1
|
Nelke A, García-López S, Caso JR, Pereira MP. The therapeutic use of clonal neural stem cells in experimental Parkinson´s disease. Stem Cell Res Ther 2024; 15:356. [PMID: 39385216 PMCID: PMC11465761 DOI: 10.1186/s13287-024-03965-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Parkinson´s disease (PD), the second most common neurodegenerative disease in the world, is characterized by the death or impairment of dopaminergic neurons (DAn) in the substantia nigra pars compacta and dopamine depletion in the striatum. Currently, there is no cure for PD, and treatments only help to reduce the symptoms of the disease, and do not repair or replace the DAn damaged or lost in PD. Cell replacement therapy (CRT) seeks to relieve both pathological and symptomatic PD manifestations and has been shown to have beneficial effects in experimental PD models as well as in PD patients, but an apt cell line to be used in the treatment of PD has yet to be established. The purpose of this study was to examine the effects of the transplantation of hVM1 clone 32 cells, a bankable line of human neural stem cells (hNSCs), in a PD mouse model at four months post-transplant. METHODS Adult (five month-old) C57BL/6JRccHsd male mice were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and subsequently transplanted with hVM1 clone 32 cells, or buffer, in the left striatum. Four months post-transplant, behavioral effects were explored using the open field and paw print tests, and histological analyses were performed. RESULTS Transplantation of hVM1 clone 32 cells rescued dopaminergic nigrostriatal populations in adult Parkinsonian mice. Motor and neurological deterioration were observed in buffer-treated mice, the latter of which had a tendency to improve in hNSC-transplanted mice. Detection of mast cell migration to the superficial cervical lymph nodes in cell-transplanted mice denoted a peripheral effect. Transplantation of hNSCs also rescued neuroblast neurogenesis in the subgranular zone, which was correlated with dopaminergic recovery and is indicative of local recovery mechanisms. CONCLUSIONS In this proof-of-concept study, the transplantation of hVM1 clone 32 cells provided neuroprotection in adult Parkinsonian mice by restoring the dopaminergic nigrostriatal pathway and hippocampal neurogenesis, demonstrating the efficacy of cell replacement therapy as a treatment for PD.
Collapse
Affiliation(s)
- Anna Nelke
- Unit of Molecular Neuropathology, Physiological and pathological processes Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Calle Nicolás Cabrera, 1, Madrid, 28049, Spain.
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, 28049, Spain.
- Institute for Molecular Biology - IUBM (Universidad Autónoma de Madrid), Madrid, Spain.
| | - Silvia García-López
- Unit of Molecular Neuropathology, Physiological and pathological processes Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Calle Nicolás Cabrera, 1, Madrid, 28049, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, 28049, Spain
- Institute for Molecular Biology - IUBM (Universidad Autónoma de Madrid), Madrid, Spain
| | - Javier R Caso
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Avda. Complutense s/n, Madrid, 28040, Spain
| | - Marta P Pereira
- Unit of Molecular Neuropathology, Physiological and pathological processes Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Calle Nicolás Cabrera, 1, Madrid, 28049, Spain.
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, 28049, Spain.
- Institute for Molecular Biology - IUBM (Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
2
|
Ye D, Qu S, Yang Y, Wang Z, Wang Q, Liu W, Zhang F, Guan Q, Wang X, Zang J, Li X, Liu H, Yao R, Feng Z, Luan Z. Intrauterine desensitization enables long term survival of human oligodendrocyte progenitor cells without immunosuppression. iScience 2023; 26:106647. [PMID: 37168574 PMCID: PMC10165029 DOI: 10.1016/j.isci.2023.106647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/02/2023] [Accepted: 04/05/2023] [Indexed: 05/13/2023] Open
Abstract
Immune rejection can be reduced using immunosuppressants which are not viable for premature infants. However, desensitization can induce immune tolerance for premature infants because of underdeveloped immune system. The fetuses of Wistar rats at 15-17 days gestation were injected via hOPCs-1 into brain, muscles, and abdomen ex utero and then returned while the fetuses of control without injection. After 6 weeks of desensitization, the brain and muscles were transplanted with hOPCs-1, hNSCs-1, and hOPCs-2. After 10 and 34 weeks of desensitization, hOPCs-1 and hNSCs-1 in desensitized groups was higher than that in the control group while hOPCs-2 were rejected. Treg, CD4CD28, CD8CD28, and CD45RC between the desensitization and the control group differed significantly. Inflammatory cells in group with hOPCs-1 and hNSCs-1 was lower than that in the control group. hOPCs-1 can differentiate into myelin in desensitized groups. Wistar rats with desensitization developed immune tolerance to desensitized and transplanted cells.
