1
|
Weber FB, Santos CL, da Silva A, Schmitz I, Rezena E, Gonçalves CA, Quincozes-Santos A, Bobermin LD. Differences between cultured astrocytes from neonatal and adult Wistar rats: focus on in vitro aging experimental models. In Vitro Cell Dev Biol Anim 2024; 60:420-431. [PMID: 38546817 DOI: 10.1007/s11626-024-00896-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/07/2024] [Indexed: 05/07/2024]
Abstract
Astrocytes play key roles regulating brain homeostasis and accumulating evidence has suggested that glia are the first cells that undergo functional changes with aging, which can lead to a decline in brain function. In this context, in vitro models are relevant tools for studying aged astrocytes and, here, we investigated functional and molecular changes in cultured astrocytes obtained from neonatal or adult animals submitted to an in vitro model of aging by an additional period of cultivation of cells after confluence. In vitro aging induced different metabolic effects regarding glucose and glutamate uptake, as well as glutamine synthetase activity, in astrocytes obtained from adult animals compared to those obtained from neonatal animals. In vitro aging also modulated glutathione-related antioxidant defenses and increased reactive oxygen species and cytokine release especially in astrocytes from adult animals. Interestingly, in vitro aged astrocytes from adult animals exposed to pro-oxidant, inflammatory, and antioxidant stimuli showed enhanced oxidative and inflammatory responses. Moreover, these functional changes were correlated with the expression of the senescence marker p21, cytoskeleton markers, glutamate transporters, inflammatory mediators, and signaling pathways such as nuclear factor κB (NFκB)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1). Alterations in these genes are remarkably associated with a potential neurotoxic astrocyte phenotype. Therefore, considering the experimental limitations due to the need for long-term maintenance of the animals for studying aging, astrocyte cultures obtained from adult animals further aged in vitro can provide an improved experimental model for understanding the mechanisms associated with aging-related astrocyte dysfunction.
Collapse
Affiliation(s)
- Fernanda Becker Weber
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Camila Leite Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Amanda da Silva
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Izaviany Schmitz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Ester Rezena
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
2
|
Iannucci J, Grammas P. Thrombin, a Key Driver of Pathological Inflammation in the Brain. Cells 2023; 12:cells12091222. [PMID: 37174621 PMCID: PMC10177239 DOI: 10.3390/cells12091222] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/21/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), are major contributors to death and disability worldwide. A multitude of evidence suggests that neuroinflammation is critical in neurodegenerative disease processes. Exploring the key mediators of neuroinflammation in AD, a prototypical neurodegenerative disease, could help identify pathologic inflammatory mediators and mechanisms in other neurodegenerative diseases. Elevated levels of the multifunctional inflammatory protein thrombin are commonly found in conditions that increase AD risk, including diabetes, atherosclerosis, and traumatic brain injury. Thrombin, a main driver of the coagulation cascade, has been identified as important to pathological events in AD and other neurodegenerative diseases. Furthermore, recent evidence suggests that coagulation cascade-associated proteins act as drivers of inflammation in the AD brain, and studies in both human populations and animal models support the view that abnormalities in thrombin generation promote AD pathology. Thrombin drives neuroinflammation through its pro-inflammatory activation of microglia, astrocytes, and endothelial cells. Due to the wide-ranging pro-inflammatory effects of thrombin in the brain, inhibiting thrombin could be an effective strategy for interrupting the inflammatory cascade which contributes to neurodegenerative disease progression and, as such, may be a potential therapeutic target for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | | |
Collapse
|
3
|
Shen Z, Xiang M, Chen C, Ding F, Wang Y, Shang C, Xin L, Zhang Y, Cui X. Glutamate excitotoxicity: Potential therapeutic target for ischemic stroke. Biomed Pharmacother 2022; 151:113125. [PMID: 35609367 DOI: 10.1016/j.biopha.2022.113125] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamate-mediated excitotoxicity is an important mechanism leading to post ischemic stroke damage. After acute stroke, the sudden reduction in cerebral blood flow is most initially followed by ion transport protein dysfunction and disruption of ion homeostasis, which in turn leads to impaired glutamate release, reuptake, and excessive N-methyl-D-aspartate receptor (NMDAR) activation, promoting neuronal death. Despite extensive evidence from preclinical studies suggesting that excessive NMDAR stimulation during ischemic stroke is a central step in post-stroke damage, NMDAR blockers have failed to translate into clinical stroke treatment. Current treatment options for stroke are very limited, and there is therefore a great need to develop new targets for neuroprotective therapeutic agents in ischemic stroke to extend the therapeutic time window. In this review, we highlight recent findings on glutamate release, reuptake mechanisms, NMDAR and its downstream cellular signaling pathways in post-ischemic stroke damage, and review the pathological changes in each link to help develop viable new therapeutic targets. We then also summarize potential neuroprotective drugs and therapeutic approaches for these new targets in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zihuan Shen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Mi Xiang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chen Chen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Fan Ding
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Yuling Wang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Chang Shang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Laiyun Xin
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Zhang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiangning Cui
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
4
|
