of treatments specific for MG is welcome, but decisions will need to be made to focus on those that offer significant benefits to patients.
Collapse
Affiliation(s)
- Shuhui Wang
- Department of Neurology, George Washington University, Washington DC 20008
| | - Iva Breskovska
- Department of Neurology, George Washington University, Washington DC 20008
| | - Shreya Gandhy
- Department of Neurology, George Washington University, Washington DC 20008
| | - Anna Rostedt Punga
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Jeffery T. Guptill
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA
| | - Henry J. Kaminski
- Department of Neurology, George Washington University, Washington DC 20008
| |
Collapse
|
45
|
Cacho-Díaz B, Salmerón-Moreno K, Lorenzana-Mendoza NA, Texcocano J, Arrieta O. Myasthenia gravis as a prognostic marker in patients with thymoma. J Thorac Dis 2018; 10:2842-2848. [PMID: 29997948 DOI: 10.21037/jtd.2018.04.95] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Thymoma is the most common mediastinal tumor, representing <1% of all cancers. It is usually associated with paraneoplastic disorders, mainly myasthenia gravis (MG). The aim of the present study was to describe patients with thymoma and the differences between those with MG and those without it. Methods A retrospective 10-year database of the patients with thymoma treated at a single cancer referral hospital (National Institute of Cancer, Mexico City), was analyzed. Results Sixty-four files from patients with thymoma were analyzed, 18 of them had MG. The symptoms that occurred most frequently in patients with MG were ptosis, diplopia, appendicular weakness, dysphonia and dysphagia. The most frequent Myasthenia Gravis Foundation of America (MGFA) stage was IIIb followed by stage I. Almost all the patients with MG had positive Acetylcholine Receptor antibodies (P<0.001), with not specified antibodies in four patients. The median overall survival showed a trend to be higher among the patients with MG, but there were no significant differences. Conclusions In patients with thymoma MG manifests with different clinical and autoimmune traits, but not survival differences. A larger multi-centric study should be encouraged to evaluate the prognostic implications of having MG in patients with thymoma.
Collapse
Affiliation(s)
| | | | | | - Julia Texcocano
- Neuroscience Unit, Instituto Nacional de Cancerología, México City, México
| | - Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología, México City, México
| |
Collapse
|
46
|
Wang J, Xiao Y, Zhang K, Luo B, Shen C. Introducing Autoimmunity at the Synapse by a Novel Animal Model of Experimental Autoimmune Myasthenia Gravis. Neuroscience 2018; 374:264-270. [PMID: 29421431 DOI: 10.1016/j.neuroscience.2018.01.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/22/2017] [Accepted: 01/18/2018] [Indexed: 12/13/2022]
Abstract
The neuromuscular junction (NMJ) is a peripheral synapse between motor neurons and skeletal muscle fibers that controls muscle contraction. The NMJ is the target of various disorders including myasthenia gravis (MG), an autoimmune disease in which auto-antibodies (auto-Abs) attack the synapse, and thus cause muscle weakness in patients. There are multiple auto-Abs in the MG patient sera, but not all the Abs are proven to be pathogenic, which increases the difficulties in clinical diagnoses and treatments. To establish the causative roles of auto-Abs in MG pathogenesis, the experimental autoimmune MG (EAMG) induced by the active immunization of auto-antigens (auto-Ags) or the passive transfer of auto-Abs is required. These models simulate many features of the human disease. To date, there are three kinds of EAMG models reported, of which AChR-EAMG and MuSK-EAMG are well characterized, while the recent LRP4-EAMG is much less studied. Here, we report a current summary of LRP4-EAMG and its pathogenic mechanisms. The features of LRP4-EAMG are more similar to those of AChR-EAMG, indicating a similar clinical treatment for LRP4- and AChR-positive MG patients, compared to MuSK-positive MG patients.