Collapse
Affiliation(s)
- Dou Ye
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
- Medical School of Chinese PLA, Beijing 100853, China
| | - Suqing Qu
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
| | - Yinxiang Yang
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
| | - Zhaoyan Wang
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
| | - Qian Wang
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
| | - Weipeng Liu
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
| | - Fan Zhang
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
- Medical School of Chinese PLA, Beijing 100853, China
| | - Qian Guan
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
| | - Xiaohua Wang
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
| | - Jing Zang
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
| | - Xin Li
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
| | - Hengtao Liu
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing 100191, China
| | - Ruiqin Yao
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Zhichun Feng
- Faculty of Pediatrics, The Seventh Medical Centre, Chinese PLA General Hospital, 100700 Beijing, China
| | - Zuo Luan
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
- Medical School of Chinese PLA, Beijing 100853, China
| |
Collapse
|
3
|
Anwer DM, Gubinelli F, Kurt YA, Sarauskyte L, Jacobs F, Venuti C, Sandoval IM, Yang Y, Stancati J, Mazzocchi M, Brandi E, O’Keeffe G, Steece-Collier K, Li JY, Deierborg T, Manfredsson FP, Davidsson M, Heuer A. A comparison of machine learning approaches for the quantification of microglial cells in the brain of mice, rats and non-human primates. PLoS One 2023; 18:e0284480. [PMID: 37126506 PMCID: PMC10150977 DOI: 10.1371/journal.pone.0284480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Microglial cells are brain-specific macrophages that swiftly react to disruptive events in the brain. Microglial activation leads to specific modifications, including proliferation, morphological changes, migration to the site of insult, and changes in gene expression profiles. A change in inflammatory status has been linked to many neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. For this reason, the investigation and quantification of microglial cells is essential for better understanding their role in disease progression as well as for evaluating the cytocompatibility of novel therapeutic approaches for such conditions. In the following study we implemented a machine learning-based approach for the fast and automatized quantification of microglial cells; this tool was compared with manual quantification (ground truth), and with alternative free-ware such as the threshold-based ImageJ and the machine learning-based Ilastik. We first trained the algorithms on brain tissue obtained from rats and non-human primate immunohistochemically labelled for microglia. Subsequently we validated the accuracy of the trained algorithms in a preclinical rodent model of Parkinson's disease and demonstrated the robustness of the algorithms on tissue obtained from mice, as well as from images provided by three collaborating laboratories. Our results indicate that machine learning algorithms can detect and quantify microglial cells in all the three mammalian species in a precise manner, equipotent to the one observed following manual counting. Using this tool, we were able to detect and quantify small changes between the hemispheres, suggesting the power and reliability of the algorithm. Such a tool will be very useful for investigation of microglial response in disease development, as well as in the investigation of compatible novel therapeutics targeting the brain. As all network weights and labelled training data are made available, together with our step-by-step user guide, we anticipate that many laboratories will implement machine learning-based quantification of microglial cells in their research.
Collapse
Affiliation(s)
- Danish M. Anwer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Francesco Gubinelli
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Yunus A. Kurt
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Livija Sarauskyte
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Febe Jacobs
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Chiara Venuti
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Ivette M. Sandoval
- Barrow Neurological Institute, Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Phoenix, Arizona, United States of America
| | - Yiyi Yang
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Jennifer Stancati
- Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
| | - Martina Mazzocchi
- Brain Development and Repair Group, Department of Anatomy and Neuroscience University College Cork, Cork, Ireland
| | - Edoardo Brandi
- Neural Plasticity and Repair, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Gerard O’Keeffe
- Brain Development and Repair Group, Department of Anatomy and Neuroscience University College Cork, Cork, Ireland
| | - Kathy Steece-Collier
- Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
| | - Jia-Yi Li
- Neural Plasticity and Repair, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Fredric P. Manfredsson
- Barrow Neurological Institute, Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Phoenix, Arizona, United States of America
| | - Marcus Davidsson
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
- Barrow Neurological Institute, Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Phoenix, Arizona, United States of America
| | - Andreas Heuer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| |
Collapse
|
4
|
Lelos MJ. Investigating cell therapies in animal models of Parkinson's and Huntington's disease: Current challenges and considerations. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:159-189. [PMID: 36424091 DOI: 10.1016/bs.irn.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell therapeutics have entered into an exciting era, with first-in-person clinical trials underway for Parkinson's disease and novel cell therapies in development for other neurodegenerative diseases. In the hope of ensuring successful translation of these novel cell products to the clinic, a significant amount of preclinical work continues to be undertaken. Rodent models of neural transplantation are required to thoroughly assess the survival, safety and efficacy of novel therapeutics. It is critical to produce robust and reliable preclinical data, in order to increase the likelihood of clinical success. As a result, significant effort has been driven into generating ever more relevant model systems, from genetically modified disease models to mice with humanized immune systems. Despite this, several challenges remain in the quest to assess human cells in the rodent brain long-term. Here, with a focus on models of Parkinson's and Huntington's disease, we discuss key considerations for choosing an appropriate rodent model for neural transplantation. We also consider the challenges associated with long-term survival and assessment of functional efficacy in these models, as well as the need to consider the clinical relevance of the model. While the choice of model will be dependent on the scientific question, by considering the caveats associated with each model, we identify opportunities to optimize the preclinical assessment and generate reliable data on our novel cell therapeutics.
