1
|
Li SH, Huang QH, Yang QQ, Huang Q, Wang DX, Yang J, Huang SH, Zhang SY, Wang JM, Xie LS, Yu SG, Wu QF. The shared mechanism of barrier dysfunction in ulcerative colitis and Alzheimer's disease: DDIT4/IL1β neutrophil extracellular traps drive macrophages-mediated phagocytosis. Int Immunopharmacol 2025; 149:114188. [PMID: 39908802 DOI: 10.1016/j.intimp.2025.114188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
Ulcerative colitis (UC) and Alzheimer's disease (AD) share a common etiology as inflammatory diseases characterized by barrier deterioration. The aim of this study is to elucidate how neutrophil extracellular traps (NETs), serving as a comorbid etiological factor, can trigger the dysfunction in both the intestinal barrier and blood-brain barrier (BBB). Integrated bioinformatics analysis revealed 14 overlapped NETs-related differential expressed genes in UC and AD, which strongly featured barrier dysfunction. The following verification experiments identified enriched NETs, as well as damaged intestinal epithelium and BBB permeability, in the colon and prefrontal cortex of colitis mice and APP/PS1 mice. By employing pharmacological interventions (Cl-amidine and Disulfiram), we disrupted the formation of NETs and discovered significantly restored barrier integrity and attenuated inflammation. Further enrichment and correlation analysis indicated, for the first time, DDIT4/IL-1β NETs might drive macrophage-mediated phagocytosis to induce barrier dysfunction in UC and AD. Our findings originally established the peripheral-central inflammation interactions of UC and AD from the perspective of NETs, highlighting the potential valuable roles in gut-brain interactions and future clinic translational therapeutics.
Collapse
Affiliation(s)
- Si-Hui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qian-Hui Huang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qing-Qing Yang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qin Huang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - De-Xian Wang
- College of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Jiao Yang
- Suining Municipal Hospital of Traditional Chinese Medicine, Suining, Sichuan 629000, China
| | - Si-Han Huang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Si-Yu Zhang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Jun-Meng Wang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Lu-Shuang Xie
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Shu-Guang Yu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China.
| | - Qiao-Feng Wu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of Traditional Chinese Medicine), Ministry of Education, Chengdu, Sichuan 610075, China; Institute of Acupuncture and Homeostasis Regulation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China.
| |
Collapse
|
2
|
Ko JH, Oh JY. Mesenchymal stromal cells regulate THP-1-differentiated macrophage cytokine production by activating Akt/mammalian target of rapamycin complex 1 pathway. Cytotherapy 2023; 25:858-865. [PMID: 37125989 DOI: 10.1016/j.jcyt.2023.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND AIMS The Akt/mammalian target of rapamycin (mTOR) pathway in macrophages converges inflammatory and metabolic signals from multiple receptors to regulate a cell's survival, metabolism and activation. Although mesenchymal stromal cells (MSCs) are well known to modulate macrophage activation, the effects of MSCs on the Akt/mTOR pathway in macrophages have not been elucidated. METHODS We herein investigated whether MSCs affect the Akt/mTOR complex 1 (mTORC1) pathway to regulate macrophage polarization. RESULTS Results showed that human bone marrow-derived MSCs induced activation of Akt and its downstream mTORC1 signaling in THP-1-differentiated macrophages in a p62/sequestosome 1-independent manner. Inhibition of Akt or mTORC1 attenuated the effects of MSCs on the suppression of tumor necrosis factor-α and interleukin-12 production and the promotion of interleukin-10 and tumor growth factor-β1 in macrophages stimulated by lipopolysaccharide/ATP. Conversely, activation of Akt or mTORC1 reproduced and potentiated MSC effects on macrophage cytokine production. MSCs with cyclooxygenase-2 knockdown, however, failed to activate the Akt/mTORC1 signaling in macrophages and were less effective in the modulation of macrophage cytokine production than control MSCs. CONCLUSIONS These data demonstrate that MSCs control THP-1-differentiated macrophage activation at least partly through upregulation of the Akt/mTORC1 signaling in a cyclooxygenase-2-dependent manner.
Collapse
Affiliation(s)
- Jung Hwa Ko
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Jongno-gu, Seoul, Korea
| | - Joo Youn Oh
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Jongno-gu, Seoul, Korea; Department of Ophthalmology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea.
| |
Collapse
|
3
|
Sun W, Wang Q, Zhang R, Zhang N. Ketogenic diet attenuates neuroinflammation and induces conversion of M1 microglia to M2 in an EAE model of multiple sclerosis by regulating the NF-κB/NLRP3 pathway and inhibiting HDAC3 and P2X7R activation. Food Funct 2023; 14:7247-7269. [PMID: 37466915 DOI: 10.1039/d3fo00122a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disorder characterized by demyelination and neurodegeneration in the central nervous system (CNS); severe symptoms lead MS patients to use complementary treatments. Ketogenic diet (KD) shows wide neuroprotective effects, but the precise mechanisms underlying the therapeutic activity of KD in MS are unclear. The present study established a continuous 24 days experimental autoimmune encephalomyelitis (EAE) mouse model with or without KD. The changes in motor function, pathological hallmarks of EAE, the status of microglia, neuroinflammatory response and intracellular signaling pathways in mice were detected by the rotarod test, histological analysis, real-time PCR (RT-PCR) and western blotting. Our results showed that KD could prevent motor deficiency, reduce clinical scores, inhibit demyelination, improve pathological lesions and suppress microglial activation in the spinal cord of EAE mice. Meanwhile, KD shifted microglial polarization toward the protective M2 phenotype and modified the inflammatory milieu by downregulating the production of pro-inflammatory cytokines, including TNF-α, IL-1β and IL-6, as well as upregulating the release of anti-inflammatory cytokines such as TGF-β. Furthermore, KD decreased the expression levels of CCL2, CCR2, CCL3, CCR1, CCR5, CXCL10 and CXCR3 in the spinal cord and spleen with reduced monocyte/macrophage infiltration in the CNS. In addition, KD inhibits NLRP3 activation in the microglia, as revealed by the significantly decreased co-expression of NLRP3+ and Iba-1+ in the KD + EAE group. Further studies demonstrated that KD suppresses inflammatory response and M1 microglial polarization by inhibiting the TLR4/MyD88/NF-κB/NLRP3 pathway, the JAK1/STAT1 pathway, HDAC3 and P2X7R activation, as well as up-regulation of JAK3/STAT6.