Bobermin LD, de Souza Almeida RR, Weber FB, Medeiros LS, Medeiros L, Wyse ATS, Gonçalves CA, Quincozes-Santos A. Lipopolysaccharide Induces Gliotoxicity in Hippocampal Astrocytes from Aged Rats: Insights About the Glioprotective Roles of Resveratrol. Mol Neurobiol 2022; 59:1419-1439. [PMID: 34993844 DOI: 10.1007/s12035-021-02664-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022]
Abstract
Astrocytes may undergo a functional remodeling with aging, acquiring a pro-inflammatory state. In line with this, resveratrol represents an interesting strategy for a healthier brain aging since it can improve glial functions. In the present study, we investigated the glioprotective role of resveratrol against lipopolysaccharide (LPS)-induced gliotoxicity in hippocampal aged astrocytes. Astrocyte cultures were obtained from aged rats (365 days old) and challenged in vitro with LPS in the presence of resveratrol. Cultured astrocytes from newborn rats were used as an age comparative for evaluating LPS gliotoxicity. In addition, aged rats were submitted to an acute systemic inflammation with LPS. Hippocampal astrocyte cultures were also obtained from these LPS-stimulated aged animals to further investigate the glioprotective effects of resveratrol in vitro. Overall, our results show that LPS induced a higher inflammatory response in aged astrocytes, compared to newborn astrocytes. Several inflammatory and gene expression alterations promoted by LPS in aged astrocyte cultures were similar in hippocampal tissue from aged animals submitted to in vivo LPS injection, corroborating our in vitro findings. Resveratrol, in turn, presented anti-inflammatory effects in aged astrocyte cultures, which were associated with downregulation of p21 and pro-inflammatory cytokines, Toll-like receptors (TLRs), and nuclear factor κB (NFκB). Resveratrol also improved astroglial functions. Upregulation of sirtuin 1 (SIRT1), nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase 1 (HO-1) represent potential molecular mechanisms associated with resveratrol-mediated glioprotection. In summary, our data show that resveratrol can prime aged astrocytes against gliotoxic stimuli, contributing to a healthier brain aging.
Collapse
Affiliation(s)
- Larissa Daniele Bobermin
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Rômulo Rodrigo de Souza Almeida
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Becker Weber
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul- UFRGS, Rua Ramiro Barcelos, 2600 - Anexo Bairro Santa Cecília, Porto Alegre, RS, Brazil
| | - Lara Scopel Medeiros
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul- UFRGS, Rua Ramiro Barcelos, 2600 - Anexo Bairro Santa Cecília, Porto Alegre, RS, Brazil
| | - Lívia Medeiros
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul- UFRGS, Rua Ramiro Barcelos, 2600 - Anexo Bairro Santa Cecília, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul- UFRGS, Rua Ramiro Barcelos, 2600 - Anexo Bairro Santa Cecília, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul- UFRGS, Rua Ramiro Barcelos, 2600 - Anexo Bairro Santa Cecília, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil. .,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul- UFRGS, Rua Ramiro Barcelos, 2600 - Anexo Bairro Santa Cecília, Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
Physical Exercise as a Modulator of Vascular Pathology and Thrombin Generation to Improve Outcomes After Traumatic Brain Injury. Mol Neurobiol 2021; 59:1124-1138. [PMID: 34846694 DOI: 10.1007/s12035-021-02639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
Disruption of the blood-brain barrier and occurrence of coagulopathy after traumatic brain injury (TBI) have important implications for multiple secondary injury processes. Given the extent of post-traumatic changes in neuronal function, significant alterations in some targets, such thrombin (a protease that plays a physiological role in maintaining blood coagulation), play an important role in TBI-induced pathophysiology. Despite the magnitude of thrombin in synaptic plasticity being concentration-dependent, the mechanisms underlying TBI have not been fully elucidated. The understanding of this post-injury neurovascular dysregulation is essential to establish scientific-based rehabilitative strategies. One of these strategies may be supporting physical exercise, considering its relevance in reducing damage after a TBI. However, there are caveats to consider when interpreting the effect of physical exercise on neurovascular dysregulation after TBI. To complete this picture, this review will describe how the interactions established between blood-borne factors (such as thrombin) and physical exercise alter the TBI pathophysiology.
Collapse
|
6
|
Cao Q, Yang F, Wang H. CB2R induces a protective response against epileptic seizures through ERK and p38 signaling pathways. Int J Neurosci 2021; 131:735-744. [PMID: 32715907 DOI: 10.1080/00207454.2020.1796661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 05/09/2020] [Accepted: 07/01/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Epilepsy is a pivotal neurological disorder characterized by the synchronous discharging of neurons to induce momentary brain dysfunction. Temporal lobe epilepsy is the most common type of epilepsy, with seizures originating from the mesial temporal lobe. The hippocampus forms part of the mesial temporal lobe and plays a significant role in epileptogenesis; it also has a vital influence on the mental development of children. In this study, we aimed to explore the effects of CB2 receptor (CB2R) activation on ERK and p38 signaling in nerve cells of a rat epilepsy model. MATERIALS AND METHODS We treated Sprague-Dawley rats with pilocarpine to induce an epilepsy model and treated such animals with a CB2R agonist (JWH133) alone or with a CB2R antagonist (AM630). Nissl's stain showed the neuron conditon in different groups. Western blot analyzed the level of p-ERK and p-p38. RESULTS JWH133 can increase the latent period of first seizure attack and decrease the Grades IV-V magnitude ratio after the termination of SE. Nissl's stain showed JWH133 protected neurons in the hippocampus while AM630 inhibited the functioning of CB2R in neurons. Western blot analysis showed that JWH133 decreased levels of p-ERK and p-p38, which is found at increased levels in the hippocampus of our epilepsy model. In contrast, AM630 inhibited the protective function of JWH133 and also enhanced levels of p-ERK and p-p38. CONCLUSIONS CB2R activation can induce neurons proliferation and survival through activation of ERK and p38 signaling pathways.