Collapse
Affiliation(s)
- Mariah J Lelos
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
5
|
Magrassi L, Nato G, Delia D, Buffo A. Cell-Autonomous Processes That Impair Xenograft Survival into the Cerebellum. THE CEREBELLUM 2022; 21:821-825. [PMID: 35578085 PMCID: PMC9411236 DOI: 10.1007/s12311-022-01414-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 11/29/2022]
Abstract
In immunocompetent animals, numerous factors including the immune system of the host regulate the survival of neuro-glial precursors transplanted into the cerebellum. We transplanted human neuro-glial precursors derived in vitro from partial differentiation of IPS cells into the developing cerebellum of mice and rats before maturation of the host immune system. These approaches should facilitate the development of immune-tolerance for the transplanted cells. However, we found that human cells survived the engraftment and integrated into the host cerebellum and brain stem up to about 1 month postnatally when they were rejected in both species. On the contrary, when we transplanted the same cells in NOD-SCID mice, they survived indefinitely. Our findings are consistent with the hypothesis that the slower pace of differentiation of human neural precursors compared to that of rodents restricts the induction of immune-tolerance to human antigens expressed before completion of the maturation of the immune system. As predicted by our hypothesis, when we engrafted the human neuro-glial precursor cells either in a more mature state or mixed with extracts from adult cerebellum, we prolonged the survival of the graft.
Collapse
Affiliation(s)
- Lorenzo Magrassi
- Neurosurgery, Department of Clinical, Surgical, Diagnostic and Pediatric Science, University of Pavia, Foundation IRCCS Policlinico San Matteo, Pavia, Italy.
- Istituto Di Genetica Molecolare IGM-CNR, via Abbiategrasso 207, 27100, Pavia, Italy.
| | - Giulia Nato
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043, Torino, Italy
- Department of Life Sciences and System Biology, University of Turin, Via Accademia Albertina 13, Turin, Italy
| | - Domenico Delia
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milano, Italy
| | - Annalisa Buffo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043, Torino, Italy
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Via Cherasco 15, Torino, Italy
| |
Collapse
|
6
|
Lane EL, Harrison DJ, Ramos‐Varas E, Hills R, Turner S, Lelos MJ. Spontaneous Graft-Induced Dyskinesias Are Independent of 5-HT Neurons and Levodopa Priming in a Model of Parkinson's Disease. Mov Disord 2022; 37:613-619. [PMID: 34766658 PMCID: PMC9208367 DOI: 10.1002/mds.28856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The risk of graft-induced dyskinesias (GIDs) presents a major challenge in progressing cell transplantation as a therapy for Parkinson's disease. Current theories implicate the presence of grafted serotonin neurons, hotspots of dopamine release, neuroinflammation and established levodopa-induced dyskinesia. OBJECTIVE To elucidate the mechanisms of GIDs. METHODS Neonatally desensitized, dopamine denervated rats received intrastriatal grafts of human embryonic stem cells (hESCs) differentiated into either ventral midbrain dopaminergic progenitor (vmDA) (n = 15) or ventral forebrain cells (n = 14). RESULTS Of the eight rats with surviving grafts, two vmDA rats developed chronic spontaneous GIDs, which were observed at 30 weeks post-transplantation. GIDs were inhibited by D2 -like receptor antagonists and not affected by 5-HT1A/1B/5-HT6 agonists/antagonists. Grafts in GID rats showed more microglial activation and lacked serotonin neurons. CONCLUSIONS These findings argue against current thinking that rats do not develop spontaneous GID and that serotonin neurons are causative, rather indicating that GID can be induced in rats by hESC-derived dopamine grafts and, critically, can occur independently of both previous levodopa exposure and grafted serotonin neurons. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Emma L. Lane
- School of Pharmacy and Pharmaceutical SciencesCardiff UniversityCardiffUnited Kingdom
| | - David J. Harrison
- Brain Repair Group, School of BiosciencesCardiff UniversityCardiffUnited Kingdom
| | - Elena Ramos‐Varas
- Brain Repair Group, School of BiosciencesCardiff UniversityCardiffUnited Kingdom
| | - Rachel Hills
- Brain Repair Group, School of BiosciencesCardiff UniversityCardiffUnited Kingdom
| | - Sophie Turner