Collapse
Affiliation(s)
- Wei Sun
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| |
Collapse
|
4
|
Műzes G, Sipos F. Autoimmunity and Carcinogenesis: Their Relationship under the Umbrella of Autophagy. Biomedicines 2023; 11:biomedicines11041130. [PMID: 37189748 DOI: 10.3390/biomedicines11041130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023] Open
Abstract
The immune system and autophagy share a functional relationship. Both innate and adaptive immune responses involve autophagy and, depending on the disease’s origin and pathophysiology, it may have a detrimental or positive role on autoimmune disorders. As a “double-edged sword” in tumors, autophagy can either facilitate or impede tumor growth. The autophagy regulatory network that influences tumor progression and treatment resistance is dependent on cell and tissue types and tumor stages. The connection between autoimmunity and carcinogenesis has not been sufficiently explored in past studies. As a crucial mechanism between the two phenomena, autophagy may play a substantial role, though the specifics remain unclear. Several autophagy modifiers have demonstrated beneficial effects in models of autoimmune disease, emphasizing their therapeutic potential as treatments for autoimmune disorders. The function of autophagy in the tumor microenvironment and immune cells is the subject of intensive study. The objective of this review is to investigate the role of autophagy in the simultaneous genesis of autoimmunity and malignancy, shedding light on both sides of the issue. We believe our work will assist in the organization of current understanding in the field and promote additional research on this urgent and crucial topic.
Collapse
Affiliation(s)
- Györgyi Műzes
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| | - Ferenc Sipos
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| |
Collapse
|
5
|
FDA-Approved Kinase Inhibitors in Preclinical and Clinical Trials for Neurological Disorders. Pharmaceuticals (Basel) 2022; 15:ph15121546. [PMID: 36558997 PMCID: PMC9784968 DOI: 10.3390/ph15121546] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Cancers and neurological disorders are two major types of diseases. We previously developed a new concept termed "Aberrant Cell Cycle Diseases" (ACCD), revealing that these two diseases share a common mechanism of aberrant cell cycle re-entry. The aberrant cell cycle re-entry is manifested as kinase/oncogene activation and tumor suppressor inactivation, which are hallmarks of both tumor growth in cancers and neuronal death in neurological disorders. Therefore, some cancer therapies (e.g., kinase inhibition, tumor suppressor elevation) can be leveraged for neurological treatments. The United States Food and Drug Administration (US FDA) has so far approved 74 kinase inhibitors, with numerous other kinase inhibitors in clinical trials, mostly for the treatment of cancers. In contrast, there are dire unmet needs of FDA-approved drugs for neurological treatments, such as Alzheimer's disease (AD), intracerebral hemorrhage (ICH), ischemic stroke (IS), traumatic brain injury (TBI), and others. In this review, we list these 74 FDA-approved kinase-targeted drugs and identify those that have been reported in preclinical and/or clinical trials for neurological disorders, with a purpose of discussing the feasibility and applicability of leveraging these cancer drugs (FDA-approved kinase inhibitors) for neurological treatments.
Collapse
|
6
|
Geranmayeh MH, Rahbarghazi R, Saeedi N, Farhoudi M. Metformin-dependent variation of microglia phenotype dictates pericytes maturation under oxygen-glucose deprivation. Tissue Barriers 2022; 10:2018928. [PMID: 34983297 PMCID: PMC9620990 DOI: 10.1080/21688370.2021.2018928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Blood-brain barrier resident cells are in the frontline of vascular diseases. To maintain brain tissue homeostasis, a series of cells are integrated regularly to form the neurovascular unit. It is thought that microglia can switch between M1/M2 phenotypes after the initiation of different pathologies. The existence of transition between maturity and stemness features in pericytes could maintain blood-brain barrier functionality against different pathologies. In the current study, the effect of metformin on the balance of the M1/M2 microglial phenotype under oxygen-glucose deprivation conditions and the impact of microglial phenotype changes on pericyte maturation have been explored. Both microglia and pericytes were isolated from the rat brain. Data showed that microglia treatment with metformin under glucose- and oxygen-free conditions suppressed microglia shifting into the M2 phenotype (CD206+ cells) compared to the control (p < .01) and metformin-treated groups (p < .05). Incubation of pericytes with microglia-conditioned media pretreated with metformin under glucose- and oxygen-free conditions or normal conditions increased pericyte maturity. These changes coincided with the reduction of the Sox2/NG2 ratio compared to the control pericytes (p < .05). Data revealed the close microglial-pericytic interplay under the ischemic and hypoxic conditions and the importance of microglial phenotype acquisition on pericyte maturation.
Collapse
Affiliation(s)
- Mohammad Hossein Geranmayeh
- Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran,Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran,CONTACT Mohammad Hossein Geranmayeh ; Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Daneshgah St., Tabriz5166614756, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran,Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazli Saeedi
- Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Zhu L, Chen Y, Ding W, Duan Y, Sun D, Lu Y. Caspase-3/Treg and PI3K/AKT/mTOR pathway is involved in Liver Ischemia Reperfusion Injury (IRI) protection by everolimus. Transpl Immunol 2022; 71:101541. [PMID: 35093505 DOI: 10.1016/j.trim.2022.101541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/23/2022]
Abstract
Ischemia-reperfusion injury (IRI) of the liver is a severe complication that can follow hemorrhagic shock and liver surgery. Regulatory T cells (Treg) show the potential of improving outcomes of IRI. Everolimus is an mTOR inhibitor used in liver transplantation and the treatment of tumor patients through PI3K/AKT/mTOR pathway. The present study was designed to investigate the efficacy and mechanism of everolimus on Treg for the treatment of IRI. Hepatocytes were exposed to H2O2 and hypoxic conditions to investigate the effects of everolimus on reactive oxygen species ROS-induced and H/R-induced injury in vitro. The effects of everolimus on liver IRI were investigated in a warm ischemia liver model in vivo. Our results indicate that everolimus markedly protected liver IRI in vivo and vitro. Furthermore, everolimus increased the levels of phospho- (p-)AKT, p-mTOR but not p-GSK following IRI. Taken together, our data showed that everolimus protected against IRI via regulation of caspase-3/Treg and the PI3K/AKT/mTOR signalling pathway, which provides new insight into the treatment of liver IRI.