Collapse
Affiliation(s)
- Qingjun Cao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fenghua Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hua Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
The pleiotropic effects of antithrombotic drugs in the metabolic-cardiovascular-neurodegenerative disease continuum: impact beyond reduced clotting. Clin Sci (Lond) 2021; 135:1015-1051. [PMID: 33881143 DOI: 10.1042/cs20201445] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022]
Abstract
Antithrombotic drugs are widely used for primary and secondary prevention, as well as treatment of many cardiovascular disorders. Over the past few decades, major advances in the pharmacology of these agents have been made with the introduction of new drug classes as novel therapeutic options. Accumulating evidence indicates that the beneficial outcomes of some of these antithrombotic agents are not solely related to their ability to reduce thrombosis. Here, we review the evidence supporting established and potential pleiotropic effects of four novel classes of antithrombotic drugs, adenosine diphosphate (ADP) P2Y12-receptor antagonists, Glycoprotein IIb/IIIa receptor Inhibitors, and Direct Oral Anticoagulants (DOACs), which include Direct Factor Xa (FXa) and Direct Thrombin Inhibitors. Specifically, we discuss the molecular evidence supporting such pleiotropic effects in the context of cardiovascular disease (CVD) including endothelial dysfunction (ED), atherosclerosis, cardiac injury, stroke, and arrhythmia. Importantly, we highlight the role of DOACs in mitigating metabolic dysfunction-associated cardiovascular derangements. We also postulate that DOACs modulate perivascular adipose tissue inflammation and thus, may reverse cardiovascular dysfunction early in the course of the metabolic syndrome. In this regard, we argue that some antithrombotic agents can reverse the neurovascular damage in Alzheimer's and Parkinson's brain and following traumatic brain injury (TBI). Overall, we attempt to provide an up-to-date comprehensive review of the less-recognized, beneficial molecular aspects of antithrombotic therapy beyond reduced thrombus formation. We also make a solid argument for the need of further mechanistic analysis of the pleiotropic effects of antithrombotic drugs in the future.
Collapse
|
8
|
Espírito-Santo S, Coutinho VG, Dezonne RS, Stipursky J, Dos Santos-Rodrigues A, Batista C, Paes-de-Carvalho R, Fuss B, Gomes FCA. Astrocytes as a target for Nogo-A and implications for synapse formation in vitro and in a model of acute demyelination. Glia 2021; 69:1429-1443. [PMID: 33497496 DOI: 10.1002/glia.23971] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/21/2020] [Accepted: 01/14/2021] [Indexed: 12/20/2022]
Abstract
Central nervous system (CNS) function depends on precise synaptogenesis, which is shaped by environmental cues and cellular interactions. Astrocytes are outstanding regulators of synapse development and plasticity through contact-dependent signals and through the release of pro- and antisynaptogenic factors. Conversely, myelin and its associated proteins, including Nogo-A, affect synapses in a inhibitory fashion and contribute to neural circuitry stabilization. However, the roles of Nogo-A-astrocyte interactions and their implications in synapse development and plasticity have not been characterized. Therefore, we aimed to investigate whether Nogo-A affects the capacity of astrocytes to induce synaptogenesis. Additionally, we assessed whether downregulation of Nogo-A signaling in an in vivo demyelination model impacts the synaptogenic potential of astrocytes. Our in vitro data show that cortical astrocytes respond to Nogo-A through RhoA pathway activation, exhibiting stress fiber formation and decreased ramified morphology. This phenotype was associated with reduced levels of GLAST protein and aspartate uptake, decreased mRNA levels of the synaptogenesis-associated genes Hevin, glypican-4, TGF-β1 and BDNF, and decreased and increased protein levels of Hevin and SPARC, respectively. Corroborating these findings, conditioned medium from Nogo-A-treated astrocytes suppressed the formation of structurally and functionally mature synapses in cortical neuronal cultures. After cuprizone-induced acute demyelination, we observed reduced immunostaining for Nogo-A in the visual cortex accompanied by higher levels of Hevin expression in astrocytes and an increase in excitatory synapse density. Hence, we suggest that interactions between Nogo-A and astrocytes might represent an important pathway of plasticity regulation and could be a target for therapeutic intervention in demyelinating diseases in the future.
Collapse
Affiliation(s)
- Sheila Espírito-Santo
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Ciências Biológicas, Universidade do Estado de Minas Gerais, Minas Gerais, Brazil
| | - Vinícius G Coutinho
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rômulo S Dezonne
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joice Stipursky
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Carolina Batista
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto Paes-de-Carvalho
- Instituto de Biologia, Programa de Neurociências, Universidade Federal Fluminense, Niterói, Brazil
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | | |
Collapse
|
9
|
Cao H, Seto SW, Bhuyan DJ, Chan HH, Song W. Effects of Thrombin on the Neurovascular Unit in Cerebral Ischemia. Cell Mol Neurobiol 2021; 42:973-984. [PMID: 33392917 DOI: 10.1007/s10571-020-01019-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Cerebral ischemia is a cerebrovascular disease with high morbidity and mortality that poses a significant burden on society and the economy. About 60% of cerebral ischemia is caused by thrombus, and the formation of thrombus proceeds from insoluble fibrin, following its transformation from liquid fibrinogen. In thrombus-induced ischemia, increased permeability of the blood-brain barrier (BBB), followed by the extravasation of blood components into the brain results in an altered brain microenvironment. Changes in the brain microenvironment affect brain function and the neurovascular unit (NVU), the working unit of the brain. Recent studies have reported that coagulation factors interact with the NVU and its components, but the specific function of this interaction is highly speculative and warrants further investigations. In this article, we reviewed the role of coagulation factors in cerebral ischemia and the role of coagulation factors in thrombosis. Additionally, the influence of thrombin on the NVU is introduced, as well as in the function of NVU, which may help to explore part of brain injury mechanism during ischemia. Lastly, we propose some novel therapeutic approaches on ischemic stroke by reducing the risk of coagulation.