- Brain Repair Group, School of BiosciencesCardiff UniversityCardiffUnited Kingdom
| | - Mariah J. Lelos
- School of Pharmacy and Pharmaceutical SciencesCardiff UniversityCardiffUnited Kingdom
| |
Collapse
|
7
|
Jiang LL, Li H, Liu L. Xenogeneic stem cell transplantation: Research progress and clinical prospects. World J Clin Cases 2021; 9:3826-3837. [PMID: 34141739 PMCID: PMC8180210 DOI: 10.12998/wjcc.v9.i16.3826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Organ transplantation is the ultimate treatment for end-stage diseases such as heart and liver failure. However, the severe shortage of donor organs has limited the organ transplantation progress. Xenogeneic stem cell transplantation provides a new strategy to solve this problem. Researchers have shown that xenogeneic stem cell transplantation has significant therapeutic effects and broad application prospects in treating liver failure, myocardial infarction, advanced type 1 diabetes mellitus, myelosuppression, and other end-stage diseases by replacing the dysfunctional cells directly or improving the endogenous regenerative milieu. In this review, the sources, problems and solutions, and potential clinical applications of xenogeneic stem cell transplantation will be discussed.
Collapse
Affiliation(s)
- Lin-Li Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hui Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
8
|
Nato G, Corti A, Parmigiani E, Jachetti E, Lecis D, Colombo MP, Delia D, Buffo A, Magrassi L. Immune-tolerance to human iPS-derived neural progenitors xenografted into the immature cerebellum is overridden by species-specific differences in differentiation timing. Sci Rep 2021; 11:651. [PMID: 33436685 PMCID: PMC7803978 DOI: 10.1038/s41598-020-79502-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 12/09/2020] [Indexed: 01/20/2023] Open
Abstract
We xeno-transplanted human neural precursor cells derived from induced pluripotent stem cells into the cerebellum and brainstem of mice and rats during prenatal development or the first postnatal week. The transplants survived and started to differentiate up to 1 month after birth when they were rejected by both species. Extended survival and differentiation of the same cells were obtained only when they were transplanted in NOD-SCID mice. Transplants of human neural precursor cells mixed with the same cells after partial in vitro differentiation or with a cellular extract obtained from adult rat cerebellum increased survival of the xeno-graft beyond one month. These findings are consistent with the hypothesis that the slower pace of differentiation of human neural precursors compared to that of rodents restricts induction of immune-tolerance to human antigens expressed before completion of maturation of the immune system. With further maturation the transplanted neural precursors expressed more mature antigens before the graft were rejected. Supplementation of the immature cells suspensions with more mature antigens may help to induce immune-tolerance for those antigens expressed only later by the engrafted cells.
Collapse
Affiliation(s)
- Giulia Nato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Via Cherasco 15, Torino, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043, Orbassano, Torino, Italy
| | - Alessandro Corti
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Via Amadeo 42, 20133, Milano, Italy
| | - Elena Parmigiani
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Via Cherasco 15, Torino, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043, Orbassano, Torino, Italy
| | - Elena Jachetti
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Via Amadeo 42, 20133, Milano, Italy
| | - Daniele Lecis
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Via Amadeo 42, 20133, Milano, Italy
| | - Mario Paolo Colombo
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Via Amadeo 42, 20133, Milano, Italy
| | - Domenico Delia
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Via Amadeo 42, 20133, Milano, Italy.,IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milano, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Via Cherasco 15, Torino, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043, Orbassano, Torino, Italy
| | - Lorenzo Magrassi
- Neurosurgery, Department of Clinical, Surgical, Diagnostic and Pediatric Science, University of Pavia, Foundation IRCCS Policlinico San Matteo, Pavia, Italy. .,Istituto Di Genetica Molecolare IGM-CNR, via Abbiategrasso 207, 27100, Pavia, Italy.