Collapse
Affiliation(s)
- Li Zhu
- The Third Affiliated Hospital of Soochow University, 213003, China
| | - Yuxiang Chen
- The Third Affiliated Hospital of Soochow University, 213003, China
| | - Wei Ding
- The Third Affiliated Hospital of Soochow University, 213003, China
| | - Yunfei Duan
- The Third Affiliated Hospital of Soochow University, 213003, China
| | - Donglin Sun
- The Third Affiliated Hospital of Soochow University, 213003, China.
| | - Yunjie Lu
- The Third Affiliated Hospital of Soochow University, 213003, China.
| |
Collapse
|
8
|
Li XY, Qin T, Zhang PF, Yan WJ, Lei LL, Kuang JY, Li HD, Zhang WC, Lu XT, Sun YY. Weak UVB Irradiation Promotes Macrophage M2 Polarization and Stabilizes Atherosclerosis. J Cardiovasc Transl Res 2021; 15:855-864. [PMID: 34811697 PMCID: PMC9622510 DOI: 10.1007/s12265-021-10189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022]
Abstract
Atherosclerosis (AS) is a chronic cardiovascular disease endangering human health and is one of the most common causes of myocardial infarction and stroke. Macrophage polarization plays a vital role in regulating plaque stability. As an important component of sunlight, ultraviolet B (UVB) has been proven to promote vitamin D and nitric oxide synthesis. This research used an AS model in ApoE−/− mice to study the effects of UVB on macrophage polarization and atherosclerotic plaque stability. In vitro, UVB irradiation increased arginase-I (Arg-I, M2 macrophage) and macrophage mannose receptor (CD206) expression, while the expression of inducible nitric oxide synthase (iNOS) (M1 macrophage) and CD86 was decreased. UVB promoted Akt phosphorylation in vitro. In vivo, UVB irradiation promoted the stabilization of atherosclerotic lesion plaques, while the phenotype of M2 macrophages increased. Our research provides new evidence for UVB in preventing and treating atherosclerosis.
Collapse
Affiliation(s)
- Xin-Yun Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Qin
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Emergency Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng-Fei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wen-Jiang Yan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ling-Li Lei
- Grade 2018, School of Basic Medical Sciences, Clinical Medicine (5+3), Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiang-Ying Kuang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cardiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hao-Dong Li
- Grade 2018, School of Basic Medical Sciences, Clinical Medicine (5+3), Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wen-Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao-Ting Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan-Yuan Sun
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
9
|
Wu MY, Wang EJ, Feng D, Li M, Ye RD, Lu JH. Pharmacological insights into autophagy modulation in autoimmune diseases. Acta Pharm Sin B 2021; 11:3364-3378. [PMID: 34900523 PMCID: PMC8642426 DOI: 10.1016/j.apsb.2021.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022] Open
Abstract
As a cellular bulk degradation and survival mechanism, autophagy is implicated in diverse biological processes. Genome-wide association studies have revealed the link between autophagy gene polymorphisms and susceptibility of autoimmune diseases including systemic lupus erythematosus (SLE) and inflammatory bowel disease (IBD), indicating that autophagy dysregulation may be involved in the development of autoimmune diseases. A series of autophagy modulators have displayed protective effects on autoimmune disease models, highlighting the emerging role of autophagy modulators in treating autoimmune diseases. This review explores the roles of autophagy in the autoimmune diseases, with emphasis on four major autoimmune diseases [SLE, rheumatoid arthritis (RA), IBD, and experimental autoimmune encephalomyelitis (EAE)]. More importantly, the therapeutic potentials of small molecular autophagy modulators (including autophagy inducers and inhibitors) on autoimmune diseases are comprehensively analyzed.
Collapse
Affiliation(s)
- Ming-Yue Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 9999078, China
| | - Er-Jin Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 9999078, China
| | - Du Feng
- Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, College of Basic Medical Science, Guangzhou Medical University, Guangzhou 510000, China
| | - Min Li
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510000, China
| | - Richard D. Ye
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, the Chinese University of Hong Kong, Shenzhen 518000, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 9999078, China
| |
Collapse
|
10
|
Shen D, Chu F, Lang Y, Zheng C, Li C, Liu K, Zhu J. Nuclear factor kappa B inhibitor suppresses experimental autoimmune neuritis in mice via declining macrophages polarization to M1 type. Clin Exp Immunol 2021; 206:110-117. [PMID: 34118070 DOI: 10.1111/cei.13637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 11/28/2022] Open
Abstract
Guillain-Barré syndrome (GBS) is an acute inflammatory and immune-mediated demyelinating disease of the peripheral nervous system (PNS). Macrophages play a central role in its animal model, experimental autoimmune neuritis (EAN), which has been well accepted. Additionally, nuclear factor (NF)-κB inhibitors have been used to treat cancers and have shown beneficial effects. Here, we investigated the therapeutic effect of M2 macrophage and the NF-κB pathway's correlation with macrophage activation in EAN in C57BL/6 mice. We demonstrate that M2 macrophage transfusion could alleviate the clinical symptoms of EAN by reducing the proportion of M1 macrophage in the peak period, inhibiting the phosphorylation of NF-κB p65. The NF-κB inhibitor (BAY-11-7082) could alleviate the clinical symptoms of EAN and shorten the duration of symptoms by reducing the proportion of M1 macrophages and the expression of proinflammatory cytokines. Consequently, BAY-11-7082 exhibits strong potential as a therapeutic strategy for ameliorating EAN by influencing the balance of M1/M2 macrophages and inflammatory cytokines.
Collapse
Affiliation(s)
- Donghui Shen
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Neuroscience Center, Department of Neurology, Qingdao Municipal Hospital, Qingdao, China
| | - Fengna Chu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Yue Lang
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Chao Zheng
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Chunrong Li
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Kangding Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
11
|
Huang XY, Hu QP, Shi HY, Zheng YY, Hu RR, Guo Q. Everolimus inhibits PI3K/Akt/mTOR and NF-kB/IL-6 signaling and protects seizure-induced brain injury in rats. J Chem Neuroanat 2021; 114:101960. [PMID: 33915267 DOI: 10.1016/j.jchemneu.2021.101960] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Epilepsy is a common chronic neurological disease caused by the over-synchronization of neurons leading to brain dysfunction. Recurrent seizures can lead to cognitive and behavioral deficits, and irreversible brain damage. While the PI3K/Akt/mTOR pathway regulates various physiological processes of neurons and glia, it may also lead to abnormal neuronal signal transduction under pathological conditions, including that of epilepsy. Everolimus (Eve), an mTOR inhibitor, may modulate neuronal excitability and therefore exert protection against epilepsy. Therefore, this study aimed to investigate the neuroprotective effect of Everolimus on seizure-induced brain injury and its regulation of the PI3K/Akt/mTOR and NF-kB/IL-6 signaling pathway. Kainic acid (KA) 15 mg/kg was used to induce seizures and Everolimus (1, 2, 5 mg/kg) was administered as a pretreatment. Hippocampal tissue was extracted 24 h post-seizure. RESULTS The protein and mRNA expression levels of PI3K、p-AKt、p-mTOR、NF-kB and IL-6 as well as neuronal apoptosis and microglia activation, significantly increased after KA-induced seizures, however, these effects were inhibited by Everolimus treatment. Furthermore, pretreatment with Everolimus decreased seizure scores and increased seizure latency. CONCLUSIONS Everolimus can decrease the PI3K/Akt/mTOR and NF-kB/IL-6 signaling pathway, reduce neuronal apoptosis and microglia activation, and attenuate seizure susceptibility and intensity, thus having a protective effect on seizure-induced brain damage.