Collapse
Affiliation(s)
- Hui Cao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, 100091, China
| | - Sai Wang Seto
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China.,NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Hoi Huen Chan
- Hong Kong Community College, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Wenting Song
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, 100091, China.
| |
Collapse
|
10
|
Iannucci J, Renehan W, Grammas P. Thrombin, a Mediator of Coagulation, Inflammation, and Neurotoxicity at the Neurovascular Interface: Implications for Alzheimer's Disease. Front Neurosci 2020; 14:762. [PMID: 32792902 PMCID: PMC7393221 DOI: 10.3389/fnins.2020.00762] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
The societal burden of Alzheimer’s disease (AD) is staggering, with current estimates suggesting that 50 million people world-wide have AD. Identification of new therapeutic targets is a critical barrier to the development of disease-modifying therapies. A large body of data implicates vascular pathology and cardiovascular risk factors in the development of AD, indicating that there are likely shared pathological mediators. Inflammation plays a role in both cardiovascular disease and AD, and recent evidence has implicated elements of the coagulation system in the regulation of inflammation. In particular, the multifunctional serine protease thrombin has been found to act as a mediator of vascular dysfunction and inflammation in both the periphery and the central nervous system. In the periphery, thrombin contributes to the development of cardiovascular disease, including atherosclerosis and diabetes, by inducing endothelial dysfunction and related inflammation. In the brain, thrombin has been found to act on endothelial cells of the blood brain barrier, microglia, astrocytes, and neurons in a manner that promotes vascular dysfunction, inflammation, and neurodegeneration. Thrombin is elevated in the AD brain, and thrombin signaling has been linked to both tau and amyloid beta, pathological hallmarks of the disease. In AD mouse models, inhibiting thrombin preserves cognition and endothelial function and reduces neuroinflammation. Evidence linking atrial fibrillation with AD and dementia indicates that anticoagulant therapy may reduce the risk of dementia, with targeting thrombin shown to be particularly effective. It is time for “outside-the-box” thinking about how vascular risk factors, such as atherosclerosis and diabetes, as well as the coagulation and inflammatory pathways interact to promote increased AD risk. In this review, we present evidence that thrombin is a convergence point for AD risk factors and as such that thrombin-based therapeutics could target multiple points of AD pathology, including neurodegeneration, vascular activation, and neuroinflammation. The urgent need for disease-modifying drugs in AD demands new thinking about disease pathogenesis and an exploration of novel drug targets, we propose that thrombin inhibition is an innovative tactic in the therapeutic battle against this devastating disease.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| | - William Renehan
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States
| | - Paula Grammas
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
11
|
Calcineurin Controls Expression of EAAT1/GLAST in Mouse and Human Cultured Astrocytes through Dynamic Regulation of Protein Synthesis and Degradation. Int J Mol Sci 2020; 21:ijms21062213. [PMID: 32210081 PMCID: PMC7139922 DOI: 10.3390/ijms21062213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 01/28/2023] Open
Abstract
Alterations in the expression of glutamate/aspartate transporter (GLAST) have been associated with several neuropathological conditions including Alzheimer's disease and epilepsy. However, the mechanisms by which GLAST expression is altered are poorly understood. Here we used a combination of pharmacological and genetic approaches coupled with quantitative PCR and Western blot to investigate the mechanism of the regulation of GLAST expression by a Ca2+/calmodulin-activated phosphatase calcineurin (CaN). We show that treatment of cultured hippocampal mouse and fetal human astrocytes with a CaN inhibitor FK506 resulted in a dynamic modulation of GLAST protein expression, being downregulated after 24-48 h, but upregulated after 7 days of continuous FK506 (200 nM) treatment. Protein synthesis, as assessed by puromycin incorporation in neo-synthesized polypeptides, was inhibited already after 1 h of FK506 treatment, while the use of a proteasome inhibitor MG132 (1 μM) shows that GLAST protein degradation was only suppressed after 7 days of FK506 treatment. In astrocytes with constitutive genetic ablation of CaN both protein synthesis and degradation were significantly inhibited. Taken together, our data suggest that, in cultured astrocytes, CaN controls GLAST expression at a posttranscriptional level through regulation of GLAST protein synthesis and degradation.