Collapse
Affiliation(s)
- Jianwen Wang
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Yatao Xiao
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Zhejiang, China
| | - Kejing Zhang
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Zhejiang, China
| | - Benyan Luo
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China.
| | - Chengyong Shen
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Zhejiang, China.
| |
Collapse
|
47
|
The thymidylate synthase enhancer region (TSER) polymorphism increases the risk of thymic lymphoid hyperplasia in patients with Myasthenia Gravis. Gene 2018; 642:376-380. [PMID: 29162511 DOI: 10.1016/j.gene.2017.11.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/17/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Myasthenia Gravis (MG) is caused, in approximately 80% of the patients, by autoantibodies against the nicotinic acetylcholine receptor (AChR). The disease is often associated with pathological changes of the thymus: thymic epithelial tumours are present in about 10-20% of the patients, while up to 80% of the patients with early disease onset have thymic hyperplasia. Folate metabolism is required for the production of DNA precursors and for proper DNA methylation reactions, and impaired folate metabolism has been often associated with cellular growth and cancer. METHODS We investigated if major polymorphisms of folate-related genes, namely MTHFR c.677C>T, MTR c.2756A>G, MTRR c.66A>G and TYMS TSER (a 28-bp tandem repeat in the 5' promoter enhancer region of TYMS) increase the risk of pathological changes of the thymus in AChR+ MG patients. A total of 526 AChR+ MG patients, including 132 patients with normal (involuted) thymus, 146 patients with thymic hyperplasia, and 248 patients with a thymoma were included in the study. Allele and genotype comparisons were performed among the three study groups, after correcting for multiple testing. RESULTS The frequency of the TYMS TSER 3R allele was significantly higher in MG patients with thymic hyperplasia (P=0.004), and the TYMS TSER 3R3R genotype was significantly associated with increased risk of thymic hyperplasia [OR 2.71 (95% CI: 1.34-5.47)]. CONCLUSIONS The 3R allele in the thymidylate synthase promoter enhancer region results in increased protein production, required for the synthesis of DNA precursors. The present study suggests that the TYMS TSER 3R allele increases the risk of thymic lymphoid hyperplasia in AChR+ MG patients.
Collapse
|
48
|
Weis CA, Schalke B, Ströbel P, Marx A. Challenging the current model of early-onset myasthenia gravis pathogenesis in the light of the MGTX trial and histological heterogeneity of thymectomy specimens. Ann N Y Acad Sci 2018; 1413:82-91. [DOI: 10.1111/nyas.13563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Cleo-Aron Weis
- Institute of Pathology, University Medical Centre Mannheim; University of Heidelberg; Mannheim Germany
| | - Berthold Schalke
- Department of Neurology, University Hospital Regensburg; University of Regensburg; Regensburg Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen; University of Göttingen; Göttingen Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim; University of Heidelberg; Mannheim Germany
| |
Collapse
|
49
|
Cavalcante P, Marcuzzo S, Franzi S, Galbardi B, Maggi L, Motta T, Ghislandi R, Buzzi A, Spinelli L, Novellino L, Baggi F, Antozzi C, Conforti F, De Pas TM, Barberis M, Bernasconi P, Mantegazza R. Epstein-Barr virus in tumor-infiltrating B cells of myasthenia gravis thymoma: an innocent bystander or an autoimmunity mediator? Oncotarget 2017; 8:95432-95449. [PMID: 29221139 PMCID: PMC5707033 DOI: 10.18632/oncotarget.20731] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022] Open
Abstract
The thymus plays a key role in myasthenia gravis (MG), a B cell-mediated autoimmune disorder affecting neuromuscular junction. Most MG patients have thymic abnormalities, including hyperplasia and thymoma, a neoplasm of thymic epithelial cells. Epstein-Barr virus (EBV) is associated with autoimmune diseases and tumors. Recently, we showed EBV persistence and reactivation in hyperplastic MG thymuses, suggesting that EBV might contribute to intra-thymic B cell dysregulation in MG patients. Here, we investigated EBV involvement in thymoma-associated MG, by searching for EBV markers in MG (n=26) and non-MG (n=14) thymomas. EBV DNA and EBV-encoded small nuclear RNA (EBER) 1 transcript were detected in 14/26 (53.8%) and 22/26 (84.6%) MG thymomas, and only in 3 of 14 (21.4%) non-MG thymomas. Latent EBNA2 and late gp350/220 lytic transcripts were undetectable in all, but one, thymomas, and early lytic BZLF1 transcript was absent in all samples, suggesting that early infection events and EBV reactivation were very rare in thymomas. EBER1 and 2-positive cells were detected in MG, but not in non-MG, thymomas, as well as cells expressing EBV latency proteins (EBNA1, LMP1, LMP2A), that were mainly of B cell phenotype, indicating EBV association with MG rather than with thymoma. Toll-like receptor (TLR) 3 transcriptional levels were higher in MG than non-MG thymomas and positively correlated with EBER1 levels, suggesting a role for EBERs in TLR3 activation. Our findings show that EBV is commonly present in thymoma-infiltrating B cells of myasthenic patients, indicating a contribution of EBV to B cell-mediated autoreactivity in MG associated with thymic tumor.