Collapse
Affiliation(s)
- Xiang-Yi Huang
- Department of Function Examination, The Second Hospital, University of South China, Hengyang, Hunan, 421001, China.
| | - Qing-Peng Hu
- Department of Pediatrics, The Second Hospital, University of South China, Hengyang, Hunan, 421001, China.
| | - Hong-Yun Shi
- Department of Pediatrics, The Second Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Ya-Yu Zheng
- Department of Pediatrics, The Second Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Rong-Rong Hu
- Department of Pediatrics, The Second Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Qian Guo
- Department of Pediatrics, The Second Hospital, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
12
|
Bansal S, Agrawal M, Mahendiratta S, Kumar S, Arora S, Joshi R, Prajapat M, Sarma P, Prakash A, Chopra K, Medhi B. Everolimus: A potential therapeutic agent targeting PI3K/Akt pathway in brain insulin system dysfunction and associated neurobehavioral deficits. Fundam Clin Pharmacol 2021; 35:1018-1031. [PMID: 33783880 DOI: 10.1111/fcp.12677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND It is well accepted that PI3k/Akt signaling pathway is a potential therapeutic window which regulates metabolism and energy homeostasis within the brain, and is an important mediator of normal neuronal physiological functions. Dysregulation of this pathway results in impaired insulin signaling, learning and memory and neuronal survival. OBJECTIVES Elucidating the role of everolimus in intracerebroventricular (ICV) streptozotocin induced Insulin/IGF-1 dependent PI3K/Akt/mTOR pathway dysregulation and associated neurobehavioral deficits. METHODS Rats were administered with streptozotocin (3 mg/kg) intracerebroventricular, followed by administration of everolimus (1 mg/kg) orally for 21 days. After that, Morris water maze and passive avoidance tests were performed for assessment of memory. Animals were sacrificed to evaluate brain insulin pathway dysfunction, neurotrophic, apoptotic, inflammatory, and biochemical markers in rat brain. To elucidate the mechanism of action of everolimus, PI3K inhibitor, wortmannin was administered in the presence of everolimus in one group. RESULTS Streptozotocin administration resulted in a significant decrease of brain insulin, insulin growth factor-1 levels, and alterations in behavioral, neurotrophic (BDNF), inflammatory (TNF-α), apoptotic (NF-κB, Bcl2 and Bax) and biochemical (AChE and ChAT assay) parameters in comparison to sham group rats. Everolimus significantly mitigated the deleterious behavioral, biochemical, and molecular changes in rats having central insulin dysfunction. However, the protective effect of everolimus was completely abolished when it was administered in the presence of wortmannin. CONCLUSION Findings from the study reveal that mTOR inhibitors can be an important treatment strategy for neurobehavioral deficits occurring due to central insulin pathway dysfunction. Protective effect of drugs is via modulation of PI3K/Akt pathway.
Collapse
Affiliation(s)
- Seema Bansal
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhunika Agrawal
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Saniya Mahendiratta
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Subodh Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shiyana Arora
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Rupa Joshi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Manisha Prajapat
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Phulen Sarma
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Prakash
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kanwaljit Chopra
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
13
|
Bansal S, Mahendiratta S, Agrawal M, Kumar S, Sharma AR, Garg N, Joshi R, Sarma P, Prakash A, Chopra K, Medhi B. Role of protein tyrosine phosphatase 1B inhibitor in central insulin resistance and associated cognitive deficits. Brain Res Bull 2021; 171:113-125. [PMID: 33684458 DOI: 10.1016/j.brainresbull.2021.02.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Protein tyrosine phosphatase 1B (PTP1B) inhibitors are potential candidates for the treatment of peripheral insulin resistance and diabetes mellitus. Similar to peripheral action within the brain also, PTP1B activation impairs insulin signaling pathways. Activation of PTP1B in brain also accentuates neuroinflammation, oxidative stress and decreases neurotrophic factors in various brain dysfunctions including cognitive decline. OBJECTIVES The main objective of our study was to elucidate the role of alendronate, a potent PTP1B inhibitor (blood brain barrier crossing bisphosphonate) in central insulin resistance and associated memory deficits. METHODOLOGY To induce central insulin resistance, streptozotocin (3 mg/kg) intracerebroventricular (ICV) was administered in two alternate days (1st and 3rd). After 21 days, memory was assessed via using the passive avoidance and Morris water maze paradigm. At the end of behavioral studies, animals were sacrificed to assess a variety of biochemical and molecular parameters in the hippocampus and cerebral cortex region of the brain. Treatment drug alendronate (3 mg/kg/day, p.o) and standard drug donepezil (3 mg/kg/i.p.) were administered from the 3rd day of STZ administration till the end of the study. Inhibition of PTP1B activates phosphoinsotide-3 kinase (PI3 K) (down-stream regulator of insulin signaling pathway).Thus, to illuminate the mechanism of action of alendronate, PI3 K inhibitor, wortmannin was administered in presence of alendronate in one group. RESULTS Administration of alendronate to ICV streprozotocin treated rats resulted in modulation of the insulin signaling pathway and associated behavioral, biochemical and molecular changes in central insulin resistance. However, the protective effect of alendronate was entirely vanished when it was administered in the presence of wortmannin. CONCLUSION Alendronate can be an important treatment strategy in central insulin signaling pathway dysfunction and associated cognitive deficits. Protective effect of alendronate is via modulation of PI3-K/Akt signaling pathway.
Collapse
Affiliation(s)
- Seema Bansal
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Saniya Mahendiratta
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Madhunika Agrawal
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Subodh Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Amit Raj Sharma
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Nitika Garg
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rupa Joshi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Phulen Sarma
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ajay Prakash
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Kanwaljit Chopra
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
14
|
Rios R, Jablonka-Shariff A, Broberg C, Snyder-Warwick AK. Macrophage roles in peripheral nervous system injury and pathology: Allies in neuromuscular junction recovery. Mol Cell Neurosci 2021; 111:103590. [PMID: 33422671 DOI: 10.1016/j.mcn.2021.103590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/15/2020] [Accepted: 01/01/2021] [Indexed: 12/11/2022] Open
Abstract
Peripheral nerve injuries remain challenging to treat despite extensive research on reparative processes at the injury site. Recent studies have emphasized the importance of immune cells, particularly macrophages, in recovery from nerve injury. Macrophage plasticity enables numerous functions at the injury site. At early time points, macrophages perform inflammatory functions, but at later time points, they adopt pro-regenerative phenotypes to support nerve regeneration. Research has largely been limited, however, to the injury site. The neuromuscular junction (NMJ), the synapse between the nerve terminal and end target muscle, has received comparatively less attention, despite the importance of NMJ reinnervation for motor recovery. Macrophages are present at the NMJ following nerve injury. Moreover, in denervating diseases, such as amyotrophic lateral sclerosis (ALS), macrophages may also play beneficial roles at the NMJ. Evidence of positive macrophages roles at the injury site after peripheral nerve injury and at the NMJ in denervating pathologies suggest that macrophages may promote NMJ reinnervation. In this review, we discuss the intersection of nerve injury and immunity, with a focus on macrophages.