Collapse
|
12
|
PIRSE: Philosophical Investigations in Refractory Status Epilepticus. Pediatr Crit Care Med 2020; 21:98-99. [PMID: 31899752 DOI: 10.1097/pcc.0000000000002124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Multiple Sclerosis: Melatonin, Orexin, and Ceramide Interact with Platelet Activation Coagulation Factors and Gut-Microbiome-Derived Butyrate in the Circadian Dysregulation of Mitochondria in Glia and Immune Cells. Int J Mol Sci 2019; 20:ijms20215500. [PMID: 31694154 PMCID: PMC6862663 DOI: 10.3390/ijms20215500] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022] Open
Abstract
Recent data highlight the important roles of the gut microbiome, gut permeability, and alterations in mitochondria functioning in the pathophysiology of multiple sclerosis (MS). This article reviews such data, indicating two important aspects of alterations in the gut in the modulation of mitochondria: (1) Gut permeability increases toll-like receptor (TLR) activators, viz circulating lipopolysaccharide (LPS), and exosomal high-mobility group box (HMGB)1. LPS and HMGB1 increase inducible nitric oxide synthase and superoxide, leading to peroxynitrite-driven acidic sphingomyelinase and ceramide. Ceramide is a major driver of MS pathophysiology via its impacts on glia mitochondria functioning; (2) Gut dysbiosis lowers production of the short-chain fatty acid, butyrate. Butyrate is a significant positive regulator of mitochondrial function, as well as suppressing the levels and effects of ceramide. Ceramide acts to suppress the circadian optimizers of mitochondria functioning, viz daytime orexin and night-time melatonin. Orexin, melatonin, and butyrate increase mitochondria oxidative phosphorylation partly via the disinhibition of the pyruvate dehydrogenase complex, leading to an increase in acetyl-coenzyme A (CoA). Acetyl-CoA is a necessary co-substrate for activation of the mitochondria melatonergic pathway, allowing melatonin to optimize mitochondrial function. Data would indicate that gut-driven alterations in ceramide and mitochondrial function, particularly in glia and immune cells, underpin MS pathophysiology. Aryl hydrocarbon receptor (AhR) activators, such as stress-induced kynurenine and air pollutants, may interact with the mitochondrial melatonergic pathway via AhR-induced cytochrome P450 (CYP)1b1, which backward converts melatonin to N-acetylserotonin (NAS). The loss of mitochnodria melatonin coupled with increased NAS has implications for altered mitochondrial function in many cell types that are relevant to MS pathophysiology. NAS is increased in secondary progressive MS, indicating a role for changes in the mitochondria melatonergic pathway in the progression of MS symptomatology. This provides a framework for the integration of diverse bodies of data on MS pathophysiology, with a number of readily applicable treatment interventions, including the utilization of sodium butyrate.
Collapse
|
14
|
Mahmoud S, Gharagozloo M, Simard C, Amrani A, Gris D. NLRX1 Enhances Glutamate Uptake and Inhibits Glutamate Release by Astrocytes. Cells 2019; 8:cells8050400. [PMID: 31052241 PMCID: PMC6562695 DOI: 10.3390/cells8050400] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/25/2019] [Accepted: 04/28/2019] [Indexed: 01/24/2023] Open
Abstract
Uptake of glutamate from the extracellular space and glutamate release to neurons are two major processes conducted by astrocytes in the central nervous system (CNS) that protect against glutamate excitotoxicity and strengthen neuronal firing, respectively. During inflammatory conditions in the CNS, astrocytes may lose one or both of these functions, resulting in accumulation of the extracellular glutamate, which eventually leads to excitotoxic neuronal death, which in turn worsens the CNS inflammation. NLRX1 is an innate immune NOD-like receptor that inhibits the major inflammatory pathways. It is localized in the mitochondria and was shown to inhibit cell death, enhance ATP production, and dampen oxidative stress. In the current work, using primary murine astrocyte cultures from WT and Nlrx1-/- mice, we demonstrate that NLRX1 potentiates astrocytic glutamate uptake by enhancing mitochondrial functions and the functional activity of glutamate transporters. Also, we report that NLRX1 inhibits glutamate release from astrocytes by repressing Ca2+-mediated glutamate exocytosis. Our study, for the first time, identified NLRX1 as a potential regulator of glutamate homeostasis in the CNS.
Collapse
Affiliation(s)
- Shaimaa Mahmoud
- Program of Immunology, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Marjan Gharagozloo
- Program of Immunology, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Camille Simard
- Program of Immunology, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Abdelaziz Amrani
- Program of Immunology, Department of Pediatrics, CR-CHUS, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Denis Gris
- Program of Immunology, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
15
|
McConnell HL, Li Z, Woltjer RL, Mishra A. Astrocyte dysfunction and neurovascular impairment in neurological disorders: Correlation or causation? Neurochem Int 2019; 128:70-84. [PMID: 30986503 DOI: 10.1016/j.neuint.2019.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022]
Abstract
The neurovascular unit, consisting of neurons, astrocytes, and vascular cells, has become the focus of much discussion in the last two decades and emerging literature now suggests an association between neurovascular dysfunction and neurological disorders. In this review, we synthesize the known and suspected contributions of astrocytes to neurovascular dysfunction in disease. Throughout the brain, astrocytes are centrally positioned to dynamically mediate interactions between neurons and the cerebral vasculature, and play key roles in blood-brain barrier maintenance and neurovascular coupling. It is increasingly apparent that the changes in astrocytes in response to a variety of insults to brain tissue -collectively referred to as "reactive astrogliosis" - are not just an epiphenomenon restricted to morphological alterations, but comprise functional changes in astrocytes that contribute to the phenotype of neurological diseases with both beneficial and detrimental effects. In the context of the neurovascular unit, astrocyte dysfunction accompanies, and may contribute to, blood-brain barrier impairment and neurovascular dysregulation, highlighting the need to determine the exact nature of the relationship between astrocyte dysfunction and neurovascular impairments. Targeting astrocytes may represent a new strategy in combinatorial therapeutics for preventing the mismatch of energy supply and demand that often accompanies neurological disorders.