| |
Collapse
|
9
|
A comparison of AAV-vector production methods for gene therapy and preclinical assessment. Sci Rep 2020; 10:21532. [PMID: 33299011 PMCID: PMC7726153 DOI: 10.1038/s41598-020-78521-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Adeno Associated Virus (AAV)-mediated gene expression in the brain is widely applied in the preclinical setting to investigate the therapeutic potential of specific molecular targets, characterize various cellular functions, and model central nervous system (CNS) diseases. In therapeutic applications in the clinical setting, gene therapy offers several advantages over traditional pharmacological based therapies, including the ability to directly manipulate disease mechanisms, selectively target disease-afflicted regions, and achieve long-term therapeutic protein expression in the absence of repeated administration of pharmacological agents. Next to the gold-standard iodixanol-based AAV vector production, we recently published a protocol for AAV production based on chloroform-precipitation, which allows for fast in-house production of small quantities of AAV vector without the need for specialized equipment. To validate our recent protocol, we present here a direct side-by-side comparison between vectors produced with either method in a series of in vitro and in vivo assays with a focus on transgene expression, cell loss, and neuroinflammatory responses in the brain. We do not find differences in transduction efficiency nor in any other parameter in our in vivo and in vitro panel of assessment. These results suggest that our novel protocol enables most standardly equipped laboratories to produce small batches of high quality and high titer AAV vectors for their experimental needs.
Collapse
|
10
|
Kusena JWT, Thomas RJ, McCall MJ, Wilson SL. From protocol to product: ventral midbrain dopaminergic neuron differentiation for the treatment of Parkinson's disease. Regen Med 2019; 14:1057-1069. [DOI: 10.2217/rme-2019-0076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Current cell therapy product limitations include the need for in-depth product understanding to ensure product potency, safety and purity. New technologies require development and validation to address issues of production scale-up to meet clinical need; assays are required for process control, validation and release. Prior to clinical realization, an understanding of production processes is required to implement process changes that are essential for process control. Identification of key parameters forms the basis of process tolerances, allowing for validated, adaptive manufacturing processes. This enables greater process control and yield while withstanding regulatory scrutiny. This report summaries key milestones in specifically for ventral midbrain dopaminergic neuroprogenitor differentiation and key translational considerations and recommendations to enable successful, robust and reproducible current cell therapy product-manufacturing.
Collapse
Affiliation(s)
- James WT Kusena
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical & Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough, Leicestershire, LE11 3TU, UK
| | - Robert J Thomas
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical & Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough, Leicestershire, LE11 3TU, UK
| | - Mark J McCall
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical & Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough, Leicestershire, LE11 3TU, UK
| | - Samantha L Wilson
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical & Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough, Leicestershire, LE11 3TU, UK
| |
Collapse
|
11
|
Crane AT, Voth JP, Shen FX, Low WC. Concise Review: Human-Animal Neurological Chimeras: Humanized Animals or Human Cells in an Animal? Stem Cells 2019; 37:444-452. [PMID: 30629789 DOI: 10.1002/stem.2971] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/16/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
Abstract
Blastocyst complementation is an emerging methodology in which human stem cells are transferred into genetically engineered preimplantation animal embryos eventually giving rise to fully developed human tissues and organs within the animal host for use in regenerative medicine. The ethical issues surrounding this method have caused the National Institutes of Health to issue a moratorium on funding for blastocyst complementation citing the potential for human cells to substantially contribute to the brain of the chimeric animal. To address this concern, we performed an in-depth review of the neural transplantation literature to determine how the integration of human cells into the nonhuman neural circuitry has altered the behavior of the host. Despite reports of widespread integration of human cell transplants, our review of 150 transplantation studies found no evidence suggestive of humanization of the animal host, and we thus conclude that, at present, concerns over humanization should not prevent research on blastocyst complementation to continue. We suggest proceeding in a controlled and transparent manner, however, and include recommendations for future research with careful consideration for how human cells may contribute to the animal host nervous system. Stem Cells 2019;37:444-452.