Collapse
Affiliation(s)
- Rachel Rios
- Washington University School of Medicine, St. Louis, MO, United States of America
| | - Albina Jablonka-Shariff
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Curtis Broberg
- Washington University School of Medicine, St. Louis, MO, United States of America
| | - Alison K Snyder-Warwick
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America.
| |
Collapse
|
15
|
Paik S, Jo EK. An Interplay Between Autophagy and Immunometabolism for Host Defense Against Mycobacterial Infection. Front Immunol 2020; 11:603951. [PMID: 33262773 PMCID: PMC7688515 DOI: 10.3389/fimmu.2020.603951] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
Autophagy, an intracellular catabolic pathway featuring lysosomal degradation, is a central component of the host immune defense against various infections including Mycobacterium tuberculosis (Mtb), the pathogen that causes tuberculosis. Mtb can evade the autophagic defense and drive immunometabolic remodeling of host phagocytes. Co-regulation of the autophagic and metabolic pathways may play a pivotal role in shaping the innate immune defense and inflammation during Mtb infection. Two principal metabolic sensors, AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) kinase, function together to control the autophagy and immunometabolism that coordinate the anti-mycobacterial immune defense. Here, we discuss our current understanding of the interplay between autophagy and immunometabolism in terms of combating intracellular Mtb, and how AMPK-mTOR signaling regulates antibacterial autophagy in terms of Mtb infection. We describe several autophagy-targeting agents that promote host antimicrobial defenses by regulating the AMPK-mTOR axis. A better understanding of the crosstalk between immunometabolism and autophagy, both of which are involved in host defense, is crucial for the development of innovative targeted therapies for tuberculosis.
Collapse
Affiliation(s)
- Seungwha Paik
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
16
|
Habu M, Tohyama M, Sayama K. Two cases of eczematous eruptions caused by everolimus. JOURNAL OF CUTANEOUS IMMUNOLOGY AND ALLERGY 2019. [DOI: 10.1002/cia2.12075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Minako Habu
- Department of Dermatology Ehime University Graduate School of Medicine Toon Japan
| | - Mikiko Tohyama
- Department of Dermatology National Hospital Organization Shikoku Cancer Center Matsuyama‐city Japan
| | - Koji Sayama
- Department of Dermatology Ehime University Graduate School of Medicine Toon Japan
| |
Collapse
|
17
|
Xu L, Li L, Zhang CY, Schluesener H, Zhang ZY. Natural Diterpenoid Oridonin Ameliorates Experimental Autoimmune Neuritis by Promoting Anti-inflammatory Macrophages Through Blocking Notch Pathway. Front Neurosci 2019; 13:272. [PMID: 31001070 PMCID: PMC6454011 DOI: 10.3389/fnins.2019.00272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
The diterpenoid compound, Oridonin, extracted from the Chinese herb, Rabdosia rubescens, possesses multiple biological activities and properties. Oridonin exhibited efficient anti-inflammatory activity by inducing a switch in macrophage polarization to the anti-inflammatory phenotype through inhibition of the Notch pathway in our in vitro study; therefore, its potential therapeutic effects were further investigated in the animal model of human Guillain-Barré syndrome (GBS) and other polyneuropathies - experimental autoimmune neuritis (EAN). Either preventive or therapeutic treatments with Oridonin greatly attenuated disease peak severity, suppressed paraparesis, shortened disease duration, and even delayed EAN onset. Progression of neuropathic pain, demyelination, inflammatory cellular accumulations, and inflammatory cytokines in peripheral nerves were significantly attenuated. Meanwhile, accumulation of immune cells in the spinal roots and microglial activation in the lumbar spinal cord were also reduced. Interestingly, Oridonin treatment significantly increased the proportion of anti-inflammatory macrophages and made them locally dominant among all infiltrated macrophages in the peripheral nerves. The down-regulation of local Notch pathway proteins, together with our in vitro results indicated their possible involvement. Taken together, our results demonstrated that Oridonin effectively suppressed EAN by attenuating local inflammatory reaction and increasing the proportion of immune regulating macrophages in the peripheral nerves, possibly through blockage of the Notch pathway, which suggests Oridonin as a potential therapeutic candidate for human GBS and neuropathies.
Collapse
Affiliation(s)
- Lu Xu
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Lei Li
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Chen-Yang Zhang
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Hermann Schluesener
- Division of Immunopathology of the Nervous System, Institute of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
| | - Zhi-Yuan Zhang
- Department of Pathology, Nanjing Medical University, Nanjing, China.,Division of Immunopathology of the Nervous System, Institute of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany.,Department of Neurology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Shen X, Zhang J, Zhang X, Wang Y, Hu Y, Guo J. Retinoic Acid-Induced Protein 14 (RAI14) Promotes mTOR-Mediated Inflammation Under Inflammatory Stress and Chemical Hypoxia in a U87 Glioblastoma Cell Line. Cell Mol Neurobiol 2019; 39:241-254. [PMID: 30554401 PMCID: PMC11469848 DOI: 10.1007/s10571-018-0644-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 12/08/2018] [Indexed: 11/24/2022]
Abstract
Retinoic acid-induced 14 is a developmentally regulated gene induced by retinoic acid and is closely associated with NIK/NF-κB signaling. In the present study, we examined the effect of RAI14 on mTOR-mediated glial inflammation in response to inflammatory factors and chemical ischemia. A U87 cell model of LPS- and TNF-α-induced inflammation was used to investigate the role of RAI14 in glial inflammation. U87 cells were treated with siR-RAI14 or everolimus to detect the correlation between mTOR, RAI14, and NF-κB. CoCl2-stimulated U87 cells were used to analyze the effect of RAI14 on mTOR-mediated NF-κB inflammatory signaling under chemical hypoxia. LPS and TNF-α stimulation resulted in the upregulation of RAI14 mRNA and protein levels in a dose- and time-dependent manner. RAI14 knockdown significantly attenuated the level of pro-inflammatory cytokine via inhibiting the IKK/NF-κB pathway. Treatment with an mTOR inhibitor (everolimus) ameliorated NF-κB activity and IKKα/β phosphorylation via RAI14 signaling. Notably, RAI14 also enhanced mTOR-mediated NF-κB activation under conditions of chemical hypoxia. These findings provide significant insight into the role of RAI14 in mTOR-induced glial inflammation, which is closely associated with infection and ischemia stimuli. Thus, RAI14 may be a potential drug target for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- XiaoGang Shen
- State Key Laboratory Cultivation Base For TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - JiaRui Zhang
- State Key Laboratory Cultivation Base For TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - XiaoLong Zhang
- State Key Laboratory Cultivation Base For TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - YiFan Wang
- State Key Laboratory Cultivation Base For TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - YunFeng Hu
- State Key Laboratory Cultivation Base For TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Jun Guo
- State Key Laboratory Cultivation Base For TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
- Department of Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
19
|
Zhu C, Xia L, Li F, Zhou L, Weng Q, Li Z, Wu Y, Mao Y, Zhang C, Wu Y, Li M, Ying S, Chen Z, Shen H, Li W. mTOR complexes differentially orchestrates eosinophil development in allergy. Sci Rep 2018; 8:6883. [PMID: 29720621 PMCID: PMC5932055 DOI: 10.1038/s41598-018-25358-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 03/07/2018] [Indexed: 12/29/2022] Open
Abstract