Collapse
Affiliation(s)
- Heather L McConnell
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Zhenzhou Li
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States; Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan City, China
| | - Randall L Woltjer
- Department of Neuropathology, Oregon Health & Science University, Portland, OR, United States
| | - Anusha Mishra
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
16
|
Piao CS, Holloway AL, Hong-Routson S, Wainwright MS. Depression following traumatic brain injury in mice is associated with down-regulation of hippocampal astrocyte glutamate transporters by thrombin. J Cereb Blood Flow Metab 2019; 39:58-73. [PMID: 29135354 PMCID: PMC6311670 DOI: 10.1177/0271678x17742792] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Depression after traumatic brain injury (TBI) is common but the mechanisms by which TBI causes depression are unknown. TBI decreases glutamate transporters GLT-1 and GLAST and allows extravasation of thrombin. We examined the effects of thrombin on transporter expression in primary hippocampal astrocytes. Application of a PAR-1 agonist caused down-regulation of GLT-1, which was prevented by inhibition of Rho kinase (ROCK). To confirm these mechanisms in vivo, we subjected mice to closed-skull TBI. Thrombin activity in the hippocampus increased one day following TBI. Seven days following TBI, expression of GLT-1 and GLAST was reduced in the hippocampus, and this was prevented by administration of the PAR-1 antagonist SCH79797. Inhibition of ROCK attenuated the decrease in GLT-1, but not GLAST, after TBI. We measured changes in glutamate levels in the hippocampus seven days after TBI using an implanted biosensor. Stress-induced glutamate levels were significantly increased following TBI and this was attenuated by treatment with the ROCK inhibitor fasudil. We quantified depressive behavior following TBI and found that inhibition of PAR-1 or ROCK decreased these behaviors. These results identify a novel mechanism by which TBI results in down-regulation of astrocyte glutamate transporters and implicate astrocyte and glutamate transporter dysfunction in depression following TBI.
Collapse
Affiliation(s)
- Chun-Shu Piao
- 1 Ruth D. & Ken M. Davee Pediatric Neurocritical Care Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,2 Division of Neurology, Ann & Robert H Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ashley L Holloway
- 1 Ruth D. & Ken M. Davee Pediatric Neurocritical Care Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,2 Division of Neurology, Ann & Robert H Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sue Hong-Routson
- 1 Ruth D. & Ken M. Davee Pediatric Neurocritical Care Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,2 Division of Neurology, Ann & Robert H Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,3 Division of Critical Care, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mark S Wainwright
- 1 Ruth D. & Ken M. Davee Pediatric Neurocritical Care Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,2 Division of Neurology, Ann & Robert H Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,3 Division of Critical Care, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
17
|
Cofilin Knockdown Attenuates Hemorrhagic Brain Injury-induced Oxidative Stress and Microglial Activation in Mice. Neuroscience 2018; 383:33-45. [DOI: 10.1016/j.neuroscience.2018.04.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 11/22/2022]
|
18
|
Kalinin S, Marangoni N, Kowal K, Dey A, Lis K, Brodsky S, van Breemen R, Hauck Z, Ripper R, Rubinstein I, Weinberg G, Feinstein DL. The Long-Lasting Rodenticide Brodifacoum Induces Neuropathology in Adult Male Rats. Toxicol Sci 2018; 159:224-237. [PMID: 28903499 DOI: 10.1093/toxsci/kfx134] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Superwarfarins are very long-lasting rodenticides effective in warfarin-resistant rodents at extremely low doses. The consequences of chronic superwarfarin levels in tissues, due to biological half-lives on the order of 20 days, have not been examined. We now characterized the neurological effects of brodifacoum (BDF), one of the most widely used superwarfarins, in adult male Sprague Dawley rats. Dosing curves established the acute oral lethal dose for BDF as 221 ± 14 μg/kg. Measurement of tissue BDF levels showed accumulation throughout the body, including the central nervous system, with levels diminishing over several days. Immunocytochemical staining showed that both astrocyte and microglial activation was increased 4 days after BDF administration, as were levels of carbonylated proteins, and neuronal damage assessed by fluorojade B staining. Direct toxic effects of BDF on neurons and glia were observed using enriched cultures of cerebellar neurons and cortical astrocytes. Proteomic analysis of cerebellar lysates revealed that BDF altered expression of 667 proteins in adult rats. Gene ontology and pathway analysis identified changes in several functional pathways including cell metabolism, mitochondria function, and RNA handling with ribosomal proteins comprising the largest group. In vitro studies using primary astrocytes showed that BDF suppressed de novo protein synthesis. These findings demonstrate that superwarfarin accumulation increases indices of neuroinflammation and neuropathology in adult rodents, suggesting that methods which minimize BDF toxicity may not address delayed neurological sequelae.