Collapse
Affiliation(s)
- Paola Cavalcante
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Stefania Marcuzzo
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Sara Franzi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Barbara Galbardi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Lorenzo Maggi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Teresio Motta
- Department of Pathological Anatomy, ASST - Bergamo Est Ospedale Bolognini Seriate, 24068 Seriate Bergamo, Italy
| | - Raffaella Ghislandi
- Department of Pathological Anatomy, ASST - Bergamo Est Ospedale Bolognini Seriate, 24068 Seriate Bergamo, Italy
| | - Antonella Buzzi
- Department of Pathological Anatomy, ASST - Bergamo Est Ospedale Bolognini Seriate, 24068 Seriate Bergamo, Italy
| | - Luisella Spinelli
- Department of General Surgery, ASST - Bergamo Est Ospedale Bolognini Seriate, 24068 Seriate Bergamo, Italy
| | - Lorenzo Novellino
- Department of General Surgery, ASST - Bergamo Est Ospedale Bolognini Seriate, 24068 Seriate Bergamo, Italy
| | - Fulvio Baggi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Carlo Antozzi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Fabio Conforti
- Unit of Sarcomas and Thymomas, European Institute of Oncology, 20136 Milan, Italy
| | | | - Massimo Barberis
- Histopathology and Molecular Diagnostics Unit, European Institute of Oncology, 20136 Milan, Italy
| | - Pia Bernasconi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Renato Mantegazza
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| |
Collapse
|
50
|
Romi F, Hong Y, Gilhus NE. Pathophysiology and immunological profile of myasthenia gravis and its subgroups. Curr Opin Immunol 2017; 49:9-13. [PMID: 28780294 DOI: 10.1016/j.coi.2017.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/07/2017] [Indexed: 01/11/2023]
Abstract
Myasthenia gravis (MG) is an autoimmune antibody-mediated disease characterized by muscle weakness and fatigability. It is believed that the initial steps triggering humoral immunity in MG take place inside thymic tissue and thymoma. The immune response against one or several epitopes expressed on thymic tissue cells spills over to neuromuscular junction components sharing the same epitope causing humoral autoimmunity and antibody production. The main cause of MG is acetylcholine receptor antibodies. However, many other neuromuscular junction membrane protein targets, intracellular and extracellular proteins are suggested to participate in MG pathophysiology. MG should be divided into subgroups based on clinical presentation and immunology. This includes onset age, clinical characteristics, thymic pathology and antibody profile. The immunological profile of these subgroups is determined by the antibodies present.
Collapse
Affiliation(s)
- Fredrik Romi
- Department of Neurology, Haukeland University Hospital, Norway.
| | - Yu Hong
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Nils Erik Gilhus
- Department of Neurology, Haukeland University Hospital, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|