Eosinophil infiltration is considered a hallmark in allergic airway inflammation, and the blockade of eosinophil differentiation may be an effective approach for treating eosinophil-related disorders. Mammalian target of rapamycin (mTOR) is a vital modulator in cell growth control and related diseases, and we have recently demonstrated that rapamycin can suppress eosinophil differentiation in allergic airway inflammation. Considering its critical role in haematopoiesis, we further investigated the role of mTOR in eosinophil differentiation in the context of asthmatic pathogenesis. Intriguingly, the inhibition of mTOR, either by genetic deletion or by another pharmacological inhibitor torin-1, accelerated the eosinophil development in the presence of IL-5. However, this was not observed to have any considerable effect on eosinophil apoptosis. The effect of mTOR in eosinophil differentiation was mediated by Erk signalling. Moreover, myeloid specific knockout of mTOR or Rheb further augmented allergic airway inflammation in mice after allergen exposure. Ablation of mTOR in myeloid cells also resulted in an increased number of eosinophil lineage-committed progenitors (Eops) in allergic mice. Collectively, our data uncovered the differential effects of mTOR in the regulation of eosinophil development, likely due to the distinct functions of mTOR complex 1 or 2, which thus exerts a pivotal implication in eosinophil-associated diseases.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Lixia Xia
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Fei Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Lingren Zhou
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Qingyu Weng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Zhouyang Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Yinfang Wu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Yuanyuan Mao
- Department of Respiratory Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China
| | - Chao Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Yanping Wu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Miao Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Songmin Ying
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.,Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Zhihua Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Huahao Shen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
20
|
Shen D, Chu F, Lang Y, Geng Y, Zheng X, Zhu J, Liu K. Beneficial or Harmful Role of Macrophages in Guillain-Barré Syndrome and Experimental Autoimmune Neuritis. Mediators Inflamm 2018; 2018:4286364. [PMID: 29853789 PMCID: PMC5944239 DOI: 10.1155/2018/4286364+10.1155/2018/4286364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/01/2018] [Indexed: 01/21/2024] Open
Abstract
Guillain-Barré syndrome (GBS), an immune-mediated demyelinating peripheral neuropathy, is characterized by acute weakness of the extremities and areflexia or hyporeflexia. Experimental autoimmune neuritis (EAN) is a common animal model for GBS, which represents a CD4+ T cell-mediated inflammatory autoimmune demyelination of the peripheral nervous system (PNS), and is used to investigate the pathogenic mechanism of GBS. It has been found that macrophages play a critical role in the pathogenesis of both GBS and EAN. Macrophages have been primarily classified into two major phenotypes: proinflammatory macrophages (M1) and anti-inflammatory macrophages (M2). The two different macrophage subsets M1 and M2 may play a decisive role in initiation and development of GBS and EAN. However, recently, it has been indicated that the roles of macrophages in immune regulation and autoimmune diseases are more complex than those suggested by a simple M1-M2 dichotomy. Macrophages might exert either inflammatory or anti-inflammatory effect by secreting pro- or anti-inflammatory cytokines, and either inducing the activation of T cells to mediate immune response, resulting in inflammation and demyelination in the PNS, or promoting disease recovery. In this review, we summarize the dual roles of macrophages in GBS and EAN and explore the mechanism of macrophage polarization to provide a potential therapeutic approach for GBS in the future.
Collapse
Affiliation(s)
- Donghui Shen
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Fengna Chu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Yue Lang
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Yunlong Geng
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Xiangyu Zheng
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital, SE-14157 Huddinge, Stockholm, Sweden
| | - Kangding Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| |
Collapse
|
21
|
Beneficial or Harmful Role of Macrophages in Guillain-Barré Syndrome and Experimental Autoimmune Neuritis. Mediators Inflamm 2018; 2018:4286364. [PMID: 29853789 PMCID: PMC5944239 DOI: 10.1155/2018/4286364 10.1155/2018/4286364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Guillain-Barré syndrome (GBS), an immune-mediated demyelinating peripheral neuropathy, is characterized by acute weakness of the extremities and areflexia or hyporeflexia. Experimental autoimmune neuritis (EAN) is a common animal model for GBS, which represents a CD4+ T cell-mediated inflammatory autoimmune demyelination of the peripheral nervous system (PNS), and is used to investigate the pathogenic mechanism of GBS. It has been found that macrophages play a critical role in the pathogenesis of both GBS and EAN. Macrophages have been primarily classified into two major phenotypes: proinflammatory macrophages (M1) and anti-inflammatory macrophages (M2). The two different macrophage subsets M1 and M2 may play a decisive role in initiation and development of GBS and EAN. However, recently, it has been indicated that the roles of macrophages in immune regulation and autoimmune diseases are more complex than those suggested by a simple M1-M2 dichotomy. Macrophages might exert either inflammatory or anti-inflammatory effect by secreting pro- or anti-inflammatory cytokines, and either inducing the activation of T cells to mediate immune response, resulting in inflammation and demyelination in the PNS, or promoting disease recovery. In this review, we summarize the dual roles of macrophages in GBS and EAN and explore the mechanism of macrophage polarization to provide a potential therapeutic approach for GBS in the future.
Collapse
|
22
|
Beneficial or Harmful Role of Macrophages in Guillain-Barré Syndrome and Experimental Autoimmune Neuritis. Mediators Inflamm 2018; 2018:4286364. [PMID: 29853789 PMCID: PMC5944239 DOI: 10.1155/2018/4286364] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/01/2018] [Indexed: 12/11/2022] Open
Abstract
Guillain-Barré syndrome (GBS), an immune-mediated demyelinating peripheral neuropathy, is characterized by acute weakness of the extremities and areflexia or hyporeflexia. Experimental autoimmune neuritis (EAN) is a common animal model for GBS, which represents a CD4+ T cell-mediated inflammatory autoimmune demyelination of the peripheral nervous system (PNS), and is used to investigate the pathogenic mechanism of GBS. It has been found that macrophages play a critical role in the pathogenesis of both GBS and EAN. Macrophages have been primarily classified into two major phenotypes: proinflammatory macrophages (M1) and anti-inflammatory macrophages (M2). The two different macrophage subsets M1 and M2 may play a decisive role in initiation and development of GBS and EAN. However, recently, it has been indicated that the roles of macrophages in immune regulation and autoimmune diseases are more complex than those suggested by a simple M1-M2 dichotomy. Macrophages might exert either inflammatory or anti-inflammatory effect by secreting pro- or anti-inflammatory cytokines, and either inducing the activation of T cells to mediate immune response, resulting in inflammation and demyelination in the PNS, or promoting disease recovery. In this review, we summarize the dual roles of macrophages in GBS and EAN and explore the mechanism of macrophage polarization to provide a potential therapeutic approach for GBS in the future.