Collapse
Affiliation(s)
- Sergey Kalinin
- Department of Anesthesiology, University of Illinois, Chicago, Illinois 60612
| | - Natalia Marangoni
- Department of Anesthesiology, University of Illinois, Chicago, Illinois 60612
| | - Katarzyna Kowal
- Department of Anesthesiology, University of Illinois, Chicago, Illinois 60612
| | - Arunangsu Dey
- Department of Anesthesiology, University of Illinois, Chicago, Illinois 60612
| | - Kinga Lis
- Research and Development, Jesse Brown VA Medical Center, Chicago, Illinois 60612
| | - Sergey Brodsky
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | | | - Zane Hauck
- Department of Medicinal Chemistry and Pharmacognosy
| | - Richard Ripper
- Department of Anesthesiology, University of Illinois, Chicago, Illinois 60612.,Research and Development, Jesse Brown VA Medical Center, Chicago, Illinois 60612
| | - Israel Rubinstein
- Research and Development, Jesse Brown VA Medical Center, Chicago, Illinois 60612.,Department of Medicine, University of Illinois, Chicago, Illinois
| | - Guy Weinberg
- Department of Anesthesiology, University of Illinois, Chicago, Illinois 60612.,Research and Development, Jesse Brown VA Medical Center, Chicago, Illinois 60612
| | - Douglas L Feinstein
- Department of Anesthesiology, University of Illinois, Chicago, Illinois 60612.,Research and Development, Jesse Brown VA Medical Center, Chicago, Illinois 60612
| |
Collapse
|
19
|
Cheng Z, Ou Y, Zhang L, Zhang P, Yuan X, Peng W, Wang S, Zhu X, Zhang L, Meng Y. The glutamate clearance function of adipose stromal cells-derived astrocytes. Neurosci Lett 2018; 677:94-102. [PMID: 29704575 DOI: 10.1016/j.neulet.2018.04.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 04/24/2018] [Indexed: 10/17/2022]
Abstract
ADSCs-derived astrocytes qualify the morphology, ultrastructure and membrane electrical potential, which are all unique to astrocytes. But whether they have the glutamate clearance function like mature astrocytes is under exploration. ADSCs were extracted, cultured and induced into astrocytes for 48 h, 7d, 14d and 21d in vitro. Inverted phase contrast microscope was used to observe the morphology of the cells in each group. Immunocytochemistry assay, immunofluorescence assay and Western blotting were used to detect the expression of GFAP, EAAT2 and GS of the cells in each group. The cells were cultured in glutamate solution for 1, 2, 3 and 4 h respectively before the solution collected. The glutamate concentration of the solution was detected using Glutamate Colorimetric Assay Hit. ADSCs-derived astrocytes expressed GFAP, EAAT2 and GS, all of which increased gradually and reached peak when induced for 14 days. In induction for 48 h, 7d and 14d groups, the extracellular glutamate concentration decreased gradually during the cells cultured in glutamate solution for 1, 2, 3 and 4 h, among which the decrease extent was most prominent in 14d group, while the extracellular glutamate concentration had no change in uninduction and induction for 21d group. ADSCs-derived astrocytes expressed EAAT2 and GS, meanwhile had the function of clearing glutamate, which was prominent when induced into astrocytes for 7-14 days.
Collapse
Affiliation(s)
- Zanzan Cheng
- Department of Neurology, Affiliated Kailuan General Hospital of North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Ya Ou
- Department of Neurology, Affiliated Kailuan General Hospital of North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Lili Zhang
- Department of Neurology, Affiliated Kailuan General Hospital of North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Pingshu Zhang
- Key Laboratory of Neurological and Biological Function of Hebei Province, Tangshan 063000, Hebei Province, China; Key Laboratory of Neurology of Tangshan, Tangshan 063000, Hebei Province, China
| | - Xiaodong Yuan
- Department of Neurology, Affiliated Kailuan General Hospital of North China University of Science and Technology, Tangshan 063000, Hebei Province, China; Key Laboratory of Neurological and Biological Function of Hebei Province, Tangshan 063000, Hebei Province, China.
| | - Wei Peng
- Department of Neurology, Affiliated Kailuan General Hospital of North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Shujuan Wang
- Department of Neurology, Affiliated Kailuan General Hospital of North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Xuhong Zhu
- Department of Neurology, Affiliated Kailuan General Hospital of North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Liping Zhang
- Department of Neurology, Affiliated Kailuan General Hospital of North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Yan Meng
- Department of Neurology, Affiliated Kailuan General Hospital of North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| |
Collapse
|
20
|
Izrael M, Slutsky SG, Admoni T, Cohen L, Granit A, Hasson A, Itskovitz-Eldor J, Krush Paker L, Kuperstein G, Lavon N, Yehezkel Ionescu S, Solmesky LJ, Zaguri R, Zhuravlev A, Volman E, Chebath J, Revel M. Safety and efficacy of human embryonic stem cell-derived astrocytes following intrathecal transplantation in SOD1 G93A and NSG animal models. Stem Cell Res Ther 2018; 9:152. [PMID: 29871694 PMCID: PMC5989413 DOI: 10.1186/s13287-018-0890-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a motor neuron (MN) disease characterized by the loss of MNs in the central nervous system. As MNs die, patients progressively lose their ability to control voluntary movements, become paralyzed and eventually die from respiratory/deglutition failure. Despite the selective MN death in ALS, there is growing evidence that malfunctional astrocytes play a crucial role in disease progression. Thus, transplantation of healthy astrocytes may compensate for the diseased astrocytes. METHODS We developed a good manufacturing practice-grade protocol for generation of astrocytes from human embryonic stem cells (hESCs). The first stage of our protocol is derivation of astrocyte progenitor cells (APCs) from hESCs. These APCs can be expanded in large quantities and stored frozen as cell banks. Further differentiation of the APCs yields an enriched population of astrocytes with more than 90% GFAP expression (hES-AS). hES-AS were injected intrathecally into hSOD1G93A transgenic mice and rats to evaluate their therapeutic potential. The safety and biodistribution of hES-AS were evaluated in a 9-month study conducted in immunodeficient NSG mice under good laboratory practice conditions. RESULTS In vitro, hES-AS possess the activities of functional healthy astrocytes, including glutamate uptake, promotion of axon outgrowth and protection of MNs from oxidative stress. A secretome analysis shows that these hES-AS also secrete several inhibitors of metalloproteases as well as a variety of neuroprotective factors (e.g. TIMP-1, TIMP-2, OPN, MIF and Midkine). Intrathecal injections of the hES-AS into transgenic hSOD1G93A mice and rats significantly delayed disease onset and improved motor performance compared to sham-injected animals. A safety study in immunodeficient mice showed that intrathecal transplantation of hES-AS is safe. Transplanted hES-AS attached to the meninges along the neuroaxis and survived for the entire duration of the study without formation of tumors or teratomas. Cell-injected mice gained similar body weight to the sham-injected group and did not exhibit clinical signs that could be related to the treatment. No differences from the vehicle control were observed in hematological parameters or blood chemistry. CONCLUSION Our findings demonstrate the safety and potential therapeutic benefits of intrathecal injection of hES-AS for the treatment of ALS.