Collapse
Affiliation(s)
- Andrew T Crane
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Minnesota Craniofacial Research Training Program, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joseph P Voth
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Francis X Shen
- University of Minnesota Law School, Minneapolis, Minnesota, USA.,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Walter C Low
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA.,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
12
|
Villadiego J, Romo-Madero S, García-Swinburn R, Suárez-Luna N, Bermejo-Navas A, Echevarría M, Toledo-Aral JJ. Long-term immunosuppression for CNS mouse xenotransplantation: Effects on nigrostriatal neurodegeneration and neuroprotective carotid body cell therapy. Xenotransplantation 2018; 25:e12410. [PMID: 29932254 DOI: 10.1111/xen.12410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/09/2018] [Accepted: 05/02/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND The use of long-term immunosuppressive treatments on neural transplantation has been controversial during the last decades. Although nowadays there is a consensus about the necessity of maintaining a permanent state of immunosuppression to preserve the survival of cerebral grafts, little is known about the effects that chronic immunosuppression produces both on the neurodegenerative process and on transplants function. METHODS Here, we establish a new immunosuppressive protocol, based on the discontinuous administration of CsA (15 mg/kg; s.c.) and prednisone (20 mg/kg; s.c.), to produce long-term immunosuppression in mice. Using this treatment, we analyse the effects that long-term immunosuppression induces in a chronic 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP) model of parkinsonism and on the neuroprotective and neurorestorative anti-parkinsonian actions exerted by rat carotid body (CB) xenografts. RESULTS This protocol preserves the survival of rat CB xenotransplants maintaining the general wellness of the grafted mice. Although permanent immunosuppression does not prevent the MPTP-induced cell death of nigral neurons and the consequent degeneration of dopaminergic striatal innervation, allowing for its use as Parkinson's disease (PD) model, it reduces the microglial activation and slightly declines the striatal damage. Moreover, we reported that chronic administration of immunosuppressant drugs does not alter the neuroprotective and restorative anti-parkinsonian actions of rat CB xenografts into parkinsonian mice. CONCLUSIONS This new immunosuppressive protocol provides a new murine model to assay the long-term effects of cerebral xenografts and offer a pharmacological alternative to the commonly used genetic immunodeficient mice, allowing the use of genetically modified mice as hosts. In addition, it will permit the experimental analysis of the effects produced by human CB xenografts in the chronic PD murine model, with the final aim of using CB allografts as an option of cell therapy in PD patients.
Collapse
Affiliation(s)
- Javier Villadiego
- Instituto de Biomedicina de Sevilla-IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Sonia Romo-Madero
- Instituto de Biomedicina de Sevilla-IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla, Spain
| | - Roberto García-Swinburn
- Instituto de Biomedicina de Sevilla-IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla, Spain
| | - Nela Suárez-Luna
- Instituto de Biomedicina de Sevilla-IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla, Spain
| | - Alfonso Bermejo-Navas
- Instituto de Biomedicina de Sevilla-IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla, Spain
| | - Miriam Echevarría
- Instituto de Biomedicina de Sevilla-IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla, Spain
| | - Juan J Toledo-Aral
- Instituto de Biomedicina de Sevilla-IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| |
Collapse
|
13
|
Tartaglione AM, Popoli P, Calamandrei G. Regenerative medicine in Huntington's disease: Strengths and weaknesses of preclinical studies. Neurosci Biobehav Rev 2017; 77:32-47. [PMID: 28223129 DOI: 10.1016/j.neubiorev.2017.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/26/2017] [Accepted: 02/17/2017] [Indexed: 01/22/2023]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder, characterized by impairment in motor, cognitive and psychiatric domains. Currently, there is no specific therapy to act on the onset or progression of HD. The marked neuronal death observed in HD is a main argument in favour of stem cells (SCs) transplantation as a promising therapeutic perspective to replace the population of lost neurons and restore the functionality of the damaged circuitry. The availability of rodent models of HD encourages the investigation of the restorative potential of SCs transplantation longitudinally. However, the results of preclinical studies on SCs therapy in HD are so far largely inconsistent; this hampers the individuation of the more appropriate model and precludes the comparative analysis of transplant efficacy on behavioural end points. Thus, this review will describe the state of the art of in vivo research on SCs therapy in HD, analysing in a translational perspective the strengths and weaknesses of animal studies investigating the therapeutic potential of cell transplantation on HD progression.
Collapse
Affiliation(s)
- A M Tartaglione
- Centre for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - P Popoli
- National Centre for Medicines Research and Preclinical/Clinical Evaluation, Rome, Italy
| | - G Calamandrei
- Centre for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|