Collapse
|
23
|
BAT Expansion: A Panacea against Obesity? Lessons from LKB1. EBioMedicine 2017; 24:11-13. [PMID: 28988648 PMCID: PMC5652282 DOI: 10.1016/j.ebiom.2017.09.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 11/20/2022] Open
|
24
|
Huang S, Ge X, Yu J, Han Z, Yin Z, Li Y, Chen F, Wang H, Zhang J, Lei P. Increased miR‐124‐3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowthviatheir transfer into neurons. FASEB J 2017; 32:512-528. [PMID: 28935818 DOI: 10.1096/fj.201700673r] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Shan Huang
- Laboratory of Neuro‐Trauma and Neurodegenerative DisordersTianjin Geriatrics Institute Tianjin China
- Key Laboratory of Injuries, Variations, and Regeneration of Nervous SystemTianjin Neurological Institute, Tianjin Medical University General Hospital Tianjin China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of Education Tianjin China
| | - Xintong Ge
- Laboratory of Neuro‐Trauma and Neurodegenerative DisordersTianjin Geriatrics Institute Tianjin China
- Key Laboratory of Injuries, Variations, and Regeneration of Nervous SystemTianjin Neurological Institute, Tianjin Medical University General Hospital Tianjin China
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
| | - Jinwen Yu
- Laboratory of Neuro‐Trauma and Neurodegenerative DisordersTianjin Geriatrics Institute Tianjin China
- Key Laboratory of Injuries, Variations, and Regeneration of Nervous SystemTianjin Neurological Institute, Tianjin Medical University General Hospital Tianjin China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of Education Tianjin China
| | - Zhaoli Han
- Key Laboratory of Injuries, Variations, and Regeneration of Nervous SystemTianjin Neurological Institute, Tianjin Medical University General Hospital Tianjin China
- Department of GeriatricsTianjin Medical University General Hospital Tianjin China
| | - Zhenyu Yin
- Laboratory of Neuro‐Trauma and Neurodegenerative DisordersTianjin Geriatrics Institute Tianjin China
- Key Laboratory of Injuries, Variations, and Regeneration of Nervous SystemTianjin Neurological Institute, Tianjin Medical University General Hospital Tianjin China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of Education Tianjin China
| | - Ying Li
- Key Laboratory of Injuries, Variations, and Regeneration of Nervous SystemTianjin Neurological Institute, Tianjin Medical University General Hospital Tianjin China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of Education Tianjin China
| | - Fanglian Chen
- Key Laboratory of Injuries, Variations, and Regeneration of Nervous SystemTianjin Neurological Institute, Tianjin Medical University General Hospital Tianjin China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of Education Tianjin China
| | - Haichen Wang
- Department of NeurologyDuke University Medical Center Durham North Carolina USA
| | - Jianning Zhang
- Key Laboratory of Injuries, Variations, and Regeneration of Nervous SystemTianjin Neurological Institute, Tianjin Medical University General Hospital Tianjin China
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of Education Tianjin China
| | - Ping Lei
- Laboratory of Neuro‐Trauma and Neurodegenerative DisordersTianjin Geriatrics Institute Tianjin China
- Department of GeriatricsTianjin Medical University General Hospital Tianjin China
| |
Collapse
|
25
|
Gosselin EA, Tostanoski LH, Jewell CM. Controlled Release of Second Generation mTOR Inhibitors to Restrain Inflammation in Primary Immune Cells. AAPS JOURNAL 2017; 19:1175-1185. [PMID: 28484962 DOI: 10.1208/s12248-017-0089-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/14/2017] [Indexed: 12/20/2022]
Abstract
Autoimmune disease occurs when the immune system incorrectly targets the body's own tissue. Inflammatory CD4+ T cell phenotypes, such as TH1 and TH17, are key drivers of this attack. Recent studies demonstrate treatment with rapamycin-a key inhibitor of the mTOR pathway-can skew T cell development, moving T cell responses away from inflammatory phenotypes and toward regulatory T cells (TREGS). TREGS are important in inducing and maintaining tolerance to self-antigens, creating new potential to treat autoimmune diseases more effectively and specifically. Next generation analogs of rapamycin, such as everolimus and temsirolimus, confer increased potency with reduced toxicity, but are understudied in the context of autoimmunity. Further, these drugs are still broadly-acting and require frequent treatment due to short half-lives. Thus, there is strong interest in harnessing the unique properties of biomaterials-controlled drug release and targeting, for example, to improve autoimmune therapies. Using second generation mTOR inhibitors and rapamycin, we prepared sets of degradable polymer particles from poly(lactide-co-glycolide). We then used these materials to assess physicochemical properties and the ability to control autoimmune inflammation in a primary cell co-culture model. Treatment with particle formulations resulted in significant dose-dependent decreases in dendritic cell activation, T cell proliferation, inflammatory cytokines, and frequencies of inflammatory TH1 phenotypes. Considering the current limitations of rapamycin, and the potential of next-generation analogs, this work provides a screening platform for biomaterials and sets the stage for in vivo evaluation, where delivery kinetics, stability, and targeting could improve autoimmune therapies through biomaterial-enabled delivery.
Collapse
Affiliation(s)
- Emily A Gosselin
- Fischell Department of Bioengineering, University of Maryland, 2212 Jeong H. Kim Engineering Building, 8228 Paint Branch Drive, College Park, Maryland, 20742, USA
| | - Lisa H Tostanoski
- Fischell Department of Bioengineering, University of Maryland, 2212 Jeong H. Kim Engineering Building, 8228 Paint Branch Drive, College Park, Maryland, 20742, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, 2212 Jeong H. Kim Engineering Building, 8228 Paint Branch Drive, College Park, Maryland, 20742, USA. .,Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, Maryland, USA. .,Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland, USA. .,United States Department of Veterans Affairs, Baltimore, Maryland, USA.