Collapse
Affiliation(s)
- Michal Izrael
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Shalom Guy Slutsky
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Tamar Admoni
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Louisa Cohen
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Avital Granit
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Arik Hasson
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Joseph Itskovitz-Eldor
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Lena Krush Paker
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Graciela Kuperstein
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Neta Lavon
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Shiran Yehezkel Ionescu
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Leonardo Javier Solmesky
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Rachel Zaguri
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Alina Zhuravlev
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Ella Volman
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Judith Chebath
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Michel Revel
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
21
|
Neves J, Vizuete A, Nicola F, Da Ré C, Rodrigues A, Schmitz F, Mestriner R, Aristimunha D, Wyse A, Netto C. Glial glutamate transporters expression, glutamate uptake, and oxidative stress in an experimental rat model of intracerebral hemorrhage. Neurochem Int 2018. [DOI: 10.1016/j.neuint.2018.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Drugs to Alter Extracellular Concentration of Glutamate: Modulators of Glutamate Uptake Systems. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-1-4939-7228-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Involvement of inhibition of RhoA/Rho kinase signaling in simvastatin-induced amelioration of neuropathic pain. Neuroscience 2016; 333:204-13. [PMID: 27457035 DOI: 10.1016/j.neuroscience.2016.07.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 12/19/2022]
Abstract
Small molecular G-protein plays a key role in several diseases. This study was designed to reveal the role of RhoA signaling in the pathophysiology of neuropathic pain in mice. Partial sciatic nerve injury caused thermal hyperalgesia, mechanical allodynia, and increased plasma membrane translocation of RhoA in the lumber spinal cord. GFAP-immunoreactivity (ir), Iba-1-ir, and Rho kinase 2 (ROCK2-ir) was also increased in the ipsilateral spinal dorsal horn of nerve-ligated mice. Moreover, partial nerve ligation increased the expression of phosphorylated myristoylated alanine-rich protein kinase C substrate (MARCKS)-ir in the ipsilateral spinal dorsal horn. Daily intrathecal administration of simvastatin, beginning 3days before nerve injury, completely blocked all these changes in nerve-ligated mice. Pharmacological inhibition of ROCK also attenuated the increased expression of GFAP-ir and phosphorylated MARCKS-ir. Together, it is suggested that astrogliosis initiated by the activation of RhoA/ROCK signaling results in MARCKS phosphorylation in nerve terminals, which leads to hyperalgesia in neuropathic pain. Furthermore, simvastatin exerts antihyperalgesic and antiallodynic effects through the inhibition of spinal RhoA activation.
Collapse
|
24
|
Marangoni MN, Braun D, Situ A, Moyano AL, Kalinin S, Polak P, Givogri MI, Feinstein DL. Differential effects on glial activation by a direct versus an indirect thrombin inhibitor. J Neuroimmunol 2016; 297:159-68. [PMID: 27397090 DOI: 10.1016/j.jneuroim.2016.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 04/13/2016] [Accepted: 05/22/2016] [Indexed: 12/21/2022]
Abstract
Thrombin is a potent regulator of brain function in health and disease, modulating glial activation and brain inflammation. Thrombin inhibitors, several of which are in clinical use as anti-coagulants, can reduce thrombin-dependent neuroinflammation in pathological conditions. However, their effects in a healthy CNS are largely unknown. In adult healthy mice, we compared the effects of treatment by the direct thrombin inhibitor dabigatran etexilate (DE), to those of warfarin, which acts by preventing vitamin K recycling essential for coagulation. After 4weeks, warfarin increased both astrocyte GFAP and microglia Iba-1 staining throughout the CNS; whereas DE reduced expression of both markers. Warfarin, but not DE, reduced sulfatide levels; and warfarin showed longer lasting changes in cerebellar gene expression. DE also reduced glial activation in a mouse model of Alzheimer's disease, although no changes in amyloid plaque burden were observed. These results suggest that treatment with direct thrombin inhibitors may be preferable to those agents which reduce vitamin K levels and have the potential to increase glial activation.
Collapse
Affiliation(s)
- M Natalia Marangoni
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - David Braun
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Annie Situ
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Ana L Moyano
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL 60612, United States
| | - Sergey Kalinin
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Paul Polak
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Maria I Givogri
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL 60612, United States
| | - Douglas L Feinstein
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, United States; Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL 60612, United States.
| |
Collapse
|