| |
Collapse
|
26
|
Hirayama Y, Gi M, Yamano S, Tachibana H, Okuno T, Tamada S, Nakatani T, Wanibuchi H. Anti-PD-L1 treatment enhances antitumor effect of everolimus in a mouse model of renal cell carcinoma. Cancer Sci 2016; 107:1736-1744. [PMID: 27712020 PMCID: PMC5198964 DOI: 10.1111/cas.13099] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/01/2016] [Accepted: 10/04/2016] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy based on blockade of the programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) axis has shown promising clinical activity for renal cell carcinoma (RCC) patients; however, the most effective use of these agents in combination with conventional targeted therapy remains to be resolved. Here we evaluated the therapeutic efficacy of the combination of the mTOR inhibitor everolimus (EVE) and anti-PD-L1 using an immunocompetent mouse model of RCC. We first assessed the in vitro effect of EVE on PD-L1 expression in the human 786-O and mouse RENCA RCC cell lines and found that EVE upregulated PD-L1 expression in these RCC cell lines. We then treated RENCA tumor-bearing mice with EVE and found that PD-L1 expression was also increased in tumor cells after EVE treatment. To determine the antitumor effects of EVE alone, anti-PD-L1 alone, and EVE in combination with anti-PD-L1, we evaluated their antitumor effects on RENCA tumor-bearing mice. A significant decrease in the tumor burden was observed in the EVE alone but not in the anti-PD-L1 alone treatment group compared with the control group. Importantly, the combination of EVE with anti-PD-L1 significantly reduced tumor burden compared with the EVE alone treatment, increasing tumor infiltrating lymphocytes (TILs) and the ratio of cytotoxic CD8+ T cells to TILs. The results of the present study demonstrated that anti-PD-L1 treatment enhanced the antitumor effect of EVE in a mouse model, supporting a direct translation of this combination strategy to the clinic for the treatment of RCC.
Collapse
Affiliation(s)
- Yukiyoshi Hirayama
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Min Gi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shotaro Yamano
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hirokazu Tachibana
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Okuno
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Tamada
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tatsuya Nakatani
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
27
|
Brenner AK, Andersson Tvedt TH, Bruserud Ø. The Complexity of Targeting PI3K-Akt-mTOR Signalling in Human Acute Myeloid Leukaemia: The Importance of Leukemic Cell Heterogeneity, Neighbouring Mesenchymal Stem Cells and Immunocompetent Cells. Molecules 2016; 21:molecules21111512. [PMID: 27845732 PMCID: PMC6273124 DOI: 10.3390/molecules21111512] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022] Open
Abstract
Therapeutic targeting of PI3K-Akt-mTOR is considered a possible strategy in human acute myeloid leukaemia (AML); the most important rationale being the proapoptotic and antiproliferative effects of direct PI3K/mTOR inhibition observed in experimental studies of human AML cells. However, AML is a heterogeneous disease and these effects caused by direct pathway inhibition in the leukemic cells are observed only for a subset of patients. Furthermore, the final effect of PI3K-Akt-mTOR inhibition is modulated by indirect effects, i.e., treatment effects on AML-supporting non-leukemic bone marrow cells. In this article we focus on the effects of this treatment on mesenchymal stem cells (MSCs) and monocytes/macrophages; both these cell types are parts of the haematopoietic stem cell niches in the bone marrow. MSCs have unique membrane molecule and constitutive cytokine release profiles, and mediate their support through bidirectional crosstalk involving both cell-cell contact and the local cytokine network. It is not known how various forms of PI3K-Akt-mTOR targeting alter the molecular mechanisms of this crosstalk. The effect on monocytes/macrophages is also difficult to predict and depends on the targeted molecule. Thus, further development of PI3K-Akt-mTOR targeting into a clinical strategy requires detailed molecular studies in well-characterized experimental models combined with careful clinical studies, to identify patient subsets that are likely to respond to this treatment.
Collapse
Affiliation(s)
- Annette K Brenner
- Section for Haematology, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway.
| | - Tor Henrik Andersson Tvedt
- Section for Haematology, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway.
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Øystein Bruserud
- Section for Haematology, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway.
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| |
Collapse
|
28
|
Wenes M, Shang M, Di Matteo M, Goveia J, Martín-Pérez R, Serneels J, Prenen H, Ghesquière B, Carmeliet P, Mazzone M. Macrophage Metabolism Controls Tumor Blood Vessel Morphogenesis and Metastasis. Cell Metab 2016; 24:701-715. [PMID: 27773694 DOI: 10.1016/j.cmet.2016.09.008] [Citation(s) in RCA: 362] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/10/2016] [Accepted: 09/21/2016] [Indexed: 01/01/2023]
Abstract
Hypoxic tumor-associated macrophages (TAMs) acquire angiogenic and immunosuppressive properties. Yet it remains unknown if metabolic changes influence these functions. Here, we argue that hypoxic TAMs strongly upregulate the expression of REDD1, a negative regulator of mTOR. REDD1-mediated mTOR inhibition hinders glycolysis in TAMs and curtails their excessive angiogenic response, with consequent formation of abnormal blood vessels. Accordingly, REDD1 deficiency in TAMs leads to the formation of smoothly aligned, pericyte-covered, functional vessels, which prevents vessel leakiness, hypoxia, and metastases. Mechanistically, highly glycolytic REDD1-deficient TAMs outcompete endothelial cells for glucose usage that thwarts vascular hyperactivation and promotes the formation of quiescent vascular junctions. Tuning down glycolysis in REDD1 knockout TAMs re-establishes abnormal angiogenesis and metastases. On this basis, we prove that the anti-tumor effect of mTOR inhibitors is partly countered by the deleterious outcome of these drugs on TAMs. Our data provide a functional link between TAM metabolism and tumor angiogenesis.
Collapse
Affiliation(s)
- Mathias Wenes
- Lab of Tumor Inflammation and Angiogenesis, VIB, 3000 Leuven, Belgium; Lab of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Min Shang
- Lab of Tumor Inflammation and Angiogenesis, VIB, 3000 Leuven, Belgium; Lab of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Mario Di Matteo
- Lab of Tumor Inflammation and Angiogenesis, VIB, 3000 Leuven, Belgium; Lab of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Jermaine Goveia
- Lab of Angiogenesis and Vascular Metabolism, VIB, 3000 Leuven, Belgium; Lab of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Rosa Martín-Pérez
- Lab of Tumor Inflammation and Angiogenesis, VIB, 3000 Leuven, Belgium; Lab of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Jens Serneels
- Lab of Tumor Inflammation and Angiogenesis, VIB, 3000 Leuven, Belgium; Lab of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Hans Prenen
- Department of Digestive Oncology, University Hospitals Leuven and Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Bart Ghesquière
- Metabolomics Expertise Center, VIB, 3000 Leuven, Belgium; Metabolomics Expertise Center, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Peter Carmeliet
- Lab of Angiogenesis and Vascular Metabolism, VIB, 3000 Leuven, Belgium; Lab of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Massimiliano Mazzone
- Lab of Tumor Inflammation and Angiogenesis, VIB, 3000 Leuven, Belgium; Lab